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170 ' J. L. CATHELINEAU

Il est alors immédiat que

Lyohs = <h,, h,>1d,

[« B ]

et par suite i3 est un 1somorphisme de k-espaces vectoriels.

En ce qui concerne le calcul du H, ,(g4,qg,) on procéde de maniére
analogue, en remplagant le complexe (A*/;_x ;+y,b), par le complexe
(A*/1 1y, b), dont 'homologie est H _(A).

Enfin on rameéne facilement le cas général au cas déployé; en effet
supposons que (L, k) soit une extension galoisienne, de degré fini, telle que
g ®, L soit déployée sur L. On applique ce que l'on vient de démontrer
a la situation:

¢ =g® L, A=A4A@L, giy=9®A4=9,®L.
Pour achever la preuve, il suffit de remarquer que 'on a des isomorphismes
H, g4 > [H, (g4 ®; L)]r
H*, k(gAD gA) > [H*,L(QA ®k L, g4 ®k L)]GL/k

ou Gy, est le groupe de Galois de (L, k): ce groupe est fini et on est en
caractéristique nulle.

4. REMARQUES SUR LE CAS DE sl(r, A),r > 3

Soit sl(r, 4) ~ A ® sl(n, k), 'algébre de Lie des r x r matrices de trace nulle.
Explicitons I'isomorphisme

P31 Hy i(sl(r, A)) » HC(A),
induit (pour r>3), par Papplication de [LQ]:
Plag XoNay Xl/\ . Na, X,)
= (—1)" ) &, Trace (Xo Xo—1) - Xow) (@o> Ag(1)> - Com) 5

ces,
(L’application L considérée dans le paragraphe précédent ne convient pas ici).

On peut écrire
Lalag XoNay X1 NayX,)
= Trace (XX X)) (ao, ay, a;) — Trace (XX, X,)(ao, a,, a;)

= _;:\jl(Xo,Xl,Xz) (@0, a1, az)—(ao, as, ay))

1
+ 5 O(Xo, X1, X5) ((aoa ai, az)+(ag, a,, 01))
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ou
O(Xo, X, X,) = Trace (X[ X, X,])
et
U(X,, X, X,) = Trace (XX ; X, + X X,X,)

sont des 3-formes invariantes sur sl(r, k), respectivement antisymeétrique et
symeétrique.
Lorsque A est lisse ou un corps extension de k, on sait que

HC,(A) ~ Hpg(A) ® (Q fi/k/d Q,}l/k) 5
L’isomorphisme ci-dessus s’explicite alors par I'application
agXoNa; X1 Nay X, > U(Xo, X1, Xjp)agara, + &(Xo, Xy, Xj)aedadas, .

Esquissons une preuve; on note d’abord I’analogue des lemmes 3 et 4.
Soit H, E,, E_, H', les matrices de sl(r, k) de la forme

0 o)

ou M est donné respectivement par

1 0 O O 1 0 O 0 o0 O 0 o0

o -1 0 |, O 0 0 ], 1 0 0}, 0 1 0 ;

0O 0 0 O 0 O 0O 0 o 0O 0 -1
alors on a:

(®7 sl(r, k)sir, k) est de dimension 2, engendré par
[HQE,RE_] et [HRH®H];
de plus lapplication
SPA@® N4 - (A3slr, A)sie, k)
donnée par
a.b.c—[aH AN bE. A cE_]
a NbAc—[aH A bH A c H]

est un isomorphisme de k-espaces vectoriels.

Une methode pour prouver cela consiste a utiliser 'argument géométrique
suivant sur les systémes de racines:
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Pour un systtme de racines A de base R de type A,(n=>2), la plus

grande racine est orthogonale & toutes les racines de la base sauf exac-

tement 2.
Enfin on obtient un inverse de ¥, a partir du morphisme de complexes

A4/1—X —* A’/ _x - A%/ _x
Ha l B3 l u2 l
d
NI, At k) = AU D)t iy = A D)sir, 1)
1
Hz((ao ) a1)) = 5 [acHANa H],
1 1 )
Hs((ao, ajp, az)) =3 lacHAa,E, Na,E_] + 5 [agHANa;HAa,H'],
1
H4((%a ay, ay, 43)) = [aoE+ AayE_ANayE, NazE_]
1 / /
+ Z g:G 80. [ac(O)H/\ ac(l)H/\ ac(z)E + /\ a0(3)E __]

ou G est le groupe cyclique engendré par le cycle (0, 1,2, 3), et ou E’,
et E'_ proviennent des matrices

0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

On a une approche analogue pour H, (sl(r, A), sl(r, A)) (r=3).

En écrivant les lignes qui précedent, Pauteur était motivé par I’homologie
des groupes algébriques simples (éventuellement réels). Que connait-on
d’analogue au théoréme 1 et 2 dans ce contexte?

La situation pour SL(r, A) est assez bien comprise griace a la K-théorie
algébrique et a I'article récent [G].

Dans le cas des groupes algébriques réels simples, il y a des résultats
dans [D], [D-S], [P-S]; en particulier 'analogue de théoréme 2 est connu
pour SO(n, R), comme conséquence du théoréme de Sydler [S].
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