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170 J. L. CATHELINEAU

Il est alors immédiat que

L3 ° X3 </ia, ha> Id

et par suite L3 est un isomorphisme de /c-espaces vectoriels.
En ce qui concerne le calcul du H2 k($A, §A) on procède de manière

analogue, en remplaçant le complexe (A*/1-Xtl + Y,b), par le complexe
(A*/1 + y, b), dont l'homologie est H~(A).

Enfin on ramène facilement le cas général au cas déployé; en effet

supposons que (L, k) soit une extension galoisienne, de degré fini, telle que
9 soit déployée sur L. On applique ce que l'on vient de démontrer
à la situation :

g' g (g)kL, A' A<g)kL, q'A, g' ®k A' qa ®k L.

Pour achever la preuve, il suffit de remarquer que l'on a des isomorphismes

LH*,l(Qa ®kL)~\GLik

H*,k(§A> QA) LH*,L(§A L, Qa LJ]GL/k

où GL/k est le groupe de Galois de (L, k) : ce groupe est fini et on est en

caractéristique nulle.

4. Remarques sur le cas de sï(r, A), r ^ 3

Soit si(r, A) ~ A (g) si(n, k), l'algèbre de Lie des rxr matrices de trace nulle.

Explicitons l'isomorphisme

a))-+hc2(A),

induit (pour r ^ 3), par l'application de [LQ] :

^(a0 X0Aa1 X\A A anXn)

(-1)" L sa Trace (^0 - X«<„)) («0, 1), -, a. ;

cre©„

(L'application L considérée dans le paragraphe précédent ne convient pas ici).

On peut écrire

S£3(a0 X0Aax X1A a2X2)

Trace (X0X1X2) (a0, ax, a2) — Trace (X0X2Xl) (a0, a2, ax)

1MX0, X1;X2) ((a0,a1,a2)-(a0ay))

+ ^(X0,X1,X2)((a0,a1,a2) + (a0,a2,a1))
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OÙ

<\>(X0, X,, X2) Trace (X0IX1, X2])

et

\|f(X0 ,X\ ,X2) Trace (X0X1X2 + X0X2X1)

sont des 3-formes invariantes sur sl(r, k), respectivement antisymétrique et

symétrique.

Lorsque A est lisse ou un corps extension de k, on sait que

HC2(A) * HUA) ® (Q2Alk/d Q1^) ;

L'isomorphisme ci-dessus s'explicite alors par l'application

aoXoaiXi/\ u2X2 t-* ^\f(Xq Xi, X2)ßoaia2 + ^(Xo, X1, X2)a0daida2

Esquissons une preuve; on note d'abord l'analogue des lemmes 3 et 4.

Soit if, E + H\ les matrices de sl(r, k) de la forme

(M 0\
U o;

où M est donné respectivement par

/ 1 0 0\ /0 1 0\ /0 0 0\ /0 0

0 -1 0 0 0 01,1 0 01, 0 1

\ 0 0 0 / \0 0 0 / \0 0 0/ \0 0

alors on a:

(®3 si(r, k%i(r> Q est de dimension 2, engendré par

[H®£ + 0£_] et [if(g)if©if] ;

de plus l'application

© A 3^4 A 3sl(r, 4))si(rj q
donnée par

a.h.ch->[aif A bE+ A c£_]
flAHm [clH A bH A c iL]

est un isomorphisme de /c-espaces vectoriels.
Une méthode pour prouver cela consiste à utiliser l'argument géométrique

suivant sur les systèmes de racines :
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Pour un système de racines À de base R de type An(n^2), la plus
grande racine est orthogonale à toutes les racines de la base sauf
exactement 2.

Enfin on obtient un inverse de J?3 à partir du morphisme de complexes

AA/i-x - A3/,-x A
w 4 M 4 « 4

A4(sl (r, A))sl(r,k)^A 3(sl(r, 4))sl(r, k)^A 2(sl(r, ^))sI(r> fe)

|i2((a0, aj) 1 MAfl^]
1 1

M(ao » ai,«2))
2

[a0^Aai£+ Aa2£_]

lU(aO' a1,a2,a3j) 1
[a0£ + AatE_ Aa2£+ Aü3£_]

+ 7 E en Lao(,0)H aa(1)H A ao(2)E'+ AÖct(3)E'_]
4 aeG

où G est le groupe cyclique engendré par le cycle (0, 1, 2, 3), et où E'+
et proviennent des matrices

/0 0 0\ /0 0 o\
(0 0 1 j I 0 0 0

\0 0 0/ \0 1 0/

On a une approche analogue pour #2 fc(sl(r, ^4), si(r, ^4)) (r^3).

En écrivant les lignes qui précèdent, l'auteur était motivé par l'homologie
des groupes algébriques simples (éventuellement réels). Que connaît-on
d'analogue au théorème 1 et 2 dans ce contexte

La situation pour SL(r, A) est assez bien comprise grâce à la K-théorie
algébrique et à l'article récent [G].

Dans le cas des groupes algébriques réels simples, il y a des résultats
dans [D], [D-S], [P-S] ; en particulier l'analogue de théorème 2 est connu

pour SO(n, R), comme conséquence du théorème de Sydler [S].
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