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dans tous les autres cas :

H2, k(QA ' 9A) — H 2 (A) •

(Ici les isomorphismes sont des isomorphismes de A-modules.)

Le cas particulier suivant semble intéressant (voir introduction): si I est

une R-algèbre de Lie réelle simple, non de type An(n ^ 2)

^QnR
#2,q(U) 0,

où l'homologie est prise au sens des algèbres rationnelles ;

Par contre, si I est de type A„(n ^ 2), on a

H3,Q(l) ~ (QnR)© (ß^niro)
H2,QGjI) — ^R/Q >

et on sait que QrjQ/d Qr/q est un Q-espace vectoriel, de dimension la
puissance du continu, et que Dr/q est un R-espace vectoriel, de dimension
la puissance du continu.

Comme me l'a fait remarquer Ch. Kassel, le cas du type An(n^2) est

implicitement contenu dans [LQ] et [G]. Sans revenir en détail sur ce cas,

on fera quelques remarques au § 4.

3. Cas où g n'est pas de type An(n^2)

Calcul de certains espaces de coinvariants

Soit (g, 1)) une /c-algèbre déployée, d'algèbre de Cartan 1) et de système de

racines A. (ha, ea)aeA est une famille de générateurs de Chevalley telle que

Voc e A, \_ha, ef\ 2é?a \fla, 2é?a ^ —al
5

jR ai} est une base de A.

Tous les produits tensoriels et extérieurs sont pris sur k; )g désigne
l'espace des coinvariants d'un g-module.

Dans ce paragraphe, A est une /c-algèbre commutative quelconque.
Le lemme suivant est bien connu.

Lemme 1. Soit g simple déployée sur k. La forme de Killing

< > : g x g - k
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car g est isomorphe à g* comme g-module. De plus g simple entraîne

Horn (g, g)9 ~ k

En utilisant des formules connues pour la forme de Killing ([Bo2]), on en

déduit les relations suivantes dans (g®g)g:

où [ ] est la classe dans (g®g)g et la forme sur 1)* associée à < >.
En utilisant l'identification ([L-Q])

(&4 A 9x) - ((90s) 0 0s2 (sgn)

où (sgn) désigne k, muni de l'action du groupe symétrique S2 donné par
la signature, on obtient :

Lemme 2. L'espace des coinvariants (g^ A g^)g s'identifie canoniquement
à A A A, par l'application

(oceà, arbitraire).

aha est mis pour a <S> K; g est considérée comme sous-algèbre de g^
et opère dans g^ par l'action adjointe.

Notons dans (g^ A g^)g les relations suivantes :

(1)

[>a®ep] 0, si a+ß^0
Oa®/îp] lhß®ej 0

a(/zß) [e_a(g)ea] ß(/za) Op®e_p]

(a, a) lK®ha~] (ß, ß) [fcß®Äp]

a A b h- (a, a) [a/?a A bhf\

(2) [_aha A bhf\ 2 [aea A J
2 [ae^AbeJ

Lemme 3. Soit g simple déployée sur k, de type Al9 B, C, Dt(l^4),
E, F4 ou G2, la forme antisymétrique
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f 9 x g x g

(w, V9 w) < [U, f], W >

induit un isomorphisme de k-espaces vectoriels :

(g®g®g)ö ^ k.

Il suffit de montrer que dimfc((g(g)g(g)g)g) 1. Pour cela, nous utiliserons

un résultat de Kostant-Parthasaraty-Rao-Varadarajan ([P.R.V.]).
Soit co la plus grande racine de À qui est le poids dominant de la

représentation adjointe de g, notée On a

dimfc((g®g®g)ö) dimfc((Hom(g, g®g))9)

(na9nm®nj

où (tiw, est la multiplicité de dans 7^ ® 7V Par la formule de

multiplicité du théorème 2.1 de [P.R.V.], on peut écrire

(^(0, tc^tcJ dimkV,

où

V {v g 1); (ad eai)aihai) + 1{v) 0, pour i 1

en effet avec les notations de [P.R.Y.], on a

fa«,, m+(œ; 0, co) m"(©; 0, ©).

On fait alors l'observation cruciale suivante :

si (À, R) est un système de racines de type Al9 B, C, Dt(l^4), E, F4 ou G2,
la plus grande racine co est orthogonale à toutes les racines de la base R sauf

exactement une qu'on supposera être az ; cela se vérifie facilement en utilisant,
par exemple, les planches du chapitre VI de [Bo 2].

Par suite

Va {vefy; a£v) 0, pour i 1,..., / — 1} ;

en fait V n'est pas réduit à {0}, car est non triviale et donc

dimkV 1 (engendré par hai)

d'où le lemme.

On déduit aussitôt de ce lemme, à l'aide de c(> les relations suivantes
dans (g®g®g)g:

(3) Va, ß e A (a, a) [fea<g>ea<g>e_ J (ß, ß) [/2ß®cß®c_ß] / 0 ;
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de plus le symbole [ha®ea®e_a] est antisymétrique; on en tire:

Lemme 4. (Avec les hypothèses du lemme 3). (cy A A s'identifie

canoniquement à la puissance symétrique (sur k) S3A, par l'application

a. b c i— (a, a) [a/za A bea A ce_a]

De façon analogue, (g^®(g^ A g^))g s'identifie à A ® S2A par

a ® b c I— (a, a) [aha®(6ea A ce_a)]

Il suffit d'utiliser les isomorphismes ([LQ])

(9^AgAAgJg ~ ((g®g<gig)g®04<g),4®,4)) ®<s3

(9A®(9^AgA))g ~ ((g®g®g)g®(^®^®4)) ®s2 (sgn).

Lemme 5. Soit g déployée sur k. Dans (®4g)g on a les relations

Va e A, [ea®e_a®ea®e_a] [e_a®ea®e_a®ea]

Pour cela, on remarque d'abord que, par un argument de formule de

Taylor, le groupe des automorphismes élémentaires de g opère trivialement
dans (®"g)g.

Soit alors l'automorphisme élémentaire ([Bo 2], VIII, § 2...)

0a exp (ad ej exp (ad e_a) exp (ad ej ;

il vérifie ([Bo 2])

®a(^a) ^-a ®a(^-a) 5

d'où le lemme.

Preuve des résultats. (Pour g non de type An, n^2)

Soit (A*g^,d) et (g^® A *gi4), d), les complexes habituels d'homologie

H*,k(QA) et

Le résultat suivant de [L-Q], permet de se ramener aux coinvariants :

Lemme 6 ([L-Q]). Si g est déployée, les homomorphismes de complexes

(A*g A,d)-((A*gjg, d)

(9x® A*gx,rf) -»• ((gx® A*g/t)g,<f),

sont des quasi-isomorphismes.
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On prouve d'abord les théorèmes 1 et 2 dans le cas où g est déployée

sur k non du type An(n^2).
Les résultats qui précèdent permettent de construire un diagramme com-

mutatif

^ll-X,l + Y ^3/l-X,l + Y A2/±-x,l + Y

M | X3 | X2 J

(A4gJg (A3gjg (A2gjg

où les Xi9i 2, 3, 4, sont définis par

A2(a0,a 1)

X3(a0ialia2) [ao^Aa^Aa^-J
?ù4(a0, al5 a2, a3) [a0eaAqe.,Aa2eaAa3e_J >

a g À étant une racine fixée. Notons que

^43/i_x, î + Y — et A2I1-x,i+y — A 2^4

et par suite, X2 et X3 sont bijectives, grâce aux lemmes 4 et 6.

On en déduit une suijection

HD2(A) L

D'autre part, on a pour toute /c-algèbre de Lie g, un morphisme de

complexes

L: (A *g^, d) -* (A*/1_Xt 1 + Y, b)

défini par

L(a0u0Aa1u1 A AanuJ

-1) E e<r Trace (ad "o ° ad «<7(1)) ° - ° ad a(n)) aa(1),an(n)),
crsS„

et par suite une application

£3:H3,k(gA)^HD2(A),

où L3 est induite par

L3(a0u0 A a1u1 A a2u2) Trace (ad u0 ° ad u1 o ad u2) (a0, a1, a2)

— Trace (ad u0 ° ad w2 ° ad iq) (a0, a2, aj
Trace (adu0 ° ad [iq, w2J) (#o ß2)

<w0> [«i,m2]> (a0, fli, a2).
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Il est alors immédiat que

L3 ° X3 </ia, ha> Id

et par suite L3 est un isomorphisme de /c-espaces vectoriels.
En ce qui concerne le calcul du H2 k($A, §A) on procède de manière

analogue, en remplaçant le complexe (A*/1-Xtl + Y,b), par le complexe
(A*/1 + y, b), dont l'homologie est H~(A).

Enfin on ramène facilement le cas général au cas déployé; en effet

supposons que (L, k) soit une extension galoisienne, de degré fini, telle que
9 soit déployée sur L. On applique ce que l'on vient de démontrer
à la situation :

g' g (g)kL, A' A<g)kL, q'A, g' ®k A' qa ®k L.

Pour achever la preuve, il suffit de remarquer que l'on a des isomorphismes

LH*,l(Qa ®kL)~\GLik

H*,k(§A> QA) LH*,L(§A L, Qa LJ]GL/k

où GL/k est le groupe de Galois de (L, k) : ce groupe est fini et on est en

caractéristique nulle.

4. Remarques sur le cas de sï(r, A), r ^ 3

Soit si(r, A) ~ A (g) si(n, k), l'algèbre de Lie des rxr matrices de trace nulle.

Explicitons l'isomorphisme

a))-+hc2(A),

induit (pour r ^ 3), par l'application de [LQ] :

^(a0 X0Aa1 X\A A anXn)

(-1)" L sa Trace (^0 - X«<„)) («0, 1), -, a. ;

cre©„

(L'application L considérée dans le paragraphe précédent ne convient pas ici).

On peut écrire

S£3(a0 X0Aax X1A a2X2)

Trace (X0X1X2) (a0, ax, a2) — Trace (X0X2Xl) (a0, a2, ax)

1MX0, X1;X2) ((a0,a1,a2)-(a0ay))

+ ^(X0,X1,X2)((a0,a1,a2) + (a0,a2,a1))
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