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HOMOLOGIE D’ALGEBRES DE LIE 165

dans tous les autres cas:

H, (84, 94 ~ H;(4).

(Ici les isomorphismes sont des isomorphismes de A-modules.)

Le cas particulier suivant semble intéressant (voir introduction): si I est
une R-algébre de Lie réelle simple, non de type 4,(n=2)
Hy o) QN R
HZ,Q(I’ I) = O,

ou I’homologie est prise au sens des algébres rationnelles;
Par contre, si [ est de type A,(n>2), on a

Hj ofl) ~ (QmR) @ (QIZ(/Q/d Qlll/Q)
H, o, 1) ~ QIZQ/Q;
et on sait que Qfo/d Qe est un Q-espace vectoriel, de dimension la
puissance du continu, et que Qg est un R-espace vectoriel, de dimension
la puissance du continu.
Comme me I'a fait remarquer Ch. Kassel, le cas du type A4,(n>2) est

implicitement contenu dans [LQ] et [G]. Sans revenir en détail sur ce cas,
on fera quelques remarques au § 4.

3. CAS OU g N'EST PAS DE TYPE A,(n>2)

CALCUL DE CERTAINS ESPACES DE COINVARIANTS

Soit (g, h) une k-algebre déployée, d’algebre de Cartan ) et de systéme de
racines A. (h,, €,),ea €St une famille de générateurs de Chevalley telle que

VOCEAa [ha’ea] = 28&: [hase—a] = _2ea> [eaae—a] = hoc;

R = {0y, ..,0;} est une base de A.

Tous les produits tensoriels et extérieurs sont pris sur k; ( )g designe
I'espace des coinvariants d’'un g-module.

Dans ce paragraphe, A est une k-algebre commutative quelconque.
Le lemme suivant est bien connu.

LEMME 1. Soit g simple déployée sur k. La forme de Killing

<,>:gxg-k
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induit un isomorphisme de k-espaces vectoriels :

(Q@Q)g = k.
En effet:

(6®9)g =~ (3®9)8 ~ (Hom(g, g))9
car g est isomorphe a g* comme g-module. De plus g simple entraine
Hom (g, g)9 ~ k.

En utilisant des formules connues pour la forme de Killing ([Bo2]), on en
déduit les relations suivantes dans (®g)g:

[e,®ep] =0, si a+pf#0
[e.®hg] = [hp®e,] = 0

(1) [h.®hg] = ofhg) [e-,Re,] = B(h,) [e;Qe_g]
(o, o) [h,®h,] = (B, B) [hpg®hg] ,

ou [ ] est la classe dans (g®g)q €t ( , ) la forme sur h* associée a < , >.
En utilisant I'identification ([L-Q])

(g4 N g4 = ((9®Q) &® (A®A)) ®62 (sgn)

ou (sgn) désigne k, muni de laction du groupe symétrique S, donné par
la signature, on obtient:

LEMME 2. L’espace des coinvariants (g4 N\ g4)g Sidentifie canoniquement
a A N A, par Papplication

a N b (a,a) [ah,\bh,]

(oeA, arbitraire).

ah, est mis pour a @ h,; g est considérée comme sous-algebre de g,
et opere dans g, par 'action adjointe.
Notons dans (g4 A g4)g les relations suivantes:

(2) [ah, A bh,] = 2 [ae,N\be_,]
= 2 [ae_,Abe,]

1 LeMME 3. Soit g simple déployée sur k, de type A,,B,C,D(l=4),
' E,F, ou G,, laforme antisymétrique
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p:gxgxg—k
(u, v, w) > <[u,v], w>

induit un isomorphisme de k-espaces vectoriels :

(aRa®a)g — k.

11 suffit de montrer que dim,((g®g®g)q) = 1. Pour cela, nous utiliserons
un résultat de Kostant-Parthasaraty-Rao-Varadarajan ([P.R.V.]).

Soit @ la plus grande racine de A qui est le poids dominant de la
représentation adjointe de g, notée ©,. On a

dimy((s@a®g)g) = dimy((Hom(g, §®9))9)

= (cho > Tcw®7to))

ou (m,, T, ®n,) est la multiplicité de =, dans m, ® n,. Par la formule de
multiplicité du théoréme 2.1 de [P.R.V.], on peut écrire

(T, T,®m,) = dim,V,
ou
V = {veb;(ad eai)m(h“i)“(v) =0, pour i=1,.,1I};
en effet avec les notations de [P.R.V.], on a
(n,, T, Qm,) = m (®;0,0) = m (0;0, o).

On fait alors I’observation cruciale suivante:

si (A, R) est un systeme de racines de type A, B, C, D,(I1=4), E, F, ou G,,
la plus grande racine ® est orthogonale a toutes les racines de la base R sauf
exactement une qu’on supposera tre o;; cela se vérifie facilement en utilisant,
par exemple, les planches du chapitre VI de [Bo 2].

Par suite

Ve {veb; o) =0, pour i=1.,1-—1};
en fait ¥ n’est pas réduit a {0}, car ¢ est non triviale et donc
dim,V =1 (engendré par h,)
d’ou le lemme.

On déduit aussitot de ce lemme, a I'aide de ¢ les relations suivantes
dans (g®a®g)g:

(3) VCX,, BE A ’ (ua cx) [ha®ea®e—a] = (B: B) [h[}®e[3®e—-[3] 7{" 0>
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de plus le symbole [h,Qe,Qe_,] est antisymétrique; on en tire:

LEMME 4. (Avec les hypothéses du lemme 3). (5,N\g4\Q4)g Sidentifie
canoniquement d la puissance symétrique (sur k) S®A, par Papplication
a.b.c—(a, o) [ah,ANbe,Nce_,] .

De fagon analogue, (3,@(84/\Q4))g Sidentified A ® S*A par
a@®b.c—(aa) [ah,Q(be,Nce_,)] .
11 suffit d’utiliser les isomorphismes ([LQ])

04N 84N 84)g = (6®a® Q) R(ARARA)) B, (sgn)
(84®@4A84)g ~ (IRIR9)RUARARA)) g, (sgn) -

LEMME 5. Soit g déployée sur k. Dans (®%g)y on a les relations

VaeA [e,Qe_Qe,Qe_, ] = [e_-,Qe,Re_,Re,].

Pour cela, on remarque d’abord que, par un argument de formule de
Taylor, le groupe des automorphismes élémentaires de g opere trivialement

dans (®"g)gq-
Soit alors 'automorphisme élémentaire ([Bo 2], VIII, § 2...)

®, = exp(ade,)exp(ade_,) exp(ade,);
il vérifie ([Bo 2])
O e) = e_,, Oyfe_y) = ¢,
d’ou le lemme.
PREUVE DES RESULTATS. (Pour g non de type 4,, n>2)
Soit (A*g,,d) et (g,® A*g,),d), les complexes habituels d’homologie

H, (6, et Hg (84, 94 -

Le résultat suivant de [L-Q], permet de se ramener aux coinvariants:

LEMME 6 ([L-Q]). Si g est déployée, les homomorphismes de complexes

(/\*g/hd) - ((/\*QA)gsd)
(4@ N*gy,d) — ((9A® A *gA)ga d) )

sont des quasi-isomorphismes.
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On prouve d’abord les théorémes 1 et 2 dans le cas ou g est déployée

sur k non du type A4,(n=2).
Les résultats qui précédent permettent de construire un diagramme com-

mutatif

A4/1—X,1+Y - A3/1—X,1+Y — Az/l—X,1+Y
a4 l A3 l A2 i
d d
(A 49A)g —* (A 39A)g — (A 29,4)9
oules A;,i = 2, 3,4, sont définis par
Ma(ag, a1) = [aohyAash,]
As(ag, ay, ay) = [aoh,Naje,Naze_,]
Aa(ao, ay, ay, a3) = [ape, Naje_ Naze,Naze_],
o € A étant une racine fixée. Notons que
A3/1—X,1+YZS3A et A2/1—X,1+Y’-! A2A,
et par suite, A, et Ay sont bijectives, grace aux lemmes 4 et 6.

On en déduit une surjection
3
HD,(4) = H; (g4) -

D’autre part, on a pour toute k-algebre de Lie g, un morphisme de
complexes

L:(A*g4,d) = (A*1-x,1+v,> D)
défini par
L{agug A au; A ... Nayu,)

= (—" 1) Z 80. Trace (ad uo o ad uo.(l)) °..©° ad uo.(n)) (ao » ao.(]_), m— ao.(n)) o

ceS,
et par suite une application

Ly: Hs (g0 — HD,(4),
ou E3 est induite par
Liy(agug A aju; Aayu,) = Trace (ad ug o ad uy o ad u,) (ay, a;, a,)
— Trace (ad ugy o ad u, o ad uy) (aq, a,, a;)
= Trace (adu, © ad [uy, u,]) (ao, a1, a,)

= <u0’ [u13u2]> (aO:aisaz)‘




170 ' J. L. CATHELINEAU

Il est alors immédiat que

Lyohs = <h,, h,>1d,

[« B ]

et par suite i3 est un 1somorphisme de k-espaces vectoriels.

En ce qui concerne le calcul du H, ,(g4,qg,) on procéde de maniére
analogue, en remplagant le complexe (A*/;_x ;+y,b), par le complexe
(A*/1 1y, b), dont 'homologie est H _(A).

Enfin on rameéne facilement le cas général au cas déployé; en effet
supposons que (L, k) soit une extension galoisienne, de degré fini, telle que
g ®, L soit déployée sur L. On applique ce que l'on vient de démontrer
a la situation:

¢ =g® L, A=A4A@L, giy=9®A4=9,®L.
Pour achever la preuve, il suffit de remarquer que 'on a des isomorphismes
H, g4 > [H, (g4 ®; L)]r
H*, k(gAD gA) > [H*,L(QA ®k L, g4 ®k L)]GL/k

ou Gy, est le groupe de Galois de (L, k): ce groupe est fini et on est en
caractéristique nulle.

4. REMARQUES SUR LE CAS DE sl(r, A),r > 3

Soit sl(r, 4) ~ A ® sl(n, k), 'algébre de Lie des r x r matrices de trace nulle.
Explicitons I'isomorphisme

P31 Hy i(sl(r, A)) » HC(A),
induit (pour r>3), par Papplication de [LQ]:
Plag XoNay Xl/\ . Na, X,)
= (—1)" ) &, Trace (Xo Xo—1) - Xow) (@o> Ag(1)> - Com) 5

ces,
(L’application L considérée dans le paragraphe précédent ne convient pas ici).

On peut écrire
Lalag XoNay X1 NayX,)
= Trace (XX X)) (ao, ay, a;) — Trace (XX, X,)(ao, a,, a;)

= _;:\jl(Xo,Xl,Xz) (@0, a1, az)—(ao, as, ay))

1
+ 5 O(Xo, X1, X5) ((aoa ai, az)+(ag, a,, 01))
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