Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 33 (1987)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: HOMOLOGIE DE DEGRÉ TROIS D'ALGÈBRES DE LIE SIMPLES

DÉPLOYÉES ÉTENDUES À UNE ALGÈBRE COMMUTATIVE

Autor: Cathelineau, J. L.

Kapitel: 3. Cas où g n'est pas de type A_n(n \geq 2)

DOI: https://doi.org/10.5169/seals-87889

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

dans tous les autres cas:

$$H_{2,k}(\mathfrak{g}_A,\mathfrak{g}_A)\simeq H_2^-(A)$$
.

(Ici les isomorphismes sont des isomorphismes de A-modules.)

Le cas particulier suivant semble intéressant (voir introduction): si l est une **R**-algèbre de Lie réelle simple, non de type $A_n(n \ge 2)$

$$H_{3, \mathbf{Q}}(\mathbf{I}) \simeq \bar{\mathbf{Q}} \cap \mathbf{R}$$
,
 $H_{2, \mathbf{Q}}(\mathbf{I}, \mathbf{I}) = 0$,

où l'homologie est prise au sens des algèbres rationnelles;

Par contre, si I est de type $A_n(n \ge 2)$, on a

$$H_{3, \mathbf{Q}}(\mathbf{I}) \simeq (\bar{\mathbf{Q}} \cap \mathbf{R}) \oplus (\Omega_{\mathbf{R}/\mathbf{Q}}^2 / d \Omega_{\mathbf{R}/\mathbf{Q}}^1)$$

 $H_{2, \mathbf{Q}}(\mathbf{I}, \mathbf{I}) \simeq \Omega_{\mathbf{R}/\mathbf{Q}}^2;$

et on sait que $\Omega_{\mathbf{R}/\mathbf{Q}}^2/d\Omega_{\mathbf{R}/\mathbf{Q}}^1$ est un **Q**-espace vectoriel, de dimension la puissance du continu, et que $\Omega_{\mathbf{R}/\mathbf{Q}}^2$ est un **R**-espace vectoriel, de dimension la puissance du continu.

Comme me l'a fait remarquer Ch. Kassel, le cas du type $A_n(n \ge 2)$ est implicitement contenu dans [LQ] et [G]. Sans revenir en détail sur ce cas, on fera quelques remarques au § 4.

3. Cas où g n'est pas de type
$$A_n(n \ge 2)$$

CALCUL DE CERTAINS ESPACES DE COINVARIANTS

Soit (g, h) une k-algèbre déployée, d'algèbre de Cartan h et de système de racines Δ . $(h_{\alpha}, e_{\alpha})_{\alpha \in \Delta}$ est une famille de générateurs de Chevalley telle que

$$\forall \alpha \in \Delta, [h_{\alpha}, e_{\alpha}] = 2e_{\alpha}, \quad [h_{\alpha}, e_{-\alpha}] = -2e_{\alpha}, \quad [e_{\alpha}, e_{-\alpha}] = h_{\alpha};$$
 $R = \{\alpha_{1}, ..., \alpha_{l}\}$ est une base de Δ .

Tous les produits tensoriels et extérieurs sont pris sur k; ()_g désigne l'espace des coinvariants d'un g-module.

Dans ce paragraphe, A est une k-algèbre commutative quelconque.

Le lemme suivant est bien connu.

LEMME 1. Soit g simple déployée sur k. La forme de Killing

$$<,>:g\times g\to k$$

induit un isomorphisme de k-espaces vectoriels:

$$(g \otimes g)_g \stackrel{\sim}{\to} k$$
.

En effet:

$$(g \otimes g)_g \simeq (g \otimes g)g \simeq (Hom(g, g))g$$

car g est isomorphe à g* comme g-module. De plus g simple entraı̂ne Hom $(g, g)^g \simeq k$.

En utilisant des formules connues pour la forme de Killing ([Bo2]), on en déduit les relations suivantes dans $(g \otimes g)_q$:

$$[e_{\alpha} \otimes e_{\beta}] = 0, \quad \text{si} \quad \alpha + \beta \neq 0$$

$$[e_{\alpha} \otimes h_{\beta}] = [h_{\beta} \otimes e_{\alpha}] = 0$$

$$[h_{\alpha} \otimes h_{\beta}] = \alpha(h_{\beta}) [e_{-\alpha} \otimes e_{\alpha}] = \beta(h_{\alpha}) [e_{\beta} \otimes e_{-\beta}]$$

$$(\alpha, \alpha) [h_{\alpha} \otimes h_{\alpha}] = (\beta, \beta) [h_{\beta} \otimes h_{\beta}],$$

où [] est la classe dans $(g \otimes g)_g$ et (,) la forme sur \mathfrak{h}^* associée à < , >. En utilisant l'identification ([L-Q])

$$(g_A \wedge g_A) \simeq ((g \otimes g) \otimes (A \otimes A)) \otimes_{\mathfrak{S}_2} (sgn)$$

où (sgn) désigne k, muni de l'action du groupe symétrique \mathfrak{S}_2 donné par la signature, on obtient:

LEMME 2. L'espace des coinvariants $(g_A \wedge g_A)_g$ s'identifie canoniquement $\dot{a} A \wedge A$, par l'application

$$a \wedge b \mapsto (\alpha, \alpha) [ah_{\alpha} \wedge bh_{\alpha}]$$

 $(\alpha \in \Delta, arbitraire).$

 ah_{α} est mis pour $a \otimes h_{\alpha}$; g est considérée comme sous-algèbre de g_A et opère dans g_A par l'action adjointe.

Notons dans $(g_A \wedge g_A)_g$ les relations suivantes:

$$[ah_{\alpha} \wedge bh_{\alpha}] = 2 [ae_{\alpha} \wedge be_{-\alpha}]$$
$$= 2 [ae_{-\alpha} \wedge be_{\alpha}]$$

Lemme 3. Soit g simple déployée sur k, de type A_1 , B, C, $D_l(l \ge 4)$, E, F_4 ou G_2 , la forme antisymétrique

$$\phi: g \times g \times g \to k$$

$$(u, v, w) \mapsto \langle [u, v], w \rangle$$

induit un isomorphisme de k-espaces vectoriels:

$$(g \otimes g \otimes g)_g \stackrel{\sim}{\to} k$$
.

Il suffit de montrer que $\dim_k((g \otimes g \otimes g)_g) = 1$. Pour cela, nous utiliserons un résultat de Kostant-Parthasaraty-Rao-Varadarajan ([P.R.V.]).

Soit ω la plus grande racine de Δ qui est le poids dominant de la représentation adjointe de g, notée π_{ω} . On a

$$\dim_{k}((g \otimes g \otimes g)_{g}) = \dim_{k}((\operatorname{Hom}(g, g \otimes g))^{g})$$
$$= (\pi_{\omega}, \pi_{\omega} \otimes \pi_{\omega})$$

où $(\pi_{\omega}, \pi_{\omega} \otimes \pi_{\omega})$ est la multiplicité de π_{ω} dans $\pi_{\omega} \otimes \pi_{\omega}$. Par la formule de multiplicité du théorème 2.1 de [P.R.V.], on peut écrire

$$(\pi_{\omega}, \pi_{\omega} \otimes \pi_{\omega}) = \dim_{k} V,$$

où

$$V = \{v \in \mathfrak{h}; (\text{ad } e_{\alpha_i})^{\omega(h_{\alpha_i})+1}(v) = 0, \text{ pour } i = 1, ..., l\};$$

en effet avec les notations de [P.R.V.], on a

$$(\pi_{\omega}, \pi_{\omega} \otimes \pi_{\omega}) = m^{+}(\omega; 0, \omega) = m^{-}(\omega; 0, \omega).$$

On fait alors l'observation cruciale suivante:

si (Δ, R) est un système de racines de type A_1 , B, C, $D_l(l \ge 4)$, E, F_4 ou G_2 , la plus grande racine ω est orthogonale à toutes les racines de la base R sauf exactement une qu'on supposera être α_l ; cela se vérifie facilement en utilisant, par exemple, les planches du chapitre VI de [Bo 2].

Par suite

$$V \subset \{v \in \mathfrak{h} ; \alpha_i(v) = 0, \text{ pour } i = 1, ..., l-1\};$$

en fait V n'est pas réduit à $\{0\}$, car ϕ est non triviale et donc

$$\dim_k V = 1$$
 (engendré par h_{α_l})

d'où le lemme.

On déduit aussitôt de ce lemme, à l'aide de ϕ les relations suivantes dans $(g \otimes g \otimes g)_{\mathfrak{q}}$:

(3)
$$\forall \alpha, \beta \in \Delta$$
, $(\alpha, \alpha) [h_{\alpha} \otimes e_{\alpha} \otimes e_{-\alpha}] = (\beta, \beta) [h_{\beta} \otimes e_{\beta} \otimes e_{-\beta}] \neq 0$;

de plus le symbole $[h_{\alpha} \otimes e_{\alpha} \otimes e_{-\alpha}]$ est antisymétrique; on en tire:

LEMME 4. (Avec les hypothèses du lemme 3). $(g_A \wedge g_A \wedge g_A)_g$ s'identifie canoniquement à la puissance symétrique (sur k) S^3A , par l'application

$$a \cdot b \cdot c \mapsto (\alpha, \alpha) \left[ah_{\alpha} \wedge be_{\alpha} \wedge ce_{-\alpha} \right].$$

De façon analogue, $(g_A \otimes (g_A \wedge g_A))_g$ s'identifie à $A \otimes S^2A$ par

$$a \otimes b \cdot c \mapsto (\alpha, \alpha) \left[ah_{\alpha} \otimes (be_{\alpha} \wedge ce_{-\alpha}) \right].$$

Il suffit d'utiliser les isomorphismes ([LQ])

$$(g_A \wedge g_A \wedge g_A)_g \simeq ((g \otimes g \otimes g)_g \otimes (A \otimes A \otimes A)) \otimes_{\mathfrak{S}_3} (sgn)$$
$$(g_A \otimes (g_A \wedge g_A))_g \simeq ((g \otimes g \otimes g)_g \otimes (A \otimes A \otimes A)) \otimes_{\mathfrak{S}_2} (sgn).$$

Lemme 5. Soit g déployée sur k. Dans $(\otimes^4 g)_g$ on a les relations $\forall \alpha \in \Delta, [e_{\alpha} \otimes e_{-\alpha} \otimes e_{\alpha} \otimes e_{-\alpha}] = [e_{-\alpha} \otimes e_{\alpha} \otimes e_{-\alpha} \otimes e_{\alpha}].$

Pour cela, on remarque d'abord que, par un argument de formule de Taylor, le groupe des automorphismes élémentaires de g opère trivialement dans $(\otimes^n g)_g$.

Soit alors l'automorphisme élémentaire ([Bo 2], VIII, § 2...)

$$\Theta_{\alpha} = \exp (\operatorname{ad} e_{\alpha}) \exp (\operatorname{ad} e_{-\alpha}) \exp (\operatorname{ad} e_{\alpha});$$

il vérifie ([Bo 2])

$$\Theta_{\alpha}(e_{\alpha}) = e_{-\alpha}, \quad \Theta_{\alpha}(e_{-\alpha}) = e_{\alpha},$$

d'où le lemme.

PREUVE DES RÉSULTATS. (Pour g non de type $A_n, n \ge 2$)

Soit $(\wedge *g_A, d)$ et $(g_A \otimes \wedge *g_A), d$, les complexes habituels d'homologie

$$H_{*,k}(\mathfrak{g}_A)$$
 et $H_{*,k}(\mathfrak{g}_A,\mathfrak{g}_A)$.

Le résultat suivant de [L-Q], permet de se ramener aux coinvariants:

LEMME 6 ([L-Q]). Si g est déployée, les homomorphismes de complexes

$$(\wedge *g_A, d) \rightarrow ((\wedge *g_A)_g, d)$$
$$(g_A \otimes \wedge *g_A, d) \rightarrow ((g_A \otimes \wedge *g_A)_g, d),$$

sont des quasi-isomorphismes.

On prouve d'abord les théorèmes 1 et 2 dans le cas où g est déployée sur k non du type $A_n(n \ge 2)$.

Les résultats qui précèdent permettent de construire un diagramme commutatif

$$A^{4}/_{1-X, 1+Y} \xrightarrow{b} A^{3}/_{1-X, 1+Y} \xrightarrow{b} A^{2}/_{1-X, 1+Y}$$

$$\uparrow^{\lambda_{4}} \downarrow \qquad \qquad \uparrow^{\lambda_{3}} \downarrow \qquad \qquad \uparrow^{\lambda_{2}} \downarrow$$

$$(\wedge^{4}g_{A})_{g} \xrightarrow{d} (\wedge^{3}g_{A})_{g} \xrightarrow{d} (\wedge^{2}g_{A})_{g}$$

où les λ_i , i = 2, 3, 4, sont définis par

$$\lambda_{2}(a_{0}, a_{1}) = [a_{0}h_{\alpha} \wedge a_{1}h_{\alpha}]$$

$$\lambda_{3}(a_{0}, a_{1}, a_{2}) = [a_{0}h_{\alpha} \wedge a_{1}e_{\alpha} \wedge a_{2}e_{-\alpha}]$$

$$\lambda_{4}(a_{0}, a_{1}, a_{2}, a_{3}) = [a_{0}e_{\alpha} \wedge a_{1}e_{-\alpha} \wedge a_{2}e_{\alpha} \wedge a_{3}e_{-\alpha}],$$

 $\alpha \in \Delta$ étant une racine fixée. Notons que

$$A^{3}/_{1-X_{1}+Y} \simeq S^{3}A$$
 et $A^{2}/_{1-X_{1}+Y} \simeq \wedge^{2}A$,

et par suite, λ_2 et λ_3 sont bijectives, grâce aux lemmes 4 et 6.

On en déduit une surjection

$$HD_2(A) \xrightarrow{\tilde{\lambda}_3} H_{3,k}(\mathfrak{g}_A)$$
.

D'autre part, on a pour toute k-algèbre de Lie g, un morphisme de complexes

$$L: (\wedge *\mathfrak{g}_A, d) \rightarrow (A*/_{1-X, 1+Y}, b)$$

défini par

$$L(a_0u_0 \wedge a_1u_1 \wedge ... \wedge a_nu_n)$$

$$= (-1) \sum_{\sigma \in \mathfrak{S}_n} \operatorname{Trace} \left(\operatorname{ad} \, u_0 \circ \operatorname{ad} \, u_{\sigma(1)} \right) \circ \dots \circ \operatorname{ad} \, u_{\sigma(n)} \right) \left(a_0 \,, \, a_{\sigma(1)} \,, \, \dots, \, a_{\sigma(n)} \right),$$

et par suite une application

$$\tilde{L}_3: H_{3,k}(\mathfrak{q}_A) \to HD_2(A)$$
,

où \tilde{L}_3 est induite par

$$L_{3}(a_{0}u_{0} \wedge a_{1}u_{1} \wedge a_{2}u_{2}) = \text{Trace (ad } u_{0} \circ \text{ad } u_{1} \circ \text{ad } u_{2}) (a_{0}, a_{1}, a_{2})$$

$$- \text{Trace (ad } u_{0} \circ \text{ad } u_{2} \circ \text{ad } u_{1}) (a_{0}, a_{2}, a_{1})$$

$$= \text{Trace (ad} u_{0} \circ \text{ad } [u_{1}, u_{2}]) (a_{0}, a_{1}, a_{2})$$

$$= \langle u_{0}, [u_{1}, u_{2}] \rangle (a_{0}, a_{1}, a_{2}).$$

Il est alors immédiat que

$$\tilde{L}_3 \circ \tilde{\lambda}_3 = \langle h_{\alpha}, h_{\alpha} \rangle \text{ Id},$$

et par suite \tilde{L}_3 est un isomorphisme de k-espaces vectoriels.

En ce qui concerne le calcul du $H_{2,k}(\mathfrak{g}_A,\mathfrak{g}_A)$ on procède de manière analogue, en remplaçant le complexe $(A^*/_{1+Y},b)$, par le complexe $(A^*/_{1+Y},b)$, dont l'homologie est $H_*^-(A)$.

Enfin on ramène facilement le cas général au cas déployé; en effet supposons que (L, k) soit une extension galoisienne, de degré fini, telle que $g \otimes_k L$ soit déployée sur L. On applique ce que l'on vient de démontrer à la situation:

$$g' = g \otimes_k L$$
, $A' = A \otimes_k L$, $g'_{A'} = g' \otimes_k A' = g_A \otimes_k L$.

Pour achever la preuve, il suffit de remarquer que l'on a des isomorphismes

$$H_{*,k}(g_A) \xrightarrow{\sim} [H_{*,L}(g_A \otimes_k L)]^{G_{L/k}}$$

$$H_{*,k}(g_A, g_A) \xrightarrow{\sim} [H_{*,L}(g_A \otimes_k L, g_A \otimes_k L)]^{G_{L/k}}$$

où $G_{L/k}$ est le groupe de Galois de (L, k): ce groupe est fini et on est en caractéristique nulle.

4. Remarques sur le cas de $\mathfrak{sl}(r, A), r \geqslant 3$

Soit $\mathfrak{sl}(r, A) \simeq A \otimes \mathfrak{sl}(n, k)$, l'algèbre de Lie des $r \times r$ matrices de trace nulle. Explicitons l'isomorphisme

$$\widetilde{\mathcal{L}}_3: H_{3,k}(\mathfrak{sl}(r,A)) \to HC_2(A)$$
,

induit (pour $r \ge 3$), par l'application de [LQ]:

$$\mathcal{L}(a_0 \ X_0 \wedge a_1 \ X_1 \wedge \dots \wedge a_n \ X_n)$$

$$= (-1)^n \sum_{\sigma \in \mathfrak{S}_n} \operatorname{Trace} \left(X_0 \ X_{\sigma(-1)} \dots X_{\sigma(n)} \right) (a_0 \ , a_{\sigma(1)} \ , \dots , a_{\sigma(n)}) ;$$

(L'application L considérée dans le paragraphe précédent ne convient pas ici). On peut écrire

$$\begin{split} \mathcal{L}_{3}(a_{0} X_{0} \wedge a_{1} X_{1} \wedge a_{2} X_{2}) \\ &= \operatorname{Trace} \left(X_{0} X_{1} X_{2} \right) (a_{0}, a_{1}, a_{2}) - \operatorname{Trace} \left(X_{0} X_{2} X_{1} \right) (a_{0}, a_{2}, a_{1}) \\ &= \frac{1}{2} \psi(X_{0}, X_{1}, X_{2}) \left((a_{0}, a_{1}, a_{2}) - (a_{0}, a_{2}, a_{1}) \right) \\ &+ \frac{1}{2} \phi(X_{0}, X_{1}, X_{2}) \left((a_{0}, a_{1}, a_{2}) + (a_{0}, a_{2}, a_{1}) \right) \end{split}$$