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HOMOLOGIE DE DEGRÉ TROIS
D'ALGÈBRES DE LIE SIMPLES DÉPLOYÉES

ÉTENDUES À UNE ALGÈBRE COMMUTATIVE

par J. L. Cathelineau

1. Introduction

Dans toute la suite, k est un corps de caractéristique nulle et A, une

/c-algèbre commutative avec un élément unité. Si g est une /c-algèbre de Lie,

on lui associe l'algèbre de Lie

Sa A ®k g

où le crochet est défini par

[a(g)x, b®y~] ab (g) [x, y]

Si g est semi-simple, on note < > la forme de Killing de g et on
l'étend à g^ par la formule

<a 0 x,b ® y> <x, y> ab

On note H#>k(g^), l'homologie de g^, considérée comme /c-algèbre de Lie;
H^tk(qa, ÊU) désigne l'homologie de qa, considérée comme /c-algèbre de Lie, à

coefficients dans g^ muni de l'action adjointe.
Remarquons que pour g simple, il existe toujours une extension galoi-

sienne, de degré fini (K, k), telle que la K-algèbre de Lie K g soit
déployée ; le type de g est défini alors indépendamment de K.

L'homologie du complexe de de Rham de A sur k ([Bo 1])

A ÇlAjk -> - ÇïnA/k...

est notée H dR(A).

Le but de cet article est de calculer les groupes H3tk($A) et H2 k(qa, gj,
pour g une /c-algèbre de Lie simple ; on renvoie au § 2 pour l'énoncé complet
des résultats.

Ces résultats sont à rapprocher des calculs d'homologies suivants ([K]):
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^2,/c(£Ll) Q-A/k/dA

H1,h(Qa > 9A) ^A/k *

qui sont valables pour une algèbre simple g de type arbitraire et une
/c-algèbre commutative quelconque. D'ailleurs la méthode utilisée ici permet
de retrouver simplement ces isomorphismes.

Dans le calcul qui nous concerne, il y a deux cas à considérer suivant
le type de g et cette distinction s'explique par une propriété géométrique
des racines.

Voici deux cas particuliers des théorèmes 1 et 2 du § 2.

Proposition 1. Avec les hypothèses suivantes :

(1) A est une k-algèbre lisse ou un corps extension de k;

(2) g est une k-algèbre de Lie simple, de type A1, B, C, Dz(7^4), E, F4 ou G2 1)

la forme

a ks a -> 4

au A bv A cw \-± <[au, bvf cw> <[u, u], w> abc (au a(&u)

induit un isomorphisme de k-espaces vectoriels

^3,/C(9a) Hdr(A) •

Proposition 2. Avec les mêmes hypothèses que dans la proposition 2, on a

H2Ma, QA) 0

Origine des résultats (voir aussi [Ca 2])

Rappelons d'abord que l'étude de l'homologie des groupes de Lie, considérés

comme groupes discrets, est justifiée par plusieurs domaines: fibrés

plats, feuilletages, troisième problème de Hilbert, K-théorie algébrique. Citons
deux exemples relatifs aux groupes SO(3, R) et SU(2, C):

J. L. Dupont ([D]) a montré, en rapport avec le troisième problème de

Hilbert, que H2{SO(3, R), R3) 0 équivaut au fait, prouvé par J. P. Sydler

([S]), que l'invariant de Dehn et le volume sont des invariants complets

pour la scission des polyèdres de R3 ; on ne dispose pas de preuve algébrique
directe de la nullité du groupe H2(SO(3, R), R3).

x) Rappelons que Aj_ C1,B2 C2, A3 D3.
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Pour SU(2, C), il existe un homomorphisme Hs(SU(2, C)) -> R/Z, construit
à l'aide d'une classe de Cheeger-Simons, reliée au volume sur S3 ([Ch S], [Ch]),
dont on sait qu'il ne dépend que des points algébriques de SU(2, C) et a,

par suite, une image dénombrable; mais on ignore le rang de cette image;
de plus, la question a été posée de savoir si l'application H3(SU(2, Q))

-+ H3(SU(2, C)) est surjective, où Q est la clôture algébrique de Q dans C.

Les résultats sont reliés à l'aspect « infinitésimal » de ces questions.
On prend A R, /c Q et g so(3, Q), l'algèbre des matrices antisymétriques

à coefficients rationnels qui est isomorphe à su(2, Q[>/— 1]). Alors

9t so(3, R) — su(2, C)).

Comme cas très particuliers des propositions 1 et 2 ci-dessus, on obtient :

i) Il existe des isomorphismes de Q-espaces vectoriels

Hxq(su(2,Q))^ Hxq(su(2,C)) ^ Q n R

où QnR est Vensemble des nombres algébriques réels.

ii) Le groupe d'homologie H2,Q($o(3, R), R3) est nul

Applications à l'homologie des algèbres de lacets

Pour g une algèbre simple complexe, soit g l'algèbre de lacets ([Ka])

§ C[t, r1] ®cg,
considérée comme C-algèbre; on a comme conséquence facile des
théorèmes 1 et 2

tf3(§) ^c,
^2(9, 9) 0

et ceci est indépendant du type de g.

J'ai bénéficié, pour cet article, des remarques et suggestions de J. Carmona,
P. Cartier et Ch. Kassel.

2. Préliminaires et énoncé des résultats

On renvoie à l'article [L Q] de J. L. Loday et D. Quillen, pour la notion
d'homologie cyclique d'une algèbre (voir aussi l'article de synthèse [Ca]).

On s'intéresse ici à une notion analogue, où le groupe cyclique est
remplacé par le groupe diédrale. Cette notion d'homologie diédrale est due à
J. L. Loday ([L]), dont nous utiliserons les notations.
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