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L'Enseignement Mathématique, t. 33 (1987), p. 159-173

HOMOLOGIE DE DEGRÉ TROIS
D'ALGÈBRES DE LIE SIMPLES DÉPLOYÉES

ÉTENDUES À UNE ALGÈBRE COMMUTATIVE

par J. L. Cathelineau

1. Introduction

Dans toute la suite, k est un corps de caractéristique nulle et A, une

/c-algèbre commutative avec un élément unité. Si g est une /c-algèbre de Lie,

on lui associe l'algèbre de Lie

Sa A ®k g

où le crochet est défini par

[a(g)x, b®y~] ab (g) [x, y]

Si g est semi-simple, on note < > la forme de Killing de g et on
l'étend à g^ par la formule

<a 0 x,b ® y> <x, y> ab

On note H#>k(g^), l'homologie de g^, considérée comme /c-algèbre de Lie;
H^tk(qa, ÊU) désigne l'homologie de qa, considérée comme /c-algèbre de Lie, à

coefficients dans g^ muni de l'action adjointe.
Remarquons que pour g simple, il existe toujours une extension galoi-

sienne, de degré fini (K, k), telle que la K-algèbre de Lie K g soit
déployée ; le type de g est défini alors indépendamment de K.

L'homologie du complexe de de Rham de A sur k ([Bo 1])

A ÇlAjk -> - ÇïnA/k...

est notée H dR(A).

Le but de cet article est de calculer les groupes H3tk($A) et H2 k(qa, gj,
pour g une /c-algèbre de Lie simple ; on renvoie au § 2 pour l'énoncé complet
des résultats.

Ces résultats sont à rapprocher des calculs d'homologies suivants ([K]):
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^2,/c(£Ll) Q-A/k/dA

H1,h(Qa > 9A) ^A/k *

qui sont valables pour une algèbre simple g de type arbitraire et une
/c-algèbre commutative quelconque. D'ailleurs la méthode utilisée ici permet
de retrouver simplement ces isomorphismes.

Dans le calcul qui nous concerne, il y a deux cas à considérer suivant
le type de g et cette distinction s'explique par une propriété géométrique
des racines.

Voici deux cas particuliers des théorèmes 1 et 2 du § 2.

Proposition 1. Avec les hypothèses suivantes :

(1) A est une k-algèbre lisse ou un corps extension de k;

(2) g est une k-algèbre de Lie simple, de type A1, B, C, Dz(7^4), E, F4 ou G2 1)

la forme

a ks a -> 4

au A bv A cw \-± <[au, bvf cw> <[u, u], w> abc (au a(&u)

induit un isomorphisme de k-espaces vectoriels

^3,/C(9a) Hdr(A) •

Proposition 2. Avec les mêmes hypothèses que dans la proposition 2, on a

H2Ma, QA) 0

Origine des résultats (voir aussi [Ca 2])

Rappelons d'abord que l'étude de l'homologie des groupes de Lie, considérés

comme groupes discrets, est justifiée par plusieurs domaines: fibrés

plats, feuilletages, troisième problème de Hilbert, K-théorie algébrique. Citons
deux exemples relatifs aux groupes SO(3, R) et SU(2, C):

J. L. Dupont ([D]) a montré, en rapport avec le troisième problème de

Hilbert, que H2{SO(3, R), R3) 0 équivaut au fait, prouvé par J. P. Sydler

([S]), que l'invariant de Dehn et le volume sont des invariants complets

pour la scission des polyèdres de R3 ; on ne dispose pas de preuve algébrique
directe de la nullité du groupe H2(SO(3, R), R3).

x) Rappelons que Aj_ C1,B2 C2, A3 D3.
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Pour SU(2, C), il existe un homomorphisme Hs(SU(2, C)) -> R/Z, construit
à l'aide d'une classe de Cheeger-Simons, reliée au volume sur S3 ([Ch S], [Ch]),
dont on sait qu'il ne dépend que des points algébriques de SU(2, C) et a,

par suite, une image dénombrable; mais on ignore le rang de cette image;
de plus, la question a été posée de savoir si l'application H3(SU(2, Q))

-+ H3(SU(2, C)) est surjective, où Q est la clôture algébrique de Q dans C.

Les résultats sont reliés à l'aspect « infinitésimal » de ces questions.
On prend A R, /c Q et g so(3, Q), l'algèbre des matrices antisymétriques

à coefficients rationnels qui est isomorphe à su(2, Q[>/— 1]). Alors

9t so(3, R) — su(2, C)).

Comme cas très particuliers des propositions 1 et 2 ci-dessus, on obtient :

i) Il existe des isomorphismes de Q-espaces vectoriels

Hxq(su(2,Q))^ Hxq(su(2,C)) ^ Q n R

où QnR est Vensemble des nombres algébriques réels.

ii) Le groupe d'homologie H2,Q($o(3, R), R3) est nul

Applications à l'homologie des algèbres de lacets

Pour g une algèbre simple complexe, soit g l'algèbre de lacets ([Ka])

§ C[t, r1] ®cg,
considérée comme C-algèbre; on a comme conséquence facile des
théorèmes 1 et 2

tf3(§) ^c,
^2(9, 9) 0

et ceci est indépendant du type de g.

J'ai bénéficié, pour cet article, des remarques et suggestions de J. Carmona,
P. Cartier et Ch. Kassel.

2. Préliminaires et énoncé des résultats

On renvoie à l'article [L Q] de J. L. Loday et D. Quillen, pour la notion
d'homologie cyclique d'une algèbre (voir aussi l'article de synthèse [Ca]).

On s'intéresse ici à une notion analogue, où le groupe cyclique est
remplacé par le groupe diédrale. Cette notion d'homologie diédrale est due à
J. L. Loday ([L]), dont nous utiliserons les notations.
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Pour ne pas compliquer, nous supposons toujours que A est commutative,
sur k de caractéristique nulle.

On note An la puissance tensorielle n-ième de A sur k et on pose

C-n An + 1/®n+ i,
où @n+1 est le /c-sous-espace de An+1 engendré par les (a0,a„) où l'une
des composantes a1, a2,..., est égale à 1 ((a0, dq,..., a„) est écrit pour
a0(g)ai(g)... ®an).

On introduit de plus comme dans [L] s, X, B, b définis par :

s(<2q dq) (1, dîn)

CLn) 1) (cin Aq ön_-|J

B sL où L 1 + X + + X"'1
n - 1

b{a0,...,a„)E (a0,a,ai + 1, a„) + (-l)"(a„a0,
i 0

On considère de plus l'involution de C„, donnée par

h(H+1)

(a0,...,a„)i-^(-l)2 (a0,a„, at) ;

Cn ® est la décomposition de Cn par rapport à 7.

L'homologie diédrale de A est définie comme l'homologie du complexe

{CJ l-X, 1 + Y 5

ou, ce qui est la même chose, l'homologie du complexe

M* + 1/i-x,i + Y,b);

On note cette homologie HD^(A). (Elle est notée _1HD4t{A) dans [L]).
En procédant comme dans [L], on montre que HD^(A) s'identifie à

l'homologie du bicomplexe B~ suivant:

i 4 4

et
B et s r-C0

' 1
b

4

cr B
c0+

11

Co
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Soit (Q*/fc, à) le complexe de de Rham. L'involution de Q*/fe donnée par

n(n +1)

Y(a0da1 dan)(-1) 2 a0^A-i - dai >

a pour restriction à QnAik >
l'identité si n est pair, moins 1 identité si n est

impair ; on en déduit que l'application

(a0,..., dan,
n

induit un morphisme de bicomplexes de B~ dans le bicomplexe

1 I ï 1

0 <— 0 <— 0 <- 0

1 1

^A/k
d

<— ^A/k
d

^A/k -
l ï ï
0 <— 0 <— 0

i 1

^A/k
d

<— "S/*
1

0

Dans le cas où l'homologie de Hochschild de A est donnée par les formes
différentielles (voir la remarque ci-dessous), on en déduit, tout comme dans

[L Q], des isomorphismes

HD0(A) 0

HD, ~ nydA
HD2(A)~ H'UU)

HD2n(A) ~ H2"R2(A) © H2d"r'6(A) ©

HD2n+1(A) =* nîïï'/dci^©)© ©
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Nous utiliserons les remarques suivantes :

i) D'après [H.K.R.], ces isomorphismes sont valables si A est une /c-algèbre
lisse.

Ils sont aussi vrais si A est un corps, extension de k; il faut vérifier

que sous cette hypothèse, on a pour l'homologie de Hochschild

le fait est noté dans [H.K.R.] (5.3), si A est une extension finiment
engendrée de k; un argument de limites inductives permet de lever la
restriction.

ii) L'isomorphisme

HD2iA) ^ H°DR(A),

est induit par l'application

A3 A

(a0 a1, a2) h-> a0a±a2

iii) La partie négative de l'homologie de Hochschild H^(A), pour l'involution
Y, est notée H~(A). Si A est lisse ou un corps extension de k, on a

H~2n{A) 0

H2n + 1(A)^^2A%+1-

On peut maintenant énoncer :

Théorème 1. Soit A une k-algèbre commutative, avec unité et g une

k-algèbre de Lie simple. Si g est de type An(n ^ 2) ;

H3Ma)^HC2(A) ;

dans tous les autres cas:

H3,k(QA)^ HD2(A)

(HC% est l'homologie cyclique et les isomorphismes sont des isomorphismes
de k-espaces vectoriels).

Théorème 2. Sous les mêmes hypothèses que dans le théorème 1, si

g est de type An(n ^ 2) ;

H2, 9A) — H2(A) ;



HOMOLOGIE D'ALGÈBRES DE LIE 165

dans tous les autres cas :

H2, k(QA ' 9A) — H 2 (A) •

(Ici les isomorphismes sont des isomorphismes de A-modules.)

Le cas particulier suivant semble intéressant (voir introduction): si I est

une R-algèbre de Lie réelle simple, non de type An(n ^ 2)

^QnR
#2,q(U) 0,

où l'homologie est prise au sens des algèbres rationnelles ;

Par contre, si I est de type A„(n ^ 2), on a

H3,Q(l) ~ (QnR)© (ß^niro)
H2,QGjI) — ^R/Q >

et on sait que QrjQ/d Qr/q est un Q-espace vectoriel, de dimension la
puissance du continu, et que Dr/q est un R-espace vectoriel, de dimension
la puissance du continu.

Comme me l'a fait remarquer Ch. Kassel, le cas du type An(n^2) est

implicitement contenu dans [LQ] et [G]. Sans revenir en détail sur ce cas,

on fera quelques remarques au § 4.

3. Cas où g n'est pas de type An(n^2)

Calcul de certains espaces de coinvariants

Soit (g, 1)) une /c-algèbre déployée, d'algèbre de Cartan 1) et de système de

racines A. (ha, ea)aeA est une famille de générateurs de Chevalley telle que

Voc e A, \_ha, ef\ 2é?a \fla, 2é?a ^ —al
5

jR ai} est une base de A.

Tous les produits tensoriels et extérieurs sont pris sur k; )g désigne
l'espace des coinvariants d'un g-module.

Dans ce paragraphe, A est une /c-algèbre commutative quelconque.
Le lemme suivant est bien connu.

Lemme 1. Soit g simple déployée sur k. La forme de Killing

< > : g x g - k



166 J. L. CATHELINEAU

car g est isomorphe à g* comme g-module. De plus g simple entraîne

Horn (g, g)9 ~ k

En utilisant des formules connues pour la forme de Killing ([Bo2]), on en

déduit les relations suivantes dans (g®g)g:

où [ ] est la classe dans (g®g)g et la forme sur 1)* associée à < >.
En utilisant l'identification ([L-Q])

(&4 A 9x) - ((90s) 0 0s2 (sgn)

où (sgn) désigne k, muni de l'action du groupe symétrique S2 donné par
la signature, on obtient :

Lemme 2. L'espace des coinvariants (g^ A g^)g s'identifie canoniquement
à A A A, par l'application

(oceà, arbitraire).

aha est mis pour a <S> K; g est considérée comme sous-algèbre de g^
et opère dans g^ par l'action adjointe.

Notons dans (g^ A g^)g les relations suivantes :

(1)

[>a®ep] 0, si a+ß^0
Oa®/îp] lhß®ej 0

a(/zß) [e_a(g)ea] ß(/za) Op®e_p]

(a, a) lK®ha~] (ß, ß) [fcß®Äp]

a A b h- (a, a) [a/?a A bhf\

(2) [_aha A bhf\ 2 [aea A J
2 [ae^AbeJ

Lemme 3. Soit g simple déployée sur k, de type Al9 B, C, Dt(l^4),
E, F4 ou G2, la forme antisymétrique
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f 9 x g x g

(w, V9 w) < [U, f], W >

induit un isomorphisme de k-espaces vectoriels :

(g®g®g)ö ^ k.

Il suffit de montrer que dimfc((g(g)g(g)g)g) 1. Pour cela, nous utiliserons

un résultat de Kostant-Parthasaraty-Rao-Varadarajan ([P.R.V.]).
Soit co la plus grande racine de À qui est le poids dominant de la

représentation adjointe de g, notée On a

dimfc((g®g®g)ö) dimfc((Hom(g, g®g))9)

(na9nm®nj

où (tiw, est la multiplicité de dans 7^ ® 7V Par la formule de

multiplicité du théorème 2.1 de [P.R.V.], on peut écrire

(^(0, tc^tcJ dimkV,

où

V {v g 1); (ad eai)aihai) + 1{v) 0, pour i 1

en effet avec les notations de [P.R.Y.], on a

fa«,, m+(œ; 0, co) m"(©; 0, ©).

On fait alors l'observation cruciale suivante :

si (À, R) est un système de racines de type Al9 B, C, Dt(l^4), E, F4 ou G2,
la plus grande racine co est orthogonale à toutes les racines de la base R sauf

exactement une qu'on supposera être az ; cela se vérifie facilement en utilisant,
par exemple, les planches du chapitre VI de [Bo 2].

Par suite

Va {vefy; a£v) 0, pour i 1,..., / — 1} ;

en fait V n'est pas réduit à {0}, car est non triviale et donc

dimkV 1 (engendré par hai)

d'où le lemme.

On déduit aussitôt de ce lemme, à l'aide de c(> les relations suivantes
dans (g®g®g)g:

(3) Va, ß e A (a, a) [fea<g>ea<g>e_ J (ß, ß) [/2ß®cß®c_ß] / 0 ;
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de plus le symbole [ha®ea®e_a] est antisymétrique; on en tire:

Lemme 4. (Avec les hypothèses du lemme 3). (cy A A s'identifie

canoniquement à la puissance symétrique (sur k) S3A, par l'application

a. b c i— (a, a) [a/za A bea A ce_a]

De façon analogue, (g^®(g^ A g^))g s'identifie à A ® S2A par

a ® b c I— (a, a) [aha®(6ea A ce_a)]

Il suffit d'utiliser les isomorphismes ([LQ])

(9^AgAAgJg ~ ((g®g<gig)g®04<g),4®,4)) ®<s3

(9A®(9^AgA))g ~ ((g®g®g)g®(^®^®4)) ®s2 (sgn).

Lemme 5. Soit g déployée sur k. Dans (®4g)g on a les relations

Va e A, [ea®e_a®ea®e_a] [e_a®ea®e_a®ea]

Pour cela, on remarque d'abord que, par un argument de formule de

Taylor, le groupe des automorphismes élémentaires de g opère trivialement
dans (®"g)g.

Soit alors l'automorphisme élémentaire ([Bo 2], VIII, § 2...)

0a exp (ad ej exp (ad e_a) exp (ad ej ;

il vérifie ([Bo 2])

®a(^a) ^-a ®a(^-a) 5

d'où le lemme.

Preuve des résultats. (Pour g non de type An, n^2)

Soit (A*g^,d) et (g^® A *gi4), d), les complexes habituels d'homologie

H*,k(QA) et

Le résultat suivant de [L-Q], permet de se ramener aux coinvariants :

Lemme 6 ([L-Q]). Si g est déployée, les homomorphismes de complexes

(A*g A,d)-((A*gjg, d)

(9x® A*gx,rf) -»• ((gx® A*g/t)g,<f),

sont des quasi-isomorphismes.
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On prouve d'abord les théorèmes 1 et 2 dans le cas où g est déployée

sur k non du type An(n^2).
Les résultats qui précèdent permettent de construire un diagramme com-

mutatif

^ll-X,l + Y ^3/l-X,l + Y A2/±-x,l + Y

M | X3 | X2 J

(A4gJg (A3gjg (A2gjg

où les Xi9i 2, 3, 4, sont définis par

A2(a0,a 1)

X3(a0ialia2) [ao^Aa^Aa^-J
?ù4(a0, al5 a2, a3) [a0eaAqe.,Aa2eaAa3e_J >

a g À étant une racine fixée. Notons que

^43/i_x, î + Y — et A2I1-x,i+y — A 2^4

et par suite, X2 et X3 sont bijectives, grâce aux lemmes 4 et 6.

On en déduit une suijection

HD2(A) L

D'autre part, on a pour toute /c-algèbre de Lie g, un morphisme de

complexes

L: (A *g^, d) -* (A*/1_Xt 1 + Y, b)

défini par

L(a0u0Aa1u1 A AanuJ

-1) E e<r Trace (ad "o ° ad «<7(1)) ° - ° ad a(n)) aa(1),an(n)),
crsS„

et par suite une application

£3:H3,k(gA)^HD2(A),

où L3 est induite par

L3(a0u0 A a1u1 A a2u2) Trace (ad u0 ° ad u1 o ad u2) (a0, a1, a2)

— Trace (ad u0 ° ad w2 ° ad iq) (a0, a2, aj
Trace (adu0 ° ad [iq, w2J) (#o ß2)

<w0> [«i,m2]> (a0, fli, a2).
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Il est alors immédiat que

L3 ° X3 </ia, ha> Id

et par suite L3 est un isomorphisme de /c-espaces vectoriels.
En ce qui concerne le calcul du H2 k($A, §A) on procède de manière

analogue, en remplaçant le complexe (A*/1-Xtl + Y,b), par le complexe
(A*/1 + y, b), dont l'homologie est H~(A).

Enfin on ramène facilement le cas général au cas déployé; en effet

supposons que (L, k) soit une extension galoisienne, de degré fini, telle que
9 soit déployée sur L. On applique ce que l'on vient de démontrer
à la situation :

g' g (g)kL, A' A<g)kL, q'A, g' ®k A' qa ®k L.

Pour achever la preuve, il suffit de remarquer que l'on a des isomorphismes

LH*,l(Qa ®kL)~\GLik

H*,k(§A> QA) LH*,L(§A L, Qa LJ]GL/k

où GL/k est le groupe de Galois de (L, k) : ce groupe est fini et on est en

caractéristique nulle.

4. Remarques sur le cas de sï(r, A), r ^ 3

Soit si(r, A) ~ A (g) si(n, k), l'algèbre de Lie des rxr matrices de trace nulle.

Explicitons l'isomorphisme

a))-+hc2(A),

induit (pour r ^ 3), par l'application de [LQ] :

^(a0 X0Aa1 X\A A anXn)

(-1)" L sa Trace (^0 - X«<„)) («0, 1), -, a. ;

cre©„

(L'application L considérée dans le paragraphe précédent ne convient pas ici).

On peut écrire

S£3(a0 X0Aax X1A a2X2)

Trace (X0X1X2) (a0, ax, a2) — Trace (X0X2Xl) (a0, a2, ax)

1MX0, X1;X2) ((a0,a1,a2)-(a0ay))

+ ^(X0,X1,X2)((a0,a1,a2) + (a0,a2,a1))
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OÙ

<\>(X0, X,, X2) Trace (X0IX1, X2])

et

\|f(X0 ,X\ ,X2) Trace (X0X1X2 + X0X2X1)

sont des 3-formes invariantes sur sl(r, k), respectivement antisymétrique et

symétrique.

Lorsque A est lisse ou un corps extension de k, on sait que

HC2(A) * HUA) ® (Q2Alk/d Q1^) ;

L'isomorphisme ci-dessus s'explicite alors par l'application

aoXoaiXi/\ u2X2 t-* ^\f(Xq Xi, X2)ßoaia2 + ^(Xo, X1, X2)a0daida2

Esquissons une preuve; on note d'abord l'analogue des lemmes 3 et 4.

Soit if, E + H\ les matrices de sl(r, k) de la forme

(M 0\
U o;

où M est donné respectivement par

/ 1 0 0\ /0 1 0\ /0 0 0\ /0 0

0 -1 0 0 0 01,1 0 01, 0 1

\ 0 0 0 / \0 0 0 / \0 0 0/ \0 0

alors on a:

(®3 si(r, k%i(r> Q est de dimension 2, engendré par

[H®£ + 0£_] et [if(g)if©if] ;

de plus l'application

© A 3^4 A 3sl(r, 4))si(rj q
donnée par

a.h.ch->[aif A bE+ A c£_]
flAHm [clH A bH A c iL]

est un isomorphisme de /c-espaces vectoriels.
Une méthode pour prouver cela consiste à utiliser l'argument géométrique

suivant sur les systèmes de racines :
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Pour un système de racines À de base R de type An(n^2), la plus
grande racine est orthogonale à toutes les racines de la base sauf
exactement 2.

Enfin on obtient un inverse de J?3 à partir du morphisme de complexes

AA/i-x - A3/,-x A
w 4 M 4 « 4

A4(sl (r, A))sl(r,k)^A 3(sl(r, 4))sl(r, k)^A 2(sl(r, ^))sI(r> fe)

|i2((a0, aj) 1 MAfl^]
1 1

M(ao » ai,«2))
2

[a0^Aai£+ Aa2£_]

lU(aO' a1,a2,a3j) 1
[a0£ + AatE_ Aa2£+ Aü3£_]

+ 7 E en Lao(,0)H aa(1)H A ao(2)E'+ AÖct(3)E'_]
4 aeG

où G est le groupe cyclique engendré par le cycle (0, 1, 2, 3), et où E'+
et proviennent des matrices

/0 0 0\ /0 0 o\
(0 0 1 j I 0 0 0

\0 0 0/ \0 1 0/

On a une approche analogue pour #2 fc(sl(r, ^4), si(r, ^4)) (r^3).

En écrivant les lignes qui précèdent, l'auteur était motivé par l'homologie
des groupes algébriques simples (éventuellement réels). Que connaît-on
d'analogue au théorème 1 et 2 dans ce contexte

La situation pour SL(r, A) est assez bien comprise grâce à la K-théorie
algébrique et à l'article récent [G].

Dans le cas des groupes algébriques réels simples, il y a des résultats
dans [D], [D-S], [P-S] ; en particulier l'analogue de théorème 2 est connu

pour SO(n, R), comme conséquence du théorème de Sydler [S].
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