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HOMOLOGIE DE DEGRE TROIS
D’ALGEBRES DE LIE SIMPLES DEPLOYEES
ETENDUES A UNE ALGEBRE COMMUTATIVE

par J. L. CATHELINEAU

1. INTRODUCTION

Dans toute la suite, k est un corps de caractéristique nulle et A, une
k-algébre commutative avec un élément unité. Si g est une k-algebre de Lie,
on lui associe I'algébre de Lie

g4 = AQrg

ou le crochet est défini par

[a®x, b®y] = ab ® [x, y].

Si g est semi-simple, on note < , > la forme de Killing de g et on
I'étend a g, par la formule

<a@®@x,b® y> = <x,y> ab.

On note H, ,(g,), '’homologie de g,, considérée comme k-algebre de Lie;
H, (g4, g4 désigne 'homologie de g,, considérée comme k-algebre de Lie, a
coefficients dans g, muni de 'action adjointe.

Remarquons que pour g simple, il existe toujours une extension galoi-
sienne, de degré fini (K, k), telle que la K-algebre de Lie K ®, g soit
déployée; le type de g est défini alors indépendamment de K.

L’homologie du complexe de de Rham de A sur k ([Bo 1])

d
A - Qxl‘l/k o R ¢ er;/k

est notée H x(A).
Le but de cet article est de calculer les groupes H; ,(g,) et H 2,184 9.4

pour g une k-algebre de Lie simple; on renvoie au § 2 pour ’énoncé complet
des résultats.

Ces résultats sont a rapprocher des calculs d’homologies suivants ([K]):
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H, (34) = Q,lq/k/dA
H; (g4,94) - Qf;/k )

qui sont valables pour une algébre simple g de type arbitraire et une
k-algebre commutative quelconque. D’ailleurs la méthode utilisée ici permet
de retrouver simplement ces isomorphismes.

Dans le calcul qui nous concerne, il y a deux cas a considérer suivant
le type de g et cette distinction s’explique par une propriété géométrique
des racines.

Voici deux cas particuliers des théoremes 1 et 2 du § 2.

PROPOSITION 1. Avec les hypothéses suivantes :
(1) A est une k-algebre lisse ou un corps extension de k;
(2) g est une k-algébre de Lie simple, de type A;, B, C,D(l=4),E, F,ouG, ')
la forme
Aigqs— A

au N bv A ew— <[au, bv],cw> = <[u,v], w> abc, (au=a@u)
induit un isomorphisme de k-espaces vectoriels

H; (g4) - H ?)R(A) .

PROPOSITION 2. Avec les mémes hypothéses que dans la proposition 1, on a

Hz,k(9A> g4 = 0.

ORIGINE DES RESULTATS (voir aussi [Ca 2])

Rappelons d’abord que P'étude de 'homologie des groupes de Lie, consi-
dérés comme groupes discrets, est justifiée par plusieurs domaines: fibrés
plats, feuilletages, troisieme probléme de Hilbert, K-théorie algébrique. Citons
deux exemples relatifs aux groupes SO(3, R) et SU(2, C):

J. L. Dupont ([D]) a montré, en rapport avec le troisieme probléme de
Hilbert, que H,(SO(3, R), R®) = 0 équivaut au fait, prouvé par J. P. Sydler
([S]), que Tlinvariant de Dehn et le volume sont des invariants complets
pour la scission des polyédres de R*; on ne dispose pas de preuve algébrique
directe de la nullité du groupe H,(SO(3, R), R®).

1) Rappelons que 4, = B, = C;, B, = C,, A3 = D;.
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Pour SU(2, C), il existe un homomorphisme H3(SU(2, C)) —» R/Z, construit
a Paide d’une classe de Cheeger-Simons, reliée au volume sur S> ([Ch S], [Ch]),
dont on sait qu’il ne dépend que des points algébriques de SU(2, C) et a,
par suite, une image dénombrable; mais on ignore le rang de cette image;
de plus, la question a été posée de savoir si l'application H;(SU(2, Q)
— H4(SU(2, C)) est surjective, ou Q est la cloture algébrique de Q dans C.

Les résultats sont reliés a l'aspect «infinitésimal » de ces questions.
On prend 4 = R, k = Q et g = s0(3, Q), I'algébre des matrices antisymé-
triques a coefficients rationnels qui est isomorphe a su(2, Q[\/_—_—T]). Alors
g4 = 50(3, R) (=~ su(2, C)).

Comme cas tres particuliers des propositions 1 et 2 ci-dessus, on obtient:

1) Il existe des isomorphismes de Q-espaces vectoriels
H; o(su(2, Q) S Hj ofsu(2,C) 5> Q A R

o Q "R est Pensemble des nombres algébriques réels.

i) Le groupe d’homologie H, o(s0(3, R), R?) est nul.

APPLICATIONS A L’HOMOLOGIE DES ALGEBRES DE LACETS
Pour g une algebre simple complexe, soit § I'algébre de lacets ([Ka])

§=Cltt '] ®cgq,

considérée comme C-algebre; on a comme conséquence facile des théo-
remes 1 et 2

Hj(@) ~ C,
H,(8,8) = 0,

et ceci est indépendant du type de g.

Jai beénéficié, pour cet article, des remarques et suggestions de J. Carmona,
P. Cartier et Ch. Kassel.

2. PRELIMINAIRES ET ENONCE DES RESULTATS

On renvoie a larticle [L Q] de J. L. Loday et D. Quillen, pour la notion
d’homologie cyclique d’une algébre (voir aussi Iarticle de synthése [Ca]).

On sintéresse ici & une notion analogue, ou le groupe cyclique est
remplacé par le groupe diédrale. Cette notion d’homologie diédrale est due a
J. L. Loday ([L]), dont nous utiliserons les notations.
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Pour ne pas compliquer, nous supposons toujours que 4 est commutative,
sur k de caractéristique nulle.
On note A" la puissance tensorielle n-ieme de A sur k et on pose

Cn = An+1/gn+1 ’

ou 9,., est le k-sous-espace de A"*! engendré par les (ay, ..., a,) ou l'une
des composantes a;,d,, .., a, est égale & 1 ((ao,ay, .., a,) est écrit pour
a4,®a;® ... @ay,).
On introduit de plus comme dans [L] s, X, B, b définis par:
s(ag, . a,) = (1, ag, ..., a,)
X(ag, . a,) = (—1)"(a,, ag, - ay_1)

B=sL ou L=1+X+ ..+ X"1

n—1
b(aO cRIL an) = Z (a0: ey aiai+1 9 us2y an) + (_ 1)n (ana03 (AR an-—l) s
i=0

On considere de plus I'involution de C,, donnée par

Y:C, - C,

n(n+1)
2

(do,..., an)H(—l) (aoaan:an—la‘": al);

C) @ C, estla décomposition de C, par rapport a Y.
L’homologie diédrale de 4 est définie comme I'homologie du complexe

(C*/l—X,1+Y> b)

ou, ce qui est la méme chose, ’'homologie du complexe

(A*+1/1—X,1+Ya b);

On note cette homologie HD (A). (Elle est notée _; HD (A) dans [L]).
En procédant comme dans [L], on montre que HD*(A)' s'identifie a
I’homologie du bicomplexe B~ suivant:

! ! !
c; & ¢t & cy
" "

c; & ¢}
>l
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Soit (Q%, d) le complexe de de Rham. L’involution de Q%, donnée par

n(n+1)

Y(apday ... da,) = (=1) % aeda,da, , ..day,

a pour restriction & Q7,, Iidentité si n est pair, moins l'identité s1 n est
impair; on en déduit que I'application

B Cy = Qs

(ag, s ay) — - ayda, ... da,,

induit un morphisme de bicomplexes de B~ dans le bicomplexe

l l ! ! !
! ! ! !
3 d 2 d 1 d 0
QA/k = QA/k « QA/k = QA/k
! ! l
0 «— 0 o 0
| !
Qly < Q%
l
0

Dans le cas ou I'homologie de Hochschild de 4 est donnée par les formes
différentielles (voir la remarque ci-dessous), on en déduit, tout comme dans
[L Q], des isomorphismes

HDy(4) =
HD, ~ Ql,/dA
HD,(A) ~ Hpg(4)

HD,,(A) ~ Hix *(4) @ Hpx (4) @
HD,, . (4) ~ Q" 1/d Q%) ® Hpx 3(1‘1)69 Hpy '(4) ® ..
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Nous utiliserons les remarques suivantes:

i) D’apres [H.K.R.], ces isomorphismes sont valables si A4 est une k-algébre
lisse.

Ils sont aussi vrais si 4 est un corps, extension de k; il faut vérifier
que sous cette hypothese, on a pour I’homologie de Hochschild

H(4) =~ Q% ;

le fait est noté dans [H.K.R.] (5.3), si A est une extension finiment
engendrée de k; un argument de limites inductives permet de lever la
restriction.

i) L’isomorphisme
HD,(4) > Hpr(4),
est induit par I’application
A3 > 4
(ag, ay, ay) — aga,a, .

ii1) La partie negative de I'homologie de Hochschild H (A), pour I'involution
Y, est notée H ,(A). Si A est lisse ou un corps extension de k, on a

H(A) =0

H;, . 1(A) ~ Qi’/’ljl .

On peut maintenant énoncer:
THEOREME 1. Soit A wune k-algébre commutative, avec unité et g une

 k-algébre de Lie simple. Si g est de type A,(n=2):

Hj (84) ~ HCy(A);
dans tous les autres cas:

Hj; (94 ~ HDy(4).

- (HC,, est 'homologie cyclique et les isomorphismes sont des isomorphismes
de k-espaces vectoriels ).

THEOREME 2. Sous les mémes hypothéses que dans le théoréme 1, si
| g estdetype A, (n=2):

H2,k(gA> g4) =~ Hy(A);
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dans tous les autres cas:

H, (84, 94 ~ H;(4).

(Ici les isomorphismes sont des isomorphismes de A-modules.)

Le cas particulier suivant semble intéressant (voir introduction): si I est
une R-algébre de Lie réelle simple, non de type 4,(n=2)
Hy o) QN R
HZ,Q(I’ I) = O,

ou I’homologie est prise au sens des algébres rationnelles;
Par contre, si [ est de type A,(n>2), on a

Hj ofl) ~ (QmR) @ (QIZ(/Q/d Qlll/Q)
H, o, 1) ~ QIZQ/Q;
et on sait que Qfo/d Qe est un Q-espace vectoriel, de dimension la
puissance du continu, et que Qg est un R-espace vectoriel, de dimension
la puissance du continu.
Comme me I'a fait remarquer Ch. Kassel, le cas du type A4,(n>2) est

implicitement contenu dans [LQ] et [G]. Sans revenir en détail sur ce cas,
on fera quelques remarques au § 4.

3. CAS OU g N'EST PAS DE TYPE A,(n>2)

CALCUL DE CERTAINS ESPACES DE COINVARIANTS

Soit (g, h) une k-algebre déployée, d’algebre de Cartan ) et de systéme de
racines A. (h,, €,),ea €St une famille de générateurs de Chevalley telle que

VOCEAa [ha’ea] = 28&: [hase—a] = _2ea> [eaae—a] = hoc;

R = {0y, ..,0;} est une base de A.

Tous les produits tensoriels et extérieurs sont pris sur k; ( )g designe
I'espace des coinvariants d’'un g-module.

Dans ce paragraphe, A est une k-algebre commutative quelconque.
Le lemme suivant est bien connu.

LEMME 1. Soit g simple déployée sur k. La forme de Killing

<,>:gxg-k
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induit un isomorphisme de k-espaces vectoriels :

(Q@Q)g = k.
En effet:

(6®9)g =~ (3®9)8 ~ (Hom(g, g))9
car g est isomorphe a g* comme g-module. De plus g simple entraine
Hom (g, g)9 ~ k.

En utilisant des formules connues pour la forme de Killing ([Bo2]), on en
déduit les relations suivantes dans (®g)g:

[e,®ep] =0, si a+pf#0
[e.®hg] = [hp®e,] = 0

(1) [h.®hg] = ofhg) [e-,Re,] = B(h,) [e;Qe_g]
(o, o) [h,®h,] = (B, B) [hpg®hg] ,

ou [ ] est la classe dans (g®g)q €t ( , ) la forme sur h* associée a < , >.
En utilisant I'identification ([L-Q])

(g4 N g4 = ((9®Q) &® (A®A)) ®62 (sgn)

ou (sgn) désigne k, muni de laction du groupe symétrique S, donné par
la signature, on obtient:

LEMME 2. L’espace des coinvariants (g4 N\ g4)g Sidentifie canoniquement
a A N A, par Papplication

a N b (a,a) [ah,\bh,]

(oeA, arbitraire).

ah, est mis pour a @ h,; g est considérée comme sous-algebre de g,
et opere dans g, par 'action adjointe.
Notons dans (g4 A g4)g les relations suivantes:

(2) [ah, A bh,] = 2 [ae,N\be_,]
= 2 [ae_,Abe,]

1 LeMME 3. Soit g simple déployée sur k, de type A,,B,C,D(l=4),
' E,F, ou G,, laforme antisymétrique
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p:gxgxg—k
(u, v, w) > <[u,v], w>

induit un isomorphisme de k-espaces vectoriels :

(aRa®a)g — k.

11 suffit de montrer que dim,((g®g®g)q) = 1. Pour cela, nous utiliserons
un résultat de Kostant-Parthasaraty-Rao-Varadarajan ([P.R.V.]).

Soit @ la plus grande racine de A qui est le poids dominant de la
représentation adjointe de g, notée ©,. On a

dimy((s@a®g)g) = dimy((Hom(g, §®9))9)

= (cho > Tcw®7to))

ou (m,, T, ®n,) est la multiplicité de =, dans m, ® n,. Par la formule de
multiplicité du théoréme 2.1 de [P.R.V.], on peut écrire

(T, T,®m,) = dim,V,
ou
V = {veb;(ad eai)m(h“i)“(v) =0, pour i=1,.,1I};
en effet avec les notations de [P.R.V.], on a
(n,, T, Qm,) = m (®;0,0) = m (0;0, o).

On fait alors I’observation cruciale suivante:

si (A, R) est un systeme de racines de type A, B, C, D,(I1=4), E, F, ou G,,
la plus grande racine ® est orthogonale a toutes les racines de la base R sauf
exactement une qu’on supposera tre o;; cela se vérifie facilement en utilisant,
par exemple, les planches du chapitre VI de [Bo 2].

Par suite

Ve {veb; o) =0, pour i=1.,1-—1};
en fait ¥ n’est pas réduit a {0}, car ¢ est non triviale et donc
dim,V =1 (engendré par h,)
d’ou le lemme.

On déduit aussitot de ce lemme, a I'aide de ¢ les relations suivantes
dans (g®a®g)g:

(3) VCX,, BE A ’ (ua cx) [ha®ea®e—a] = (B: B) [h[}®e[3®e—-[3] 7{" 0>
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de plus le symbole [h,Qe,Qe_,] est antisymétrique; on en tire:

LEMME 4. (Avec les hypothéses du lemme 3). (5,N\g4\Q4)g Sidentifie
canoniquement d la puissance symétrique (sur k) S®A, par Papplication
a.b.c—(a, o) [ah,ANbe,Nce_,] .

De fagon analogue, (3,@(84/\Q4))g Sidentified A ® S*A par
a@®b.c—(aa) [ah,Q(be,Nce_,)] .
11 suffit d’utiliser les isomorphismes ([LQ])

04N 84N 84)g = (6®a® Q) R(ARARA)) B, (sgn)
(84®@4A84)g ~ (IRIR9)RUARARA)) g, (sgn) -

LEMME 5. Soit g déployée sur k. Dans (®%g)y on a les relations

VaeA [e,Qe_Qe,Qe_, ] = [e_-,Qe,Re_,Re,].

Pour cela, on remarque d’abord que, par un argument de formule de
Taylor, le groupe des automorphismes élémentaires de g opere trivialement

dans (®"g)gq-
Soit alors 'automorphisme élémentaire ([Bo 2], VIII, § 2...)

®, = exp(ade,)exp(ade_,) exp(ade,);
il vérifie ([Bo 2])
O e) = e_,, Oyfe_y) = ¢,
d’ou le lemme.
PREUVE DES RESULTATS. (Pour g non de type 4,, n>2)
Soit (A*g,,d) et (g,® A*g,),d), les complexes habituels d’homologie

H, (6, et Hg (84, 94 -

Le résultat suivant de [L-Q], permet de se ramener aux coinvariants:

LEMME 6 ([L-Q]). Si g est déployée, les homomorphismes de complexes

(/\*g/hd) - ((/\*QA)gsd)
(4@ N*gy,d) — ((9A® A *gA)ga d) )

sont des quasi-isomorphismes.
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On prouve d’abord les théorémes 1 et 2 dans le cas ou g est déployée

sur k non du type A4,(n=2).
Les résultats qui précédent permettent de construire un diagramme com-

mutatif

A4/1—X,1+Y - A3/1—X,1+Y — Az/l—X,1+Y
a4 l A3 l A2 i
d d
(A 49A)g —* (A 39A)g — (A 29,4)9
oules A;,i = 2, 3,4, sont définis par
Ma(ag, a1) = [aohyAash,]
As(ag, ay, ay) = [aoh,Naje,Naze_,]
Aa(ao, ay, ay, a3) = [ape, Naje_ Naze,Naze_],
o € A étant une racine fixée. Notons que
A3/1—X,1+YZS3A et A2/1—X,1+Y’-! A2A,
et par suite, A, et Ay sont bijectives, grace aux lemmes 4 et 6.

On en déduit une surjection
3
HD,(4) = H; (g4) -

D’autre part, on a pour toute k-algebre de Lie g, un morphisme de
complexes

L:(A*g4,d) = (A*1-x,1+v,> D)
défini par
L{agug A au; A ... Nayu,)

= (—" 1) Z 80. Trace (ad uo o ad uo.(l)) °..©° ad uo.(n)) (ao » ao.(]_), m— ao.(n)) o

ceS,
et par suite une application

Ly: Hs (g0 — HD,(4),
ou E3 est induite par
Liy(agug A aju; Aayu,) = Trace (ad ug o ad uy o ad u,) (ay, a;, a,)
— Trace (ad ugy o ad u, o ad uy) (aq, a,, a;)
= Trace (adu, © ad [uy, u,]) (ao, a1, a,)

= <u0’ [u13u2]> (aO:aisaz)‘
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Il est alors immédiat que

Lyohs = <h,, h,>1d,

[« B ]

et par suite i3 est un 1somorphisme de k-espaces vectoriels.

En ce qui concerne le calcul du H, ,(g4,qg,) on procéde de maniére
analogue, en remplagant le complexe (A*/;_x ;+y,b), par le complexe
(A*/1 1y, b), dont 'homologie est H _(A).

Enfin on rameéne facilement le cas général au cas déployé; en effet
supposons que (L, k) soit une extension galoisienne, de degré fini, telle que
g ®, L soit déployée sur L. On applique ce que l'on vient de démontrer
a la situation:

¢ =g® L, A=A4A@L, giy=9®A4=9,®L.
Pour achever la preuve, il suffit de remarquer que 'on a des isomorphismes
H, g4 > [H, (g4 ®; L)]r
H*, k(gAD gA) > [H*,L(QA ®k L, g4 ®k L)]GL/k

ou Gy, est le groupe de Galois de (L, k): ce groupe est fini et on est en
caractéristique nulle.

4. REMARQUES SUR LE CAS DE sl(r, A),r > 3

Soit sl(r, 4) ~ A ® sl(n, k), 'algébre de Lie des r x r matrices de trace nulle.
Explicitons I'isomorphisme

P31 Hy i(sl(r, A)) » HC(A),
induit (pour r>3), par Papplication de [LQ]:
Plag XoNay Xl/\ . Na, X,)
= (—1)" ) &, Trace (Xo Xo—1) - Xow) (@o> Ag(1)> - Com) 5

ces,
(L’application L considérée dans le paragraphe précédent ne convient pas ici).

On peut écrire
Lalag XoNay X1 NayX,)
= Trace (XX X)) (ao, ay, a;) — Trace (XX, X,)(ao, a,, a;)

= _;:\jl(Xo,Xl,Xz) (@0, a1, az)—(ao, as, ay))

1
+ 5 O(Xo, X1, X5) ((aoa ai, az)+(ag, a,, 01))
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ou
O(Xo, X, X,) = Trace (X[ X, X,])
et
U(X,, X, X,) = Trace (XX ; X, + X X,X,)

sont des 3-formes invariantes sur sl(r, k), respectivement antisymeétrique et
symeétrique.
Lorsque A est lisse ou un corps extension de k, on sait que

HC,(A) ~ Hpg(A) ® (Q fi/k/d Q,}l/k) 5
L’isomorphisme ci-dessus s’explicite alors par I'application
agXoNa; X1 Nay X, > U(Xo, X1, Xjp)agara, + &(Xo, Xy, Xj)aedadas, .

Esquissons une preuve; on note d’abord I’analogue des lemmes 3 et 4.
Soit H, E,, E_, H', les matrices de sl(r, k) de la forme

0 o)

ou M est donné respectivement par

1 0 O O 1 0 O 0 o0 O 0 o0

o -1 0 |, O 0 0 ], 1 0 0}, 0 1 0 ;

0O 0 0 O 0 O 0O 0 o 0O 0 -1
alors on a:

(®7 sl(r, k)sir, k) est de dimension 2, engendré par
[HQE,RE_] et [HRH®H];
de plus lapplication
SPA@® N4 - (A3slr, A)sie, k)
donnée par
a.b.c—[aH AN bE. A cE_]
a NbAc—[aH A bH A c H]

est un isomorphisme de k-espaces vectoriels.

Une methode pour prouver cela consiste a utiliser 'argument géométrique
suivant sur les systémes de racines:
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Pour un systtme de racines A de base R de type A,(n=>2), la plus

grande racine est orthogonale & toutes les racines de la base sauf exac-

tement 2.
Enfin on obtient un inverse de ¥, a partir du morphisme de complexes

A4/1—X —* A’/ _x - A%/ _x
Ha l B3 l u2 l
d
NI, At k) = AU D)t iy = A D)sir, 1)
1
Hz((ao ) a1)) = 5 [acHANa H],
1 1 )
Hs((ao, ajp, az)) =3 lacHAa,E, Na,E_] + 5 [agHANa;HAa,H'],
1
H4((%a ay, ay, 43)) = [aoE+ AayE_ANayE, NazE_]
1 / /
+ Z g:G 80. [ac(O)H/\ ac(l)H/\ ac(z)E + /\ a0(3)E __]

ou G est le groupe cyclique engendré par le cycle (0, 1,2, 3), et ou E’,
et E'_ proviennent des matrices

0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

On a une approche analogue pour H, (sl(r, A), sl(r, A)) (r=3).

En écrivant les lignes qui précedent, Pauteur était motivé par I’homologie
des groupes algébriques simples (éventuellement réels). Que connait-on
d’analogue au théoréme 1 et 2 dans ce contexte?

La situation pour SL(r, A) est assez bien comprise griace a la K-théorie
algébrique et a I'article récent [G].

Dans le cas des groupes algébriques réels simples, il y a des résultats
dans [D], [D-S], [P-S]; en particulier 'analogue de théoréme 2 est connu
pour SO(n, R), comme conséquence du théoréme de Sydler [S].




[Bo 1]
[Bo 2]
[Ca]
[Ca 2]
[C]
[Ch]
[D]

[D S]
[G]
[HK.R]
[Ka]
[K]
[L]

[L Q]
[PR.V.]

[P.S]

[S]
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