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144 S. T. YAU

3. Hermitian Manifolds and Stable Vector Bundles

We will consider canonical metrics on compact complex manifolds which
are not necessarily Kählerian. For Hermitian manifolds in general, it is

difficult to find canonical metrics because the Hermitian connection has

torsion and hence is not Riemannian. Therefore one would like to assume

extra conditions on M. Let g be a Hermitian metric on M and co its
Kähler form. One natural condition is to assume that

which is weaker than the condition of being Kähler. One would like to put
more conditions on g, besides (1), to make the metric more canonical.

Motivated by the theory of supersymmetry, Hull and Witten [HW] proposed
the following condition on co. Locally one should be able to write co as

50 + 30 where 0 is a (0, 1) form. Notice that if co is Kähler, it can always
be written as 33/.

Let us now demonstrate that the above condition is equivalent to the

condition 33co *= 0. Clearly, we have only to prove the condition 33co 0

implies that co can be written in the above form. As 3co is a closed form,
it is locally exact. By comparting the types, we can find a (0, 2) form Q

and a (1,1) form co, so that 3co dû + 3co' with dû 0 and 3co' 0.

Noticing that co co, we can then prove that co — co' — co' — û — Û

is a closed form. Therefore, locally it is exact and we can find a (0, 1)

form so that co — co' — œ' *= 30 + 3 0. Since 3co' 0, locally co' is 3-exact

and we have proved locally co is the form that we seek.

Recently Todorov observed that any compact complex manifold admits a

Hermitian form co with 33co 0. Therefore it seems that for any compact
complex manifold, it is of interest to study the group obtained by taking
the quotient of (1,1) form co with 33co 0 by the subgroup cosets of
30 + 3 0 where 0 is globally defined (0, 1) form.

Now let F be a holomorphic vector bundle over a compact manifold M
with the property 33(co"-1) 0. We can define the degree of the bundle V

with respect to co by

(1) 33(con_1) 0,

where E^V) denotes the Ricci form of the bundle V. Since 33(co" *) 0,

this definition is independent of the choice of metric on V.
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In [U-Y], Uhlenbeck and Yau proved the following :

(2) Suppose F is a holomorphic vector bundle over a compact Kähler

des V des F
manifold M. If Visstable, i.e., < —p— for every coherent

rank F rank F
subsheaf V' ç F such that 0 < rank (V) < rank (F), then there exists a

Hermitian-Einstein metric on F which is unique up to a constant.

Conversely, the existence of a Hermitian-Einstein metric on F implies that

F is direct sum of stable bundles. This was proved by Kobayashi and Liibke

[Lu]. Moreover, it is likely that the condition M be Kähler can be replaced

by (1). It should be noted that the above theorem was proved by Donaldson

[D2] for algebraic surfaces.

We now state some corollaries of (2). First of all, the symmetric tensor

product bundle of a stable holomorphic vector bundle is also stable.

Secondly, if F is a stable bundle, then for r rank (F),

(3) (2rc2(V) - (r-l)cf(V)) A co"~2 ^ 0,

and equality holds if and only if up to finite cover of M, F is a direct

sum of line bundles (when n 2, this was due to Bogomolov [Bo])
without dealing with the case of equality. Therefore, if cf(V) 0 then

c2(F) A cd"~2 ^ 0 and equality holds if and only if F is flat and unique

M

up to a scalar. These results are in fact generalizations of those in the
Riemann surface case. In particular, let F be a holomorphic vector bundle

over a Riemann surface Yg. Then F is stable and c1(F) 0 if and only
if there exists a Hermitian metric on F with zero curvature, i.e., if and if
there is a unitary representation of (see Narashimhan and Seshadri

[N-S] for details.

We now consider the moduli space of stable vector bundles. Let M(r, d)
be a complete family of stable vector bundles of fixed rank r and fixed
degree d over a Riemann surface Can one prove that cJMg) > 0,

in particular, can one construct a Kähler metric on Mg with positive Ricci
curvature Cho [Co] proved that there exists a Kähler metric on Mg(r, d)
with nonnegative holomorphic sectional curvature. However, even the posi-
tivity of the holomorphic sectional curvature does not imply the positivity
of the Ricci curvature. For example, let H be the hyperplane bundle over
CP1 and (1) the trivial line bundle. Then the Hirzebruch surfaces Md
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P(Hd-f(l)) have Kähler metrics with positive holomorphic sectional
curvature. On the other hand, for à ^ 3, Md does not have positive first
Chern class.

4. Chern Number Inequalities

In 1976, the author proved the Calabi conjecture and demonstrated the

following Chern number inequality for algebraic manifolds with either ample
or trivial canonical line bundles :

(*) (-1)"c2cnr2 ^ ~ ^ c\
(n +1)

where equality holds if and only if M is covered by the ball, i.e., M B/F
for some F £ SU(n, 1). Around the same time, Miyaoka [M3], extending
the method of Bogomolov, obtained the same inequality for n 2 under
the weaker assumption that the Kodaira dimension of the surface is non-
negative. However, he has not shown that equality holds if and only if M
is covered by the ball.

By studying surfaces with singularities, Cheng and Yau [C-Y2] proved
inequality (*) for surfaces of general type (equality holds if and only if M2
is covered by the ball). The arguments in [C-Y2] can also be generalized

to higher dimensions. One can also characterize surfaces M which are

biholomorphic to Bn/F where F £ 517(2, 1) is allowed to have fixed points.
Note that M is, in general, a variety since F may have fixed points.

It is also interesting to study manifolds which satisfy certain Chern
number inequalities. Surfaces which satisfy inequality (*) have been studied by
Hirzebruch, Deligne, Mostow, etc. A corollary of [Y2] is the following
rigidity theorem for Kählerian structures on CP": The only Kählerian
structure on CP" is the standard one; moreover, the only complex structure

on CP2 is the standard one. For n odd, this result was due to Hirzebruch
and Kodaira [H-K].

We now sketch the proof of inequality (*) when the canonical line bundle

K of M is ample. In this case, there exists a Kähler-Einstein metric on K.
For Kähler-Einstein metrics one observes that the Chern integral associated

to the left hand side of (*) can be expressed in terms of the length
squared of the curvature tensor. Since the Ricci tensor is the only part
of the curvature tensor, the right hand side, which can be written as the

determinant of the Ricci tensor, can be dominated by the left hand side.
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