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138 S. T. YAU

analyticity of the harmonic map f. However, it seems to be difficult to
decide which cycles can be represented by continuous images of Kihler
manifolds.

§ 6. CanNonNicaL METRICS OVER COMPLEX MANIFOLDS

Given a complex manifold M, one could like to find “canonical” metrics
on M so that one can produce invariants for the complex structure.
One natural requirement for canonical metrics is that the totality of them
can be parametrized by a finite dimension space and that they be invariant
under the group of biholomorphisms.

1. THE BERGMAN, KOBAYASHI-ROYDEN AND CARATHEODORY METRICS

The Bergman metric was first introduced as a natural metric defined
on bounded domains in C”". Later, the definition was generalized to complex
manifolds whose canonical bundle K admit sufficiently many sections. For a
domain D in C" let H*D) denote the space of square integrable holo-
morphic functions of D. Choose an orthonormal basis {¢;} of this space.
Then the Bergman kernel is defined as

Kizw) = 3 0:(2):(w).

Notice that the definition of the Bergman kernel is independent of the
choice of orthonormal basis. Moreover, K is holomorphic in the variables z
and w.

We can now define the Bergman metric by

52
ds* =) 52,07 log K(z, z) dz; ® dz; .

The naturality of the Bergman metric can easily be seen from the definition
of the Bergman kernel. Let D, and D, be two domains in C", and
K,(z, w) and K,(z, w') their respective Bergman kernels. If F: D; — D, is a
biholomorphism, then K; and K, are related by the formula

Ki(z w) = Ky(f(z), f(w)) det <‘ZF ) det @g

0z ow
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If the canonical bundle K of M admits enough global, square integrable
sections, we can choose an orthonormal basis {¢;} of sections which will
give rise to an embedding F: M — CP*. The pull-back metric F*(ds®) is
the Bergman metric of M. This definition agrees with the previous definition
of the Bergman metric when M is a complex domain because any holo-
morphic function over D can be though of as a section of K.

Intuitively speaking, a complete understanding of the Bergman metric
would give us a clear picture of the geometry of the automorphisms of a
domain; it would also provide us with a lot of invariants of the domain.
In the past few years there has been a lot of progress based on
Fefferman’s work [Fe]. Fefferman looked at the asymptotic behavior of
K(z, z) near the boundary of a domain. Roughly, he proved that the Bergman
kernel has the following expansion along the diagonal.

K(z,2) = 0(2)/¥""'(2) + $(2) log ¥(z)

where ¢, e C°(D), d|,p = 0, and ¥ is the defining function for the
domain D.
Moreover, near the boundary we have

K(z, w) = oz, w)/¥P" " Y(z, w) + P(z, w) log ¥(z, w)

where ¢(z, w), d(z, w) and W(z, w) are extensions of ¢, § and ¥, respectively,
which satisfy certain conditions.

One would actually like to know more about the boundary behavior
of the Bergman kernel and metric, the behavior of the curvature of the
metric, and other related geometric properties of the metric when Q is not
smooth. Let Q be a manifold and ds? the Bergman metric. If Q admits
a properly discontinuous group of automorphisms we can consider the
quotient manifold Q/I' and pull-back its Bergman metric dsgr to Q.
Kazhdan [Kz] proved that if the discrete automorphism group I' of Q
has a filtration ' 2 'y 2~ 2T, 2 -~ with [T, T;;;] < coand n T'; = (1),

then the pull-backs of the Bergman metrics ds} = dsdr, will converge on Q
to the Bergman metric ds3 of Q.

Another interesting direction is to look at the global sections of the
powers of the canonical bundle. Consider H(M, K") for r sufficiently large;
a choice of basis gives a map ¢,: M — P(H*M, K")). Taking the 1/r
multiple of the restriction of Fubini-Study metric of P(H*(M, K")), one has a
sequence of metrics on M. One would like to know if, as r tends to
infinity, a limiting metric exists. If such a metric does exist, it should be
“canonical” and hopefully Kahler-Einstein.
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For a complex manifold Q there are two other intrinsically defined
pseudometrics: the Kobayashi-Royden metric and the Caratheodory metric.
Let A be the Poincaré¢ disk in C. We denote by A(Q) the set of holo-
morphic maps from Q to A, Q(A) the set of holomorphic maps from A to
Q. Fix the Poincaré distance on A. The Caratheodory metric is defined by

Fo: TQ - R™  where Fg(z,2) = sup {| f.(2)|: f € AQ), f(z) = 0}.
The Kobayashi-Royden metric on Q is defined by
F.. TQ > R" where Fz, & = inf{lul: feQA), f(0) =z, f,u) = &}.

Clearly, these two intrinsically defined metrics are distance decreasing under
holomorphic maps and invariant under biholomorphic maps.

B. Wong [Wol] has shown that the holomorphic sectional curvature of the
Caratheodory metric is less than or equal to —4, whereas the holomorphic
sectional curvature of the Kobayashi metric is not less than —4 when the
metric is nontrivial (for the Bergman metric, it is known that the holo-
morphic sectional curvature is not greater than 4). However, one dis-
advantage of these two metrics is that they are neither bilinear nor smooth
on the tangent spaces (F is only upper-semicontinuous in general).

In some special cases we have a better understanding of these two metrics.
For example, a manifold with strongly negative holomorphic sectional
curvature always admits a nontrivial Kobayashi-Royden metric. The major
theorem in this subject is due to Royden who showed that the Kobayashi-
Royden metric is actually the Teichmiiller metric. It is a curious fact
that the Teichmiiller metric has constant holomorphic sectional curvature.
Can we classify those complex manifolds that admit Finsler metric with
constant holomorphic sectional curvature?

Lempert [Lel], [Le2] proved that the Kobayashi and Caratheodory
metrics are actually the same for convex domains in C". By using the
existence of an extremal mapping, he constructed a lot of bounded holo-
morphic functions. His theory only works for convex domains; still, it is
interesting to see how one can generalize his ideas or use these two metrics
to construct bounded holomorphic functions on more general manifolds.

Another interesting fact, proved by B. Wong [Wo2], is that if a smooth,
bounded domain in C" covers a closed manifold, then it must be the unit
ball. This partially confirms the conjecture that a bounded convex domain
(not required to be smooth) which covers a closed manifold must be
symmetric. His proof needed the boundary estimate of the Kobayashi and
Caratheodory metrics.
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In general, one would like to compare the Bergman, Kobayashi-Royden,
Caratheodory metrics and the Kihler-Einstein metric discussed in the next
section. We know that the Caratheodory metric is the smallest of the three.
This can be seen by using the generalized Schwarz lemma for Kéhler mani-
folds [Y4]. Yau (see the later improvement by Chan-Cheng-Lu) proved that
if f: M — N is a holomorphic map where M is a complete Ké&hler manifold
with Ricci curvature bounded from below by a constant and N is a Her-
mitian manifold with holomorphic sectional curvature bounded from above
by a negative constant, then f decreases distances up to a constant
depending on the curvatures of M and N. Is this true if N is only a
Finsler space? If it were true, then one expects that Teichmiiller metric is
uniformly equivalent to the Kéhler-Einstein metric.

2. KAHLER-EINSTEIN METRICS ON COMPACT KAHLER MANIFOLDS

Let M be a compact Kédhler manifold. A necessary condition for the
existence of a Kahler-Einstein metric on M is as follows.

(*) There exists a Kaéhler class Q such that the first Chern class c¢;(M)
is cohomologous to some real constant multiple of Q.

This condition is equivalent to the following:
(*) The first Chern class satisfies ¢,(M) > 0, ¢;(M) = 0 or c¢,(M) < O.

It was proved by the author [Y1], [Y2] that when c¢,(M) = 0 or
c1(M) < 0O, (for the latter case see also Aubin [Au3]) there exists in every
Kéahler class a unique Kahler-Einstein metric. When ¢,(M) > 0, the space
Kéhler-Einstein metrics are invariant under automorphism group. However,
existence does not hold in general and one would like to impose conditions
on M to ensure existence.

We now consider the obstruction, due to Futaki [Ful], to the existence
of Kihler-Einstein metrics when c¢;(M) > 0; we also consider the notion
of “extremal metrics” due to Calabi [Ca2]. Fix a Kéihler class Q = [w]
€ H"'(M) on a compact Kéhler manifold M and denote by H,, the space
of all Kahler metrics with Kéhler class Q. Define the functional

F:Hy— R by F:(g)—»JRZ,
M

where R denotes the scalar curvature of the metric g. Calabi called a critical
point of this functional an extremal metric. Any Kaihler-Einstein metric
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