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138 S. T. YAU

analyticity of the harmonic map f. However, it seems to be difficult to
decide which cycles can be represented by continuous images of Kihler
manifolds.

§ 6. CanNonNicaL METRICS OVER COMPLEX MANIFOLDS

Given a complex manifold M, one could like to find “canonical” metrics
on M so that one can produce invariants for the complex structure.
One natural requirement for canonical metrics is that the totality of them
can be parametrized by a finite dimension space and that they be invariant
under the group of biholomorphisms.

1. THE BERGMAN, KOBAYASHI-ROYDEN AND CARATHEODORY METRICS

The Bergman metric was first introduced as a natural metric defined
on bounded domains in C”". Later, the definition was generalized to complex
manifolds whose canonical bundle K admit sufficiently many sections. For a
domain D in C" let H*D) denote the space of square integrable holo-
morphic functions of D. Choose an orthonormal basis {¢;} of this space.
Then the Bergman kernel is defined as

Kizw) = 3 0:(2):(w).

Notice that the definition of the Bergman kernel is independent of the
choice of orthonormal basis. Moreover, K is holomorphic in the variables z
and w.

We can now define the Bergman metric by

52
ds* =) 52,07 log K(z, z) dz; ® dz; .

The naturality of the Bergman metric can easily be seen from the definition
of the Bergman kernel. Let D, and D, be two domains in C", and
K,(z, w) and K,(z, w') their respective Bergman kernels. If F: D; — D, is a
biholomorphism, then K; and K, are related by the formula

Ki(z w) = Ky(f(z), f(w)) det <‘ZF ) det @g

0z ow
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If the canonical bundle K of M admits enough global, square integrable
sections, we can choose an orthonormal basis {¢;} of sections which will
give rise to an embedding F: M — CP*. The pull-back metric F*(ds®) is
the Bergman metric of M. This definition agrees with the previous definition
of the Bergman metric when M is a complex domain because any holo-
morphic function over D can be though of as a section of K.

Intuitively speaking, a complete understanding of the Bergman metric
would give us a clear picture of the geometry of the automorphisms of a
domain; it would also provide us with a lot of invariants of the domain.
In the past few years there has been a lot of progress based on
Fefferman’s work [Fe]. Fefferman looked at the asymptotic behavior of
K(z, z) near the boundary of a domain. Roughly, he proved that the Bergman
kernel has the following expansion along the diagonal.

K(z,2) = 0(2)/¥""'(2) + $(2) log ¥(z)

where ¢, e C°(D), d|,p = 0, and ¥ is the defining function for the
domain D.
Moreover, near the boundary we have

K(z, w) = oz, w)/¥P" " Y(z, w) + P(z, w) log ¥(z, w)

where ¢(z, w), d(z, w) and W(z, w) are extensions of ¢, § and ¥, respectively,
which satisfy certain conditions.

One would actually like to know more about the boundary behavior
of the Bergman kernel and metric, the behavior of the curvature of the
metric, and other related geometric properties of the metric when Q is not
smooth. Let Q be a manifold and ds? the Bergman metric. If Q admits
a properly discontinuous group of automorphisms we can consider the
quotient manifold Q/I' and pull-back its Bergman metric dsgr to Q.
Kazhdan [Kz] proved that if the discrete automorphism group I' of Q
has a filtration ' 2 'y 2~ 2T, 2 -~ with [T, T;;;] < coand n T'; = (1),

then the pull-backs of the Bergman metrics ds} = dsdr, will converge on Q
to the Bergman metric ds3 of Q.

Another interesting direction is to look at the global sections of the
powers of the canonical bundle. Consider H(M, K") for r sufficiently large;
a choice of basis gives a map ¢,: M — P(H*M, K")). Taking the 1/r
multiple of the restriction of Fubini-Study metric of P(H*(M, K")), one has a
sequence of metrics on M. One would like to know if, as r tends to
infinity, a limiting metric exists. If such a metric does exist, it should be
“canonical” and hopefully Kahler-Einstein.
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For a complex manifold Q there are two other intrinsically defined
pseudometrics: the Kobayashi-Royden metric and the Caratheodory metric.
Let A be the Poincaré¢ disk in C. We denote by A(Q) the set of holo-
morphic maps from Q to A, Q(A) the set of holomorphic maps from A to
Q. Fix the Poincaré distance on A. The Caratheodory metric is defined by

Fo: TQ - R™  where Fg(z,2) = sup {| f.(2)|: f € AQ), f(z) = 0}.
The Kobayashi-Royden metric on Q is defined by
F.. TQ > R" where Fz, & = inf{lul: feQA), f(0) =z, f,u) = &}.

Clearly, these two intrinsically defined metrics are distance decreasing under
holomorphic maps and invariant under biholomorphic maps.

B. Wong [Wol] has shown that the holomorphic sectional curvature of the
Caratheodory metric is less than or equal to —4, whereas the holomorphic
sectional curvature of the Kobayashi metric is not less than —4 when the
metric is nontrivial (for the Bergman metric, it is known that the holo-
morphic sectional curvature is not greater than 4). However, one dis-
advantage of these two metrics is that they are neither bilinear nor smooth
on the tangent spaces (F is only upper-semicontinuous in general).

In some special cases we have a better understanding of these two metrics.
For example, a manifold with strongly negative holomorphic sectional
curvature always admits a nontrivial Kobayashi-Royden metric. The major
theorem in this subject is due to Royden who showed that the Kobayashi-
Royden metric is actually the Teichmiiller metric. It is a curious fact
that the Teichmiiller metric has constant holomorphic sectional curvature.
Can we classify those complex manifolds that admit Finsler metric with
constant holomorphic sectional curvature?

Lempert [Lel], [Le2] proved that the Kobayashi and Caratheodory
metrics are actually the same for convex domains in C". By using the
existence of an extremal mapping, he constructed a lot of bounded holo-
morphic functions. His theory only works for convex domains; still, it is
interesting to see how one can generalize his ideas or use these two metrics
to construct bounded holomorphic functions on more general manifolds.

Another interesting fact, proved by B. Wong [Wo2], is that if a smooth,
bounded domain in C" covers a closed manifold, then it must be the unit
ball. This partially confirms the conjecture that a bounded convex domain
(not required to be smooth) which covers a closed manifold must be
symmetric. His proof needed the boundary estimate of the Kobayashi and
Caratheodory metrics.
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In general, one would like to compare the Bergman, Kobayashi-Royden,
Caratheodory metrics and the Kihler-Einstein metric discussed in the next
section. We know that the Caratheodory metric is the smallest of the three.
This can be seen by using the generalized Schwarz lemma for Kéhler mani-
folds [Y4]. Yau (see the later improvement by Chan-Cheng-Lu) proved that
if f: M — N is a holomorphic map where M is a complete Ké&hler manifold
with Ricci curvature bounded from below by a constant and N is a Her-
mitian manifold with holomorphic sectional curvature bounded from above
by a negative constant, then f decreases distances up to a constant
depending on the curvatures of M and N. Is this true if N is only a
Finsler space? If it were true, then one expects that Teichmiiller metric is
uniformly equivalent to the Kéhler-Einstein metric.

2. KAHLER-EINSTEIN METRICS ON COMPACT KAHLER MANIFOLDS

Let M be a compact Kédhler manifold. A necessary condition for the
existence of a Kahler-Einstein metric on M is as follows.

(*) There exists a Kaéhler class Q such that the first Chern class c¢;(M)
is cohomologous to some real constant multiple of Q.

This condition is equivalent to the following:
(*) The first Chern class satisfies ¢,(M) > 0, ¢;(M) = 0 or c¢,(M) < O.

It was proved by the author [Y1], [Y2] that when c¢,(M) = 0 or
c1(M) < 0O, (for the latter case see also Aubin [Au3]) there exists in every
Kéahler class a unique Kahler-Einstein metric. When ¢,(M) > 0, the space
Kéhler-Einstein metrics are invariant under automorphism group. However,
existence does not hold in general and one would like to impose conditions
on M to ensure existence.

We now consider the obstruction, due to Futaki [Ful], to the existence
of Kihler-Einstein metrics when c¢;(M) > 0; we also consider the notion
of “extremal metrics” due to Calabi [Ca2]. Fix a Kéihler class Q = [w]
€ H"'(M) on a compact Kéhler manifold M and denote by H,, the space
of all Kahler metrics with Kéhler class Q. Define the functional

F:Hy— R by F:(g)—»JRZ,
M

where R denotes the scalar curvature of the metric g. Calabi called a critical
point of this functional an extremal metric. Any Kaihler-Einstein metric
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minimizes J R? in its Kéihler class and hence is an extremal metric.

M

This follows from the Schwarz inequality and the fact that JR i1s equal

M .
to ¢,(M) U @"" ! evaluated on the fundamental class of M, where o is the

Kahler form of g.
Calabi proved that for an extremal metric g, the gradient vector field

_0R 0 .
X = Zg”ﬁ P is holomorphic. He also proved that a decomposition
z7) 0z

theorem holds, analogous to that of Matsushima and Lichnerowicz for
constant scalar curvature, for the automorphism group of M. In particular,
he proved that X gives rise to a compact subgroup of Aut (M). Levine [Lv]
gave an example of a compact surface M? with no compact connected
subgroup in Aut (M); hence M? does not admit any Kéhler-Einstein metrics.

For other examples of when Aut (M) is not reductive, see Sakane [Sk1],
[Sk2], Ishikawa-Sukane [I-S] and Yau [Y3]. By the theorems of Calabi or
Matsushima-Lichnerowicz, these examples do not admit any Kahler-Einstein
metrics. Futaki [Ful] also has constructed examples where Aut (M) is
reductive and we will consider them later. So far, however, all examples
of a Kédhler manifold with positive first Chern class which does not admit a
Kihler-Einstein metric admit nontrivial holomorphic vector field, it is natural
to ask the following question: If there exists no nonzero holomorphic
vector field on M, and if the tangent bundle of M is stable, can we always
minimize the functional F ? The motivation for the assumption on the stability
will be discussed later. Of course, if the answer to the above question is yes,
then (*) would also be a sufficient condition for the existence of Kahler-
Einstein metrics.

In fact, suppose c;(M) = Clw] and g is an extremal metric. Since

X =) g7 gg ;ZT is holomorphig, it follows that X = 0, R is constant and
the Ricci form of g is a harmonic form representing c;(M). One concludes
that R; = Cg;; from the uniqueness of harmonic forms in a cohomology
class; hence g is a Kéhler-Einstein metric. Calabi [Ca2] proved that, each
 extremal metric g is a local, nondegenerate point of the functional F. The
 metric g also exhibits the greatest possible degree of symmetry compatible
~ with the complex structure of M. Let Cq, denotes the set of extremal metrics

in H,, which is difffomorphic to a finite dimensional Euclidean space.
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Moreover, if one metric in Co has constant scalar curvature, then every
metric in C, has constant scalar curvature. One expects that the only
critical points of F are global minimums of F, form a connected set, and
that the group of automorphisms of M which preserve the class Q acts
transitively on Cgq.

We now consider Futaki’s obstruction to the existence of a Kdéhler-
Einstein metric on compact Kéhler manifold M with ¢;(M) > 0. Let n(M)
denote the Lie algebra of holomorphic vector fields of M, o a Kéhler
form representing c,(M), and v, its Ricci form which also represents

/ — -1 =
c,(M). Then vy, = ! = 00 G

- 90 log det (g;;) and hence y, — ® = o=

for some smooth function G. Define the character f:n(M) - C by f: X

- J(X G)- @". Futaki proved that f is independent of the choice of
M
representative o of ¢,(M). Hence the integer 8,, = dim (n(M)/ker(f)) depends
only on the complex structure of M.
If M has a Kéhler-Einstein metric then 3,, = 0; Futaki conjectures that
the converse is also true. This would be the case if Calabi’s functional F

=1
attains a minimum. Since y, — ® = 5 00 G, one has that R = n + AG.
T

Then f(X) = J(XG)CO" = J(R“Ga)co" = jl AG |?0"; hence §,, = 0 implies

that G = constant, i.e., g is a Kahler-Einstein metric.

Using the obstruction §,,, Futaki gave examples of compact Kaihler
manifolds with ¢;(M) > 0, Aut (M) reductive, and §,, = 1. Hence, there does
not exist Kahler-Finstein metrics on these examples. Let H, denote the hyper-
plane bundle of CP" and =,: H, — CP” the projection map (n=1, 2). If we let
M?> = P(E) where E = n¥(H,) + n%(H,) is considered as a bundle over
CP?, then M is such an example. The following is the lowest dimensional
example. If H = CP? is a hyperplane and C < H a quadratic curve, then let
M be CP? blown up along C and at a point outside of H.

Futaki’s 1dea is to construct an obstruction for the Ricci form to be
harmonic. For the curvature forms representing the higher Chern classes,
see Bando [B2]. For questions related to the character f, see Futaki [Fu2]
and Futaki-Morita [F-M]. Bando also proved the uniqueness of Kéihler-

Einstein metric on M with ¢;(M) > 0, up to holomorphic automorphisms
of M.
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3. HERMITIAN MANIFOLDS AND STABLE VECTOR BUNDLES

We will consider canonical metrics on compact complex manifolds which
are not necessarily Kéhlerian. For Hermitian manifolds in general, it is
difficult to find canonical metrics because the Hermitian connection has
torsion and hence is not Riemannian. Therefore one would like to assume
extra conditions on M. Let g be a Hermitian metric on M and o its
Kahler form. One natural condition is to assume that

(1) 000" ) =0,

which is weaker than the condition of being Kéhler. One would like to put
more conditions on g, besides (1), to make the metric more canonical.
Motivated by the theory of supersymmetry, Hull and Witten [HW] proposed
the following condition on ®. Locally one should be able to write ® as
00 + 00 where 0 is a (0, 1) form. Notice that if o is Kihler, it can always
be written as 90 f.

Let us now demonstrate that the above condition is equivalent to the
condition ddw = 0. Clearly, we have only to prove the condition ddw = 0
implies that ® can be written in the above form. As dw is a closed form,
it is locally exact. By comparting the types, we can find a (0, 2) form Q
and a (1,1) form ®, so that do = dQ + Jdw’ with 0Q = 0 and do’ = O.
Noticing that ® = &, we can then prove that ® — o —® — Q — Q
is a closed form. Therefore, locally it is exact and we can find a (0, 1)
form so that ® — @ — @' = 00 + 00. Since oo’ = 0, locally @' is J-exact
and we have proved locally o is the form that we seek.

Recently Todorov observed that any compact complex manifold admits a
Hermitian form @ with ddw = 0. Therefore it seems that for any compact
complex manifold, it is of interest to study the group obtained by taking
the quotient of (1,1) form ® with ddw = O by the subgroup cosets of
00 + 00 where 0 is globally defined (0, 1) form.

Now let ¥V be a holomorphic vector bundle over a compact manifold M
with the property dd(w"~ ') = 0. We can define the degree of the bundle V
with respect to @ by

deg, V = JEI(V) Aot
M

where Z,(V) denotes the Ricci form of the bundle V. Since dd(w"™!) = 0,
this definition is independent of the choice of metric on V.
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In [U-Y], Uhlenbeck and Yau proved the following:

(2) Suppose V is a holomorphic vector bundle over a compact Kahler
deg,V’ deg,V
<
rank V' rank V
subsheaf V' < V such that 0 < rank (V') < rank (V), then there exists a
Hermitian-Einstein metric on V which is unique up to a constant.

for every coherent

manifold M. If V is stable, ie.,

Conversely, the existence of a Hermitian-Einstein metric on V implies that
V is direct sum of stable bundles. This was proved by Kobayashi and Liibke
[Lu]. Moreover, it is likely that the condition M be Kihler can be replaced
by (1). It should be noted that the above theorem was proved by Donaldson
[D2] for algebraic surfaces.

We now state some corollaries of (2). First of all, the symmetric tensor
product bundle of a stable holomorphic vector bundle is also stable.
Secondly, if V is a stable bundle, then for r = rank (V),

(3) j(2r (V) — r=1e2(V) A 0”220,

and equality holds if and only if up to finite cover of M, V is a direct
sum of line bundles (when n = 2, this was due to Bogomolov [Bo])
without dealing with the case of equality. Therefore, if c¢$(V) = 0 then

JcZ(V) A ®""2 > 0 and equality holds if and only if V is flat and unique
M

up to a scalar. These results are in fact generalizations of those in the
Riemann surface case. In particular, let V' be a holomorphic vector bundle
over a Riemann surface X,. Then V is stable and c¢;(V) = 0 if and only
if there exists a Hermitian metric on V with zero curvature, i.e., if and if
there is a unitary representation of m;(X,) (see Narashimhan and Seshadri
[N-S] for details.

We now consider the moduli space of stable vector bundles. Let M(r, d)
be a complete family of stable vector bundles of fixed rank r and fixed
degree d over a Riemann surface X£,. Can one prove that c¢,(M,) > 0,
in particular, can one construct a Kéhler metric on M, with positive Ricci
curvature? Cho [Co] proved that there exists a Kéhler metric on M (r, d)
with nonnegative holomorphic sectional curvature. However, even the posi-
tivity of the holomorphic sectional curvature does not imply the positivity
of the Ricci curvature. For example, let H be the hyperplane bundle over
CP' and (1) the trivial line bundle. Then the Hirzebruch surfaces M d
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= P(H’+(1)) have Kihler metrics with positive holomorphic sectional
curvature. On the other hand, for d > 3, M, does not have positive first
Chern class.

4. CHERN NUMBER INEQUALITIES

In 1976, the author proved the Calabi conjecture and demonstrated the
following Chern number inequality for algebraic manifolds with either ample
or trivial canonical line bundles:

=,

* (=1ee ™ > 5Tt

where equality holds if and only if M is covered by the ball, ie, M = B/I’
for some I' < SU(n, 1). Around the same time, Miyaoka [M3], extending
the method of Bogomolov, obtained the same inequality for n = 2 under
the weaker assumption that the Kodaira dimension of the surface is non-
negative. However, he has not shown that equality holds if and only if M
is covered by the ball. |

By studying surfaces with singularities, Cheng and Yau [C-Y2] proved
inequality (*) for surfaces of general type (equality holds if and only if M?
is covered by the ball). The arguments in [C-Y2] can also be generalized
to higher dimensions. One can also characterize surfaces M which are
biholomorphic to B*/I' where I' < SU(2, 1) is allowed to have fixed points.
Note that M is, in general, a variety since I' may have fixed points.

It is also interesting to study manifolds which satisfy certain Chern
number inequalities. Surfaces which satisfy inequality (*) have been studied by
Hirzebruch, Deligne, Mostow, etc. A corollary of [Y2] is the following
rigidity theorem for Kaéhlerian structures on CP": The only Kahlerian
structure on CP" is the standard one; moreover, the only complex structure
on CP? is the standard one. For n odd, this result was due to Hirzebruch
and Kodaira [H-K].

We now sketch the proof of inequality (*) when the canonical line bundle
K of M is ample. In this case, there exists a Kahler-Einstein metric on K.
For Kihler-Einstein metrics one observes that the Chern integral associated
to the left hand side of (*) can be expressed in terms of the length
squared of the curvature tensor. Since the Ricci tensor is the only part
of the curvature tensor, the right hand side, which can be written as the
determinant of the Ricci tensor, can be dominated by the left hand side.
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If equality holds for (*), one sees that the integrands of both sides are equal.
This last fact turns out to be equivalent to M having constraint holomorphic
sectional curvature. Hence equality holds in (*) if and only if M is covered
by the ball.

Kihler-Finstein metrics do not exist on algebraic manifolds whose
canonical line bundle is not a multiple of some ample line bundle. However,
it is still possible to study the inequality (*) for algebraic manifolds whose
canonical line bundle is almost ample. In [Y1] it was proven that there
exists a Kahler-Einstein metric which is degenerate along the divisor where
the canonical line bundle is trivial. Similarly one can require the metric
to blow up in a certain way. This fact was used by Cheng and Yau
[C-Y2] to prove the inequality (*) for surfaces of general type.

(**) ¢,(M)<O0OonM, and c¢;(M) < 0outside a subvariety of M .
Recall that the Kodaira dimension K(M) is defined by

— © if NM) =0

KM) = {max dim {,} (M) if NM) # 0’

where N(M) = {m > 0| H (M, K™) = 0} and ¢,, is the pluricanonical
mapping. It is easy to see that K(M) < the algebraic dimension of M < n.
If K(M) = n, then M is called a manifold of general type.

In dimension two, surfaces can be classified bimeromorphically by their
Kodaira dimension. The surfaces with K(M) = — oo, 0 or 1 are well
understood; moreover, K(M) = 2 (i.e., M is a surface of general type) if
and only if M satisfies (*¥*). Suppose M is a three-fold of general type
and K is the canonical line bundle divisor. Kawatama [Ka] proved that if
K - C < 0 for every algebraic curve C < M, then M satisfies (**).

Most likely (**) always implies (*); that 1s, if M" is an algebraic
manifold with almost ample canonical line bundle, then the inequality (¥*)
holds. This is not known for n > 3. One would also like to know what
the relationship is between manifolds of general type and the inequality (**).
In this respect, consider the following theorem of Siu [S5]. First recall
that Siegel’s theorem [Sg] says that for a complex manifold M", the
transcendence degree of the meromorphic function field of M over C is
less than or equal to n. When equality holds, M is called a Moishezon
manifold. A Moishezon manifold can always be obtained by blowing up
and down an algebraic manifold a finite number of times and hence is
birational to some projective algebraic manifold. For a Moishezon manifold,
there always exists a holomorphic vector bundle L over M such that
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cy(L) =20 on M and c¢4(L) > 0 outside some subvariety of M. Siu [S5]
proved that the converse is also true under the weaker assumption that
c,(L) is nonnegative everywhere and positive at some point. Thus, a manifold
which satisfies (**) is Moishezon. It is also not known whether CP”
n > 4, can admit a nonstandard structure which is Moishezon. For n = 3,
T. Peternell [Pe] proved that if M is a Moishezon 3-fold which is topo-
logically isomorphic to CP?, then M is the standard CP3. His proof depends
heavily on Mori’s theory of extremal rays in 3-folds. One might expect
that it is helpful for this problem to study rational curves in a Moishezon
manifold which is a topological CP”.

5. KAHLER-EINSTEIN METRICS ON NONCOMPACT MANIFOLDS

We now consider Kahler-Einstein metrics on complete noncompact
manifolds. Let g be a complete Kahler-Einstein metric on M”, i.e., R;; = cg;
for some constant c. If ¢ > 0, Myer’s theorem would imply N is compact.
Hence, ¢ < 0 and ¢;(M) < 0. In this section we consider the case ¢;(M) < 0
and leave the case c;(M) = 0 for the next section.

One would like to characterize noncompact manifolds which admit com-
plete Kahler-Einstein metrics g;; with R;; = — g;;. In particular, one would
like to impose conditions on M to guarantee the existence and uniqueness
of a Kahler-Einstein metric. First of all, uniqueness always holds. That is
to say, if M and N are complete Kahler-Einstein manifolds with R = — 1
and F: M — N is a biholomorphism, then F is an isometry. To prove this,
let g and dv and ¢’ and dv’ denote the Kahler-Einstein metrics and volume
forms of M and N, respectively. If we let p = log (F*dv'/dv), then 90p
= — f*Ric' + Ric = F*g' + g. Taking traces, we have Ap = —n
+ n-e”". Hence, the maximum principle implies p < 0 and F*dv < dv.
Replacing F by F~ !, we have F*dv' > dv and F is an isometry.

Uniqueness also holds for “almost” complete Kahler-Einstein metrics with
scalar curvature equal to minus one. Here, a metric ds* on M is said to be
almost complete if we can write M as an increasing union of domains Q,
and there exist complete metrics ds2 on Q, for each o such that ds? converges
to ds®* on compact subsets of M. See Cheng-Yau [C-Y1] for details.

We now consider the existence of Kahler-Finstein metrics with negative
scalar curvature. Of course, the existence of such a metric would give
restrictions on the complex structure of M. For example, Eiseman [FEi]
proved that if there exists a Hermitian metric with scalar curvature less than
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a negative constant on M, then the pseudomeasure in the sense of Eiseman
is in fact a measure, that is to say, M is measure hyperbolic.

In [C-Y1], Cheng and Yau obtained the existence of Kéhler-Einstein
metrics on a large class of noncompact manifolds. More precisely, they
proved the following. Let M" be a Hermitian manifold whose Ricci tensor
defines a Kahler metric whose curvature and its covariant derivatives are
bounded. Then M admits a Kéihler-Einstein metric which is uniformly
equivalent to the above metric.

If M admits a Hermitian metric with strongly negative Ricci curvature
and is the increasing union of relatively compact, smooth, pseudoconvex open
submanifolds, then there exists a unique (up to a scalar) almost complete
Kéihler-Einstein metric on M. Moreover, this metric is complete if M is
complete.

In particular, there exists a complete Kéhler-Einstein metric on any
bounded domain in C" which is the intersection of domains with C2-
boundaries. In the above statement, C" can also be replaced by a Hermitian
manifold with Ricci curvature bounded from above by a negative constant.

Mok and Yau [Mk-Y] proved that there exists a complete Kahler-
Einstein metric on any bounded pseudoconvex domain in C". This is the
only known “canonical” metric on arbitrary bounded domains of holomorphy
which is complete.

We now consider the case where the volume of M 1s finite. In this case,
the “infinity” of M is very small (whereas the infinity of a bounded
domain in C” is quite large). The following is then conjectured: If the Ricci
curvature 1s negative and M has finite topological type, then M can be
compactified, that is, M = M/(subvariety) for some compact K#hler manifold
M. In some cases, M is actually algebraic and hence M is quasi-projective.

For a locally Hermitian symmetric space M of finite volume, Baily and
Borel [B-B], Satake [St] and Mumford [Mu] obtained (different) compactifi-
cations more or less explicitly. For these manifolds, Kdhler-Einstein metrics
exist. Siu and Yau [S-Y3] proved that a complete manifold, with finite
volume with its curvature bounded between two negative constants, is quasi-
projective.

If the above conjecture is true, then in studying Kéhler manifolds with
finite volume (and bounded covariant derivatives of the curvature) one need
only consider M\(D, u -~ U D,) where M is a compact Kahler manifold
and Dy, .., D, are connected divisors. If we have suitable algebraic data
on how D; looks like and how D; intersects D;, then one hopes that
one may be able to construct Kédhler-Einstein metrics on M. In dimension
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two, this is well understood. For example, suppose C = M? is an elliptic
curve and C-C < 0. If s is a section of the bundle [C] and C = {s=0}
then dvg/| s|*(log|s|?)? is a complete asymptotic Kihler-Einstein metric
on M/C with C as the cusps of the metric.

Suppose that D is a divisor on a compact Kdhler manifold M satisfying
¢)(K+[D]) = 0onM, ¢,(K+[D]) > Oon M\D and (K+[D]) — ¢[D] |p > O
then M\D admits a Kéhler-Einstein metric with finite volume. Moreover,
the curvature of the metric and all of its covariant derivatives are bounded.
It is not clear whether complete Kahler-Einstein metrics should have
bounded curvature.

For a quasi-projective manifold M = M\D, a Kihler-Einstein metric
always has finite volume and one can define logarithmic Chern classes
¢{M, D). The existence of the Kdahler-Einstein metric implies the following
inequality for the log Chern classes ¢; and ¢é,:

*) (=% “- ¢, 2

A particularly significant fact is that equality holds in (*) if the quasi-
projective manifold M\D is the quotient of the unit ball in C".

Recall that a complex manifold 1s called measure hyperbolic if the
Kobayashi measure is positive everywhere. Moreover, for a complete Kahler-
Einstein manifold, the following inequality holds,

CldUKobayashi = dUKﬁhler—Einstein = CZdUCaratheodory

where ¢, and c, are two universal positive constants. We have the following
question: If the Caratheodory metric of M is complete, does M admit a
complete Kahler-Finstein metric?

6. Riccti FLAT METRICS ON NONCOMPACT MANIFOLDS

We now consider Ricci flat metrics on a complete, noncompact manifold M.
We first remark that in this case uniqueness is unknown. Even for compact
manifolds, Kahler-Einstein metrics are only unique in each Kdihler class.
Suppose g and g’ are two Ricci flat Kahler metrics on M. If they satisfy
gi; — g = OOF with F bounded, then g; = gj;. Note that in the compact
case, the above condition means that g and g’ belong to the same Kahler
class. It also may be possible to drop the condition that F is bounded
since there do not exist too many Ricci flat metrics.
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In any case, the uniqueness problem is far from solved. Even when
M = C", Calabi proposed the following open problem: If u:C" —» R is a

2y
> = 1, then if the Kahler

strictly plurisubharmonic function with det (

0z'0z7
fxzu
metric ds; = ) = = dz' ® dz’ is complete does it have zero curvature?
020z

Note that ds?2 is not complete in general. For example, Fatou and Bieberbach
(see the book of Bochner and Martin [B-M], p. 45) gave a biholomorphism
F:C? > Q, where Q < C? is open and C?/Q contains an open set, such
that the Jacobian of F is identically equal to one. For u = |z |% + | z? |2,
ds? ; = F*ds? = F*ds§ is not complete.

There are a lot of biholomorphisms F in Aut (C?) with Jacobian equal
to one; for example, let F(z, w) = (z+ f(w), w) for any entire function f.
For the above u, ucF is still strictly plurisubharmonic and ds, p 18
complete and Ricci flat. Thus, intuitively, the larger the group Aut (M), the
more difficult the problem is.

We now consider the question of existence. Just as in the case of
negative scalar curvature, the existence of a complete, Ricci flat, Kéahler
metric will impose restrictions on the complex structure of M. For example,
by the Schwarz lemma [Y4], we know that there does not exist any
nontrivial holomorphic maps from M to a Hermitian manifold with holo-
morphic sectional curvature bounded from above by a negative constant.
As a corollary, if there exists a nontrivial holomorphic map from M
to an algebraic curve of genus greater than one, then M = M cannot
admit any complete Kahler metric with nonnegative Ricci curvature.

We conjecture that if M" admits a complete Ricci flat Kdhler metric,
then M = M\(divisor) where M is compact and Kahler. This would mean
that the infinity of M cannot be too large. Now suppose M? = M\(divisor)
and dv 1s a Ricci flat volume form on M. One would like to determine M ;
by going to the universal cover, we can assume M is simply connected.

Locally, dv = (\/~—1)2kdz1 A dz* A di* A dz? for some positive real function
k. Since Ric(dv) = 0, we have 0d(logk) = 0 and k can be written as
k = | h|? for some locally defined holomorphic function 4. By a monodromy
argument, we obtain a holomorphic 2-form n = hdz! A dz?, with h nowhere
zero and 1 A | = dv. Hence n™' = h™'dz! A dz? can be considered as a
global section of the anti-canonical bundle K 1.

Intuitively, one might expect that h approaches oo near the infinity of M
and n~! can be extended to M, that is, there exists a nontrivial section
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S e H°(M, K~ 1). This would imply that either K is trivial on M or H°(M, K"
= 0 for every m > 0 and hence the Kodaira dimension of M * would either
be —oo or 0. This is because if t e HY(M, K"), then t- S" is a holomorphic
function on M and hence constant; since S is zero somewhere unless K
is trivial, we have t-S" = 0, so that t = 0 unless K is trivial on M.

Since M is Kéhler and simply connected, the minimal model of M
1s a Kahler surface with K = 0 or —oo and b; = 0. When K = 0, it is
either a K—3 surface or Enriques’ surface. When K = — oo it is either a
rational surface or a ruled surface of genus zero, M? is equal the minimal
model blown up successively at a finite number of points, and M = M\{s=0}
for some 0 # se HYM,K™!). Conversely, if M = M\{s=0} with
se H(M, K™1) and M is as above, then M should admit a Ricci flat,
complete, Kahler metric. In higher dimensions, the situation is much more
complicated.

In physics, the following question has been studied. Is a Ricci flat
metric with a suitable locally asymptotic property actually unique? This is
the case when the metric is asymptotically flat. One would also like to
know what happens when the metric is locally asymptotic to a cone.
Perhaps assuming that the metric is Kahler may make this problem easier.

The existence of Ricci flat metrics has many applications. For example,
using Ricci flat metrics, Siu [S1] proved that any surface M* with ¢,(M) = 0
and HY(M,R) = 0 must be Kéhler. See also Todorov [To] for higher
dimensions. One can also ask the following question: Let M?" be a simply-
connected, compact, complex manifold where n > 2. If there exists a non-
degenerate 2-form @ € H* °(M), is M then Kihler? Todorov claimed that M
is Kdhler under an additional assumption: dim H*»°(M) = 1.
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