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138 S. T. YAU

analyticity of the harmonie map /. However, it seems to be difficult to
decide which cycles can be represented by continuous images of Kähler
manifolds.

Given a complex manifold M, one could like to find "canonical" metrics

on M so that one can produce invariants for the complex structure.
One natural requirement for canonical metrics is that the totality of them

can be parametrized by a finite dimension space and that they be invariant
under the group of biholomorphisms.

1. The Bergman, Kobayashi-Royden and Caratheodory metrics

The Bergman metric was first introduced as a natural metric defined

on bounded domains in Cn. Later, the definition was generalized to complex
manifolds whose canonical bundle K admit sufficiently many sections. For a

domain D in C", let H2(D) denote the space of square integrable holo-
morphic functions of D. Choose an orthonormal basis {4>J of this space.
Then the Bergman kernel is defined as

Notice that the definition of the Bergman kernel is independent of the
choice of orthonormal basis. Moreover, K is holomorphic in the variables z

and w.

We can now define the Bergman metric by

The naturality of the Bergman metric can easily be seen from the definition
of the Bergman kernel. Let and D2 be two domains in Cn, and

K1(z, w) and K2(zf, w') their respective Bergman kernels. If F : -> D2 is a

biholomorphism, then K1 and K2 are related by the formula

§ 6. Canonical Metrics Over Complex Manifolds

K(z, w) E <Mz)<t>i(w) •

K^w) K2(f(z/(w))det
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If the canonical bundle K of M admits enough global, square integrable

sections, we can choose an orthonormal basis of sections which will

give rise to an embedding F:M->CFk. The pull-back metric F*(ds2) is

the Bergman metric of M. This definition agrees with the previous definition

of the Bergman metric when M is a complex domain because any holo-

morphic function over D can be though of as a section of K.

Intuitively speaking, a complete understanding of the Bergman metric

would give us a clear picture of the geometry of the automorphisms of a

domain; it would also provide us with a lot of invariants of the domain.

In the past few years there has been a lot of progress based on

Fefferman's work [Fe]. Fefferman looked at the asymptotic behavior of

K(z, z) near the boundary of a domain. Roughly, he proved that the Bergman

kernel has the following expansion along the diagonal.

K(z,z) <\>(z)/*¥n + 1(z) + $(z)log ¥(z)

where <j>, $ e C°°(D), <\> |

dD 0, and *¥ is the defining function for the

domain D.

Moreover, near the boundary we have

K(z, w) cj)(z, w)/lF" + 1(z, w) + $(z, w) log ¥(z, w)

where c|)(z, w), $(z, w) and T^z, w) are extensions of 4>, $ and ¥, respectively,
which satisfy certain conditions.

One would actually like to know more about the boundary behavior
of the Bergman kernel and metric, the behavior of the curvature of the

metric, and other related geometric properties of the metric when Q is not
smooth. Let Q be a manifold and dsq the Bergman metric. If Q admits

a properly discontinuous group of automorphisms we can consider the

quotient manifold Q/T and pull-back its Bergman metric ds^/r to Q.

Kazhdan [Kz] proved that if the discrete automorphism group T of Q

has a filtration T ^ T1 a - ^ Tn ^ - with [ri? Ti + 1] < oo and n F, (1),
i

then the pull-backs of the Bergman metrics dsf dsQ/r. will converge on Q,

to the Bergman metric ds& of Q.

Another interesting direction is to look at the global sections of the

powers of the canonical bundle. Consider H°(M, Kr) for r sufficiently large ;

a choice of basis gives a map 4>r : M -» P(if2(M, Kr)). Taking the 1/r
multiple of the restriction of Fubini-Study metric of P(H2(M, Kr)), one has a

sequence of metrics on M. One would like to know if, as r tends to
infinity, a limiting metric exists. If such a metric does exist, it should be
"canonical" and hopefully Kähler-Einstein.
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For a complex manifold Q there are two other intrinsically defined

pseudometrics : the Kobayashi-Royden metric and the Caratheodory metric.
Let À be the Poincaré disk in C. We denote by A(Q) the set of holo-
morphic maps from Q to A, Q(A) the set of holomorphic maps from A to
£L Fix the Poincaré distance on A. The Caratheodory metric is defined by

Fn : TCI -* R+ where Fn(z, z) sup {| /*(z) \: f e A(Q), f(z) 0}

The Kobayashi-Royden metric on Q is defined by

Fk-.TQ ^ R+ where Fk(z,Ç)inf {| u \ : fe Q(A), /(0) z, /»
Clearly, these two intrinsically defined metrics are distance decreasing under

holomorphic maps and invariant under biholomorphic maps.
B. Wong [Wol] has shown that the holomorphic sectional curvature of the

Caratheodory metric is less than or equal to —4, whereas the holomorphic
sectional curvature of the Kobayashi metric is not less than —4 when the

metric is nontrivial (for the Bergman metric, it is known that the

holomorphic sectional curvature is not greater than 4). However, one
disadvantage of these two metrics is that they are neither bilinear nor smooth

on the tangent spaces (F is only upper-semicontinuous in general).

In some special cases we have a better understanding of these two metrics.

For example, a manifold with strongly negative holomorphic sectional

curvature always admits a nontrivial Kobayashi-Royden metric. The major
theorem in this subject is due to Royden who showed that the Kobayashi-
Royden metric is actually the Teichmüller metric. It is a curious fact

that the Teichmüller metric has constant holomorphic sectional curvature.
Can we classify those complex manifolds that admit Finsler metric with
constant holomorphic sectional curvature?

Lempert [Lei], [Le2] proved that the Kobayashi and Caratheodory
metrics are actually the same for convex domains in C". By using the

existence of an extremal mapping, he constructed a lot of bounded

holomorphic functions. His theory only works for convex domains; still, it is

interesting to see how one can generalize his ideas or use these two metrics

to construct bounded holomorphic functions on more general manifolds.

Another interesting fact, proved by B. Wong [Wo2], is that if a smooth,
bounded domain in C" covers a closed manifold, then it must be the unit
ball. This partially confirms the conjecture that a bounded convex domain

(not required to be smooth) which covers a closed manifold must be

symmetric. His proof needed the boundary estimate of the Kobayashi and

Caratheodory metrics.
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In general, one would like to compare the Bergman, Kobayashi-Royden,

Caratheodory metrics and the Kähler-Einstein metric discussed in the next

section. We know that the Caratheodory metric is the smallest of the three.

This can be seen by using the generalized Schwarz lemma for Kähler manifolds

[Y4]. Yau (see the later improvement by Chan-Cheng-Lu) proved that

if / : M N is a holomorphic map where M is a complete Kähler manifold

with Ricci curvature bounded from below by a constant and N is a Her-

mitian manifold with holomorphic sectional curvature bounded from above

by a negative constant, then / decreases distances up to a constant

depending on the curvatures of M and N. Is this true if N is only a

Finsler space? If it were true, then one expects that Teichmüller metric is

uniformly equivalent to the Kähler-Einstein metric.

2. Kähler-Einstein Metrics on Compact Kähler Manifolds

Let M be a compact Kähler manifold. A necessary condition for the

existence of a Kähler-Einstein metric on M is as follows.

(*) There exists a Kähler class Q such that the first Chern class cx(M)
is cohomologous to some real constant multiple of £1

This condition is equivalent to the following :

(*)' The first Chern class satisfies cx(M) > 0, ct(M) 0 or cx(M) < 0.

It was proved by the author [Yl], [Y2] that when c^M) 0 or
c^M) < 0, (for the latter case see also Aubin [Au3]) there exists in every
Kähler class a unique Kähler-Einstein metric. When c1(M) > 0, the space
Kähler-Einstein metrics are invariant under automorphism group. However,
existence does not hold in general and one would like to impose conditions
on M to ensure existence.

We now consider the obstruction, due to Futaki [Ful], to the existence
of Kähler-Einstein metrics when cx(M) > 0; we also consider the notion
of "extremal metrics" due to Calabi [Ca2]. Fix a Kähler class Q [co]
sH1' 1(M) on a compact Kähler manifold M and denote by HQ the space
of all Kähler metrics with Kähler class £1 Define the functional

R by F:{g) R2

where R denotes the scalar curvature of the metric g. Calabi called a critical
point of this functional an extremal metric. Any Kähler-Einstein metric
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minimizes R2 in its Kähler class and hence is an extremal metric.

This follows from the Schwarz inequality and the fact that R is equal

to c1(M) u od"-1 evaluated on the fundamental class of M, where co is the

Kähler form of g.

Calabi proved that for an extremal metric g, the gradient vector field

X Y glJ is holomorphic. He also proved that a decomposition
ozJ ozl

theorem holds, analogous to that of Matsushima and Lichnerowicz for
constant scalar curvature, for the automorphism group of M. In particular,
he proved that X gives rise to a compact subgroup of Aut (M). Levine [Lv]
gave an example of a compact surface M2 with no compact connected

subgroup in Aut (M) ; hence M 2 does not admit any Kähler-Einstein metrics.

For other examples of when Aut (M) is not reductive, see Sakane [Ski],
[Sk2], Ishikawa-Sukane [I-S] and Yau [Y3]. By the theorems of Calabi or
Matsushima-Lichnerowicz, these examples do not admit any Kähler-Einstein
metrics. Futaki [Ful] also has constructed examples where Aut (M) is

reductive and we will consider them later. So far, however, all examples
of a Kähler manifold with positive first Chern class which does not admit a

Kähler-Einstein metric admit nontrivial holomorphic vector field, it is natural
to ask the following question: If there exists no nonzero holomorphic
vector field on M, and if the tangent bundle of M is stable, can we always
minimize the functional F The motivation for the assumption on the stability
will be discussed later. Of course, if the answer to the above question is yes,

then (*) would also be a sufficient condition for the existence of Kähler-
Einstein metrics.

In fact, suppose cx(M) C[co] and g is an extremal metric. Since

X Y g1"3 ~~~r is holomorphic, it follows that X 0, R is constant and
dzJ dzl

the Ricci form of g is a harmonic form representing c^M). One concludes

that Rtj Cgrj from the uniqueness of harmonic forms in a cohomology
class; hence g is a Kähler-Einstein metric. Calabi [Ca2] proved that, each

extremal metric g is a local, nondegenerate point of the functional F. The

metric g also exhibits the greatest possible degree of symmetry compatible
with the complex structure of M. Let Cn denotes the set of extremal metrics

in Hq, which is diffeomorphic to a finite dimensional Euclidean space.
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Moreover, if one metric in CQ has constant scalar curvature, then every

metric in Cn has constant scalar curvature. One expects that the only

critical points of F are global minimums of F, form a connected set, and

that the group of automorphisms of M which preserve the class Q acts

transitively on CQ.

We now consider Futaki's obstruction to the existence of a Kähler-

Einstein metric on compact Kähler manifold M with c^M) > 0. Let rj(M)
denote the Lie algebra of holomorphic vector fields of M, co a Kähler

form representing c^M), and ya its Ricci form which also represents

Ci(M). Then ym — dd log det (gtj) and hence yw - co —— dd G
2k 2K

for some smooth function G. Define the character / : r\(M) -> C by / : X

(XG) - co". Futaki proved that / is independent of the choice of

representative co of cx(M). Hence the integer bM dim (p(M)/ker(/)) depends

only on the complex structure of M.
If M has a Kähler-Einstein metric then 5M 0; Futaki conjectures that

the converse is also true. This would be the case if Calabi's functional F

attains a minimum. Since y^ — co — dd G, one has that R n + AG.
2n

Then f(X) (XG)co" (RaGJœ" AG I 2co"; hence 5M 0 implies

that G constant, i.e., g is a Kähler-Einstein metric.

Using the obstruction SM, Futaki gave examples of compact Kähler
manifolds with cx(M) > 0, Aut (M) reductive, and bM 1. Hence, there does

not exist Kähler-Einstein metrics on these examples. Let Hn denote the hyper-
plane bundle of CP" and nn: Hn CP" the projection map (n 1, 2). If we let
M5 P(E) where E 7tî(iifx) + n%(H2) is considered as a bundle over
CP2, then M is such an example. The following is the lowest dimensional
example. If H ç CP3 is a hyperplane and CçJïa quadratic curve, then let
M be CP3 blown up along C and at a point outside of H.

Futaki's idea is to construct an obstruction for the Ricci form to be
harmonic. For the curvature forms representing the higher Chern classes,
see Bando [B2]. For questions related to the character /, see Futaki [Fu2]
and Futaki-Morita [F-M]. Bando also proved the uniqueness of Kähler-
Einstein metric on M with cx(M) > 0, up to holomorphic automorphisms
of M.



144 S. T. YAU

3. Hermitian Manifolds and Stable Vector Bundles

We will consider canonical metrics on compact complex manifolds which
are not necessarily Kählerian. For Hermitian manifolds in general, it is

difficult to find canonical metrics because the Hermitian connection has

torsion and hence is not Riemannian. Therefore one would like to assume

extra conditions on M. Let g be a Hermitian metric on M and co its
Kähler form. One natural condition is to assume that

which is weaker than the condition of being Kähler. One would like to put
more conditions on g, besides (1), to make the metric more canonical.

Motivated by the theory of supersymmetry, Hull and Witten [HW] proposed
the following condition on co. Locally one should be able to write co as

50 + 30 where 0 is a (0, 1) form. Notice that if co is Kähler, it can always
be written as 33/.

Let us now demonstrate that the above condition is equivalent to the

condition 33co *= 0. Clearly, we have only to prove the condition 33co 0

implies that co can be written in the above form. As 3co is a closed form,
it is locally exact. By comparting the types, we can find a (0, 2) form Q

and a (1,1) form co, so that 3co dû + 3co' with dû 0 and 3co' 0.

Noticing that co co, we can then prove that co — co' — co' — û — Û

is a closed form. Therefore, locally it is exact and we can find a (0, 1)

form so that co — co' — œ' *= 30 + 3 0. Since 3co' 0, locally co' is 3-exact

and we have proved locally co is the form that we seek.

Recently Todorov observed that any compact complex manifold admits a

Hermitian form co with 33co 0. Therefore it seems that for any compact
complex manifold, it is of interest to study the group obtained by taking
the quotient of (1,1) form co with 33co 0 by the subgroup cosets of
30 + 3 0 where 0 is globally defined (0, 1) form.

Now let F be a holomorphic vector bundle over a compact manifold M
with the property 33(co"-1) 0. We can define the degree of the bundle V

with respect to co by

(1) 33(con_1) 0,

where E^V) denotes the Ricci form of the bundle V. Since 33(co" *) 0,

this definition is independent of the choice of metric on V.
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In [U-Y], Uhlenbeck and Yau proved the following :

(2) Suppose F is a holomorphic vector bundle over a compact Kähler

des V des F
manifold M. If Visstable, i.e., < —p— for every coherent

rank F rank F
subsheaf V' ç F such that 0 < rank (V) < rank (F), then there exists a

Hermitian-Einstein metric on F which is unique up to a constant.

Conversely, the existence of a Hermitian-Einstein metric on F implies that

F is direct sum of stable bundles. This was proved by Kobayashi and Liibke

[Lu]. Moreover, it is likely that the condition M be Kähler can be replaced

by (1). It should be noted that the above theorem was proved by Donaldson

[D2] for algebraic surfaces.

We now state some corollaries of (2). First of all, the symmetric tensor

product bundle of a stable holomorphic vector bundle is also stable.

Secondly, if F is a stable bundle, then for r rank (F),

(3) (2rc2(V) - (r-l)cf(V)) A co"~2 ^ 0,

and equality holds if and only if up to finite cover of M, F is a direct

sum of line bundles (when n 2, this was due to Bogomolov [Bo])
without dealing with the case of equality. Therefore, if cf(V) 0 then

c2(F) A cd"~2 ^ 0 and equality holds if and only if F is flat and unique

M

up to a scalar. These results are in fact generalizations of those in the
Riemann surface case. In particular, let F be a holomorphic vector bundle

over a Riemann surface Yg. Then F is stable and c1(F) 0 if and only
if there exists a Hermitian metric on F with zero curvature, i.e., if and if
there is a unitary representation of (see Narashimhan and Seshadri

[N-S] for details.

We now consider the moduli space of stable vector bundles. Let M(r, d)
be a complete family of stable vector bundles of fixed rank r and fixed
degree d over a Riemann surface Can one prove that cJMg) > 0,

in particular, can one construct a Kähler metric on Mg with positive Ricci
curvature Cho [Co] proved that there exists a Kähler metric on Mg(r, d)
with nonnegative holomorphic sectional curvature. However, even the posi-
tivity of the holomorphic sectional curvature does not imply the positivity
of the Ricci curvature. For example, let H be the hyperplane bundle over
CP1 and (1) the trivial line bundle. Then the Hirzebruch surfaces Md
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P(Hd-f(l)) have Kähler metrics with positive holomorphic sectional
curvature. On the other hand, for à ^ 3, Md does not have positive first
Chern class.

4. Chern Number Inequalities

In 1976, the author proved the Calabi conjecture and demonstrated the

following Chern number inequality for algebraic manifolds with either ample
or trivial canonical line bundles :

(*) (-1)"c2cnr2 ^ ~ ^ c\
(n +1)

where equality holds if and only if M is covered by the ball, i.e., M B/F
for some F £ SU(n, 1). Around the same time, Miyaoka [M3], extending
the method of Bogomolov, obtained the same inequality for n 2 under
the weaker assumption that the Kodaira dimension of the surface is non-
negative. However, he has not shown that equality holds if and only if M
is covered by the ball.

By studying surfaces with singularities, Cheng and Yau [C-Y2] proved
inequality (*) for surfaces of general type (equality holds if and only if M2
is covered by the ball). The arguments in [C-Y2] can also be generalized

to higher dimensions. One can also characterize surfaces M which are

biholomorphic to Bn/F where F £ 517(2, 1) is allowed to have fixed points.
Note that M is, in general, a variety since F may have fixed points.

It is also interesting to study manifolds which satisfy certain Chern
number inequalities. Surfaces which satisfy inequality (*) have been studied by
Hirzebruch, Deligne, Mostow, etc. A corollary of [Y2] is the following
rigidity theorem for Kählerian structures on CP": The only Kählerian
structure on CP" is the standard one; moreover, the only complex structure

on CP2 is the standard one. For n odd, this result was due to Hirzebruch
and Kodaira [H-K].

We now sketch the proof of inequality (*) when the canonical line bundle

K of M is ample. In this case, there exists a Kähler-Einstein metric on K.
For Kähler-Einstein metrics one observes that the Chern integral associated

to the left hand side of (*) can be expressed in terms of the length
squared of the curvature tensor. Since the Ricci tensor is the only part
of the curvature tensor, the right hand side, which can be written as the

determinant of the Ricci tensor, can be dominated by the left hand side.
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If equality holds for (*), one sees that the integrands of both sides are equal.

This last fact turns out to be equivalent to M having constraint holomorphic

sectional curvature. Hence equality holds in (*) if and only if M is covered

by the ball.

Kähler-Einstein metrics do not exist on algebraic manifolds whose

canonical line bundle is not a multiple of some ample line bundle. However,

it is still possible to study the inequality (*) for algebraic manifolds whose

canonical line bundle is almost ample. In [Yl] it was proven that there

exists a Kähler-Einstein metric which is degenerate along the divisor where

the canonical line bundle is trivial. Similarly one can require the metric

to blow up in a certain way. This fact was used by Cheng and Yau

[C-Y2] to prove the inequality (*) for surfaces of general type.

(**) c1(M) ^ 0 on M, and cx(M) < 0 outside a subvariety of M

Recall that the Kodaira dimension K(M) is defined by

f - oo if N{M) 0

I max dim {§mk} (M) if N(M) / 0

where N(M) {m > 0 | H°(M, Km) 0} and §mk is the pluricanonical
mapping. It is easy to see that K(M) ^ the algebraic dimension of M ^ n.

If K(M) ft, then M is called a manifold of general type.

In dimension two, surfaces can be classified bimeromorphically by their
Kodaira dimension. The surfaces with K(M) — oo, 0 or 1 are well

understood; moreover, K(M) 2 (i.e., M is a surface of general type) if
and only if M satisfies (**). Suppose M is a three-fold of general type
and K is the canonical line bundle divisor. Kawatama [Ka] proved that if
K - C ^ 0 for every algebraic curve C ç M, then M satisfies (**).

Most likely (**) always implies (*); that is, if Mn is an algebraic
manifold with almost ample canonical line bundle, then the inequality (*)
holds. This is not known for n ^ 3. One would also like to know what
the relationship is between manifolds of general type and the inequality (**).
In this respect, consider the following theorem of Siu [S5]. First recall
that Siegel's theorem [Sg] says that for a complex manifold M", the
transcendence degree of the meromorphic function field of M over C is

less than or equal to n. When equality holds, M is called a Moishezon
manifold. A Moishezon manifold can always be obtained by blowing up
and down an algebraic manifold a finite number of times and hence is

birational to some projective algebraic manifold. For a Moishezon manifold,
there always exists a holomorphic vector bundle L over M such that
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c^L) ^ 0 on M and cx(L) > 0 outside some subvariety of M. Siu [S5]
proved that the converse is also true under the weaker assumption that
c^L) is nonnegative everywhere and positive at some point. Thus, a manifold
which satisfies (**) is Moishezon. It is also not known whether CP",
n ^ 4, can admit a nonstandard structure which is Moishezon. For n 3,

T. Peternell [Pe] proved that if M is a Moishezon 3-fold which is topo-
logically isomorphic to CP3, then M is the standard CP3. His proof depends
heavily on Mori's theory of extremal rays in 3-folds. One might expect
that it is helpful for this problem to study rational curves in a Moishezon
manifold which is a topological CP".

5. Kähler-Einstein Metrics on Noncompact Manifolds

We now consider Kähler-Einstein metrics on complete noncompact
manifolds. Let g be a complete Kähler-Einstein metric on M", i.e., Rtj cgrj
for some constant c. If c > 0, Myer's theorem would imply N is compact.
Hence, c ^ 0 and c1(M) < 0. In this section we consider the case c^M) < 0

and leave the case cx(M) 0 for the next section.

One would like to characterize noncompact manifolds which admit complete

Kähler-Einstein metrics grj with Rrj — grj. In particular, one would
like to impose conditions on M to guarantee the existence and uniqueness
of a Kähler-Einstein metric. First of all, uniqueness always holds. That is

to say, if M and N are complete Kähler-Einstein manifolds with R — 1

and F: M -> N is a biholomorphism, then F is an isometry. To prove this,
let g and dv and g' and dv' denote the Kähler-Einstein metrics and volume
forms of M and N, respectively. If we let p log (F*dv'/dv), then ddp

— /* Rie' + Rie F*g' + g. Taking traces, we have Äp — n

+ n - ep/n. Hence, the maximum principle implies p < 0 and F*dv' ^ dv.

Replacing F by F-1, we have F*dvf ^ dv and F is an isometry.
Uniqueness also holds for "almost" complete Kähler-Einstein metrics with

scalar curvature equal to minus one. Here, a metric ds2 on M is said to be

almost complete if we can write M as an increasing union of domains
and there exist complete metrics ds2 on £2a for each a such that ds2 converges
to ds2 on compact subsets of M. See Cheng-Yau [C-Yl] for details.

We now consider the existence of Kähler-Einstein metrics with negative
scalar curvature. Of course, the existence of such a metric would give
restrictions on the complex structure of M. For example, Eiseman [Ei]
proved that if there exists a Hermitian metric with scalar curvature less than
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a negative constant on M, then the pseudomeasure in the sense of Eiseman

is in fact a measure, that is to say, M is measure hyperbolic.

In [C-Yl], Cheng and Yau obtained the existence of Kähler-Einstein

metrics on a large class of noncompact manifolds. More precisely, they

proved the following. Let Mn be a Hermitian manifold whose Ricci tensor

defines a Kähler metric whose curvature and its covariant derivatives are

bounded. Then M admits a Kähler-Einstein metric which is uniformly

equivalent to the above metric.

If M admits a Hermitian metric with strongly negative Ricci curvature

and is the increasing union of relatively compact, smooth, pseudoconvex open
submanifolds, then there exists a unique (up to a scalar) almost complete
Kähler-Einstein metric on M. Moreover, this metric is complete if M is

complete.
In particular, there exists a complete Kähler-Einstein metric on any

bounded domain in Cn which is the intersection of domains with C2-

boundaries. In the above statement, Cn can also be replaced by a Hermitian
manifold with Ricci curvature bounded from above by a negative constant.

Mok and Yau [Mk-Y] proved that there exists a complete Kähler-
Einstein metric on any bounded pseudoconvex domain in C". This is the

only known "canonical" metric on arbitrary bounded domains of holomorphy
which is complete.

We now consider the case where the volume of M is finite. In this case,
the "infinity" of M is very small (whereas the infinity of a bounded
domain in Cn is quite large). The following is then conjectured: If the Ricci
curvature is negative and M has finite topological type, then M can be

compactified, that is, M M/(subvariety) for some compact Kähler manifold
M. In some cases, M is actually algebraic and hence M is quasi-projective.

For a locally Hermitian symmetric space M of finite volume, Baily and
Borel [B-B], Satake [St] and Mumford [Mu] obtained (different) compactifi-
cations more or less explicitly. For these manifolds, Kähler-Einstein metrics
exist. Siu and Yau [S-Y3] proved that a complete manifold, with finite
volume with its curvature bounded between two negative constants, is quasi-
projective.

If the above conjecture is true, then in studying Kähler manifolds with
finite volume (and bounded covariant derivatives of the curvature) one need
only consider M\(D1 u u Dk) where M is a compact Kähler manifold
and Z)1;..., Dk are connected divisors. If we have suitable algebraic data
on how Dt looks like and how Dt intersects Dj7 then one hopes that
one may be able to construct Kähler-Einstein metrics on M. In dimension
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two, this is well understood. For example, suppose C ç M2 is an elliptic
curve and C • C < 0. If s is a section of the bundle [C] and C {5 0}
then dvûlI s | 2(log | s | 2)3 is a complete asymptotic Kähler-Einstein metric
on M/C with C as the cusps of the metric.

Suppose that D is a divisor on a compact Kähler manifold M satisfying
cx(K + [D]) ^ 0 on M, cx{K + [£]) > 0 on M\D and (X + [£>]) - e[D] | p > 0

then M\D admits a Kähler-Einstein metric with finite volume. Moreover,
the curvature of the metric and all of its covariant derivatives are bounded.

It is not clear whether complete Kähler-Einstein metrics should have

bounded curvature.
For a quasi-projective manifold M M\D, a Kähler-Einstein metric

always has finite volume and one can define logarithmic Chern classes

ci(M, D). The existence of the Kähler-Einstein metric implies the following
inequality for the log Chern classes c1 and c2 :

(-IF
(*') (-1)nc\-2'c ^ y }

1 1\ 1 *

2(n +1)

A particularly significant fact is that equality holds in (*) if the quasi-

projective manifold M\D is the quotient of the unit ball in C".

Recall that a complex manifold is called measure hyperbolic if the

Kobayashi measure is positive everywhere. Moreover, for a complete Kähler-
Einstein manifold, the following inequality holds,

Cidt^Kobayashi ^ ^^Kähler-Einstein ^ ^2^^Caratheodory

where cx and c2 are two universal positive constants. We have the following
question: If the Caratheodory metric of M is complete, does M admit a

complete Kähler-Einstein metric

6. Ricci Flat Metrics on Noncompact Manifolds

We now consider Ricci flat metrics on a complete, noncompact manifold M.
We first remark that in this case uniqueness is unknown. Even for compact
manifolds, Kähler-Einstein metrics are only unique in each Kähler class.

Suppose g and g' are two Ricci flat Kähler metrics on M. If they satisfy

grj — g 2 ddF with F bounded, then grj g'rj. Note that in the compact
case, the above condition means that g and g' belong to the same Kähler
class. It also may be possible to drop the condition that F is bounded
since there do not exist too many Ricci flat metrics.
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In any case, the uniqueness problem is far from solved. Even when

M C", Calabi proposed the following open problem : If u : C" - R is a

d2u\
strictly plurisubharmonic function with det f — j 1, then if the Kähler

C2ll
metric ds2 Y—^-.dz1 ® dzj is complete does it have zero curvature?

ôzlôzJ

Note that ds 2 is not complete in general. For example, Fatou and Bieberbach

(see the book of Bochner and Martin [B-M], p. 45) gave a biholomorphism

F : C2 -» Q, where Q ç C2 is open and C2/Q contains an open set, such

that the Jacobian of F is identically equal to one. For u | z1 |
2 + | z2 | 2,

ds2 p F*ds2 F*dsl is not complete.

There are a lot of biholomorphisms F in Aut (C2) with Jacobian equal

to one; for example, let F(z, w) (z + /(w), w) for any entire function /.
For the above u, u ° F is still strictly plurisubharmonic and dsu. F is

complete and Ricci flat. Thus, intuitively, the larger the group Aut (M), the

more difficult the problem is.

We now consider the question of existence. Just as in the case of

negative scalar curvature, the existence of a complete, Ricci flat, Kähler
metric will impose restrictions on the complex structure of M. For example,

by the Schwarz lemma [Y4], we know that there does not exist any
nontrivial holomorphic maps from M to a Hermitian manifold with holo-
morphic sectional curvature bounded from above by a negative constant.
As a corollary, if there exists a nontrivial holomorphic map from M
to an algebraic curve of genus greater than one, then M c M cannot
admit any complete Kähler metric with nonnegative Ricci curvature.

We conjecture that if Mn admits a complete Ricci flat Kähler metric,
then M M\(divisor) where M is compact and Kähler. This would mean
that the infinity of M cannot be too large. Now suppose M2 M\(divisor)
and du is a Ricci flat volume form on M. One would like to determine M ;

by going to the universal cover, we can assume M is simply connected.

Locally, dv (^/ — 1 Ykdz1 A dz2 A dz1 A dz2 for some positive real function
k. Since Ric {dv) 0, we have dd(log k) 0 and k can be written as
k I h I

2 for some locally defined holomorphic function h. By a monodromy
argument, we obtain a holomorphic 2-form q hdz1 A dz2, with h nowhere
zero and q A f\ dv. Hence q-1 h~1dz1 A dz2 can be considered as a
global section of the anti-canonical bundle K_1.

Intuitively, one might expect that h approaches oo near the infinity of M
and q ~1 can be extended to M, that is, there exists a nontrivial section
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S e H°(M, K~1). This would imply that either K is trivial on M or H°(M, Kn)
0 for every m > 0 and hence the Kodaira dimension of M 2 would either

be — oo or 0. This is because if te H°(M, Kn\ then t • Sn is a holomorphic
function on M and hence constant; since S is zero somewhere unless K
is trivial, we have t • Sn 0, so that t — 0 unless K is trivial on M.

Since M is Kähler and simply connected, the minimal model of M
is a Kähler surface with K 0 or — oo and b1 0. When K 0, it is

either a K —3 surface or Enriques' surface. When K — co it is either a

rational surface or a ruled surface of genus zero, M2 is equal the minimal
model blown up successively at a finite number of points, and M M\{s 0}
for some 0 # s e H°(M, K_1). Conversely, if M M\{s 0} with
s e H°(M, K'1) and M is as above, then M should admit a Ricci flat,
complete, Kähler metric. In higher dimensions, the situation is much more
complicated.

In physics, the following question has been studied. Is a Ricci flat
metric with a suitable locally asymptotic property actually unique? This is

the case when the metric is asymptotically flat. One would also like to
know what happens when the metric is locally asymptotic to a cone.

Perhaps assuming that the metric is Kähler may make this problem easier.

The existence of Ricci flat metrics has many applications. For example,

using Ricci flat metrics, Siu [SI] proved that any surface M2 with c^M) 0

and H1(M, R) 0 must be Kähler. See also Todorov [To] for higher
dimensions. One can also ask the following question: Let M2n be a simply-
connected, compact, complex manifold where n ^ 2. If there exists a non-
degenerate 2-form co e H2,0(M\ is M then Kähler? Todorov claimed that M
is Kähler under an additional assumption: dim H2,0(M) 1.
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