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130 S. T. YAU

compact manifold is the connected sum of algebraic surfaces. For nonsimply
connected algebraic surfaces, it is more difficult to speculate. The basic
problem is to find a way to construct complex structures. Perhaps one can
ask the following question. Suppose M is a compact almost complex
manifold satisfying x(M) = 3t(M) and covered topologically by R* (Here
x(M) 1s the Euler number and t(M) is the index of M.) If every abelian
subgroup of m;(M) is infinite cyclic, does M admit a complex structure so
that M is covered holomorphically by the unit ball in C2? The Lefschetz
theorem may be useful in the above question.

2. KAHLER AND ALGEBRAIC STRUCTURES

Let M" be an n complex dimensional compact manifold with complex
structure J. The first question is: When is J Kahlerian, ie., (M, J) admits
a Kahler metric? Harvey-Lawson [H-L] gave an intrinsic characterization
of the Kéahlerian condition if and only if M carries no positive currents
which are the (1, 1)-components of boundaries. Hodge theory gives a lot of
necessary conditions for complex manifolds to be Kahler. In particular,
their even Betti numbers must be positive and their odd Betti numbers are
even. Also, when (M, J) is Kéhlerian, its rational homotopy type is deter-
mined by its rational cohomology, see Deligne-Griffiths-Morgan-Sullivan
[DGMS].

Now suppose M is a Kahler manifold, i.e, M has some Kaihlerian
complex structure. When does M admit a non-Kahlerian complex structure ?
When does M have a unique complex (or Kahlerian) structure ?

When n = 2, every compact complex surface with even first Betti
number is Kédhlerian. (This follows from the classification of Kodaira because
Miyaoka [M1] and Siu [S1] proved respectively that elliptic surfaces with
even first Betti number and K —3 surfaces are Kihlerian. From this one
concludes that among the seven classes of surfaces in Kodaira’s classification,
the first five are Kahlerian for every complex structure. The remaining two
classes of surfaces have odd first Betti number and hence admit no Kéihler
metrics. In particular, one sees that on a Kéihler surface M2, all complex
structures on M? are Kihlerian.)

When n > 3, the situation is much more complicated. Calabi [Ca3]
proved that there is a non-Kédhlerian structure on X x T¢&, where X is a
hyperelliptic curve with genus g = 2k + 1, k > 0. On the other hand, we
know that the only Kéihlerian structures on X x Tg is the standard one.
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Are there non-Kihlerian complex structures on compact locally irreducible
Hermitian symmetric spaces which are covered by bounded domains?

Yau made the following conjecture: Suppose M"(n>2) is a compact
Kihler manifold with negative sectional curvature; then there exist a unique
Kihlerian complex structure. This statement is false if the condition “negative
sectional curvature” is replaced by “negative bisectional curvature”.

For a locally Hermitian symmetric space M", Calabi and Vesentini [CV]
proved that H)(TM) = 0 when n > 2. Siu [S2] partially settled Yau’s
conjecture by proving the following theorem: If M" is a compact Kahler
manifold with strongly negative curvature, then the Kdhler structure on M
is unique.

Now suppose that M is Kéhler and diffeomorphic to a compact quotient
DT of the unit ball D = C". Prior to Siu’s theorem, Yau [Y1] proved
that the Kihler structure on M is unique by using the following Chern
number inequality :
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where ¢;(M) < 0. The question is: When is the complex structure on M
unique ? This is not known for n > 3. The only known result is that every
complex structure on M is hyperbolic in the sense of Kobayashi, i.e., there
are no non-constant holomorphic maps from C to M.

Inequality (2) also gives the uniqueness of the Kahler structure on CP”.
For n odd this result is due to Hirzebruch and Kodaira [HK]. We remark
that in these kinds of rigidity problems, harmonic maps seem to be very
useful. In particular, modifications of Siu’s d0-Bochner-Kodaira would hope-
fully be useful (see Siu [S2] and Sampson [Sa]).

For the deformation of Kdihler structures to algebraic structures, we
have the well-known Kodaira conjecture: Every compact Kéahler manifold
can be deformed to an algebraic manifold. This is known when n = 2;
in fact, Kodaira [Ko] proved that every compact Kéahler surface can be
deformed to an algebraic surface. The Kodaira conjecture is not known for
n > 3. In particular, if M" is a non-algebraic compact Kahler manifold and
TM is its holomorphic tangent bundle, is H(TM) # 0? Since a compact
Kahler manifold with h*° = 0 is algebraic, a related question is: If M is
Kiéhler, does h*° # 0 imply HY(TM) # 0? (It is easy to construct a map
from H* °(M) to HY(T(M)).)
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