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then the limiting S* will enclose a fake disk. Take a Jordan curve on this
S? so that it decomposes the S? into two regions with equal area. Then
one expects this Jordan curve to bound an embedded minimal disk in the
fake disk. If one can achieve this, one can shrink the S? more and obtain
a contradiction which will give a proof of the Poincaré conjecture.

In conclusion, minimal surface theory is surprisingly successful in being
applied to three dimensional topology. I believe that a more thorough study
of minimal surfaces will reveal more secrets about three manifolds.

§ 5. KAHLER GEOMETRY

In the following we consider four basic topics in complex geometry.
1. Existence of complex and almost complex structure.

2. Existence of Kdhler and algebraic structures on complex manifolds.
3. Uniformization problems and the parametrization of metrics.
4

Analytic objects over complex manifolds, e.g., analytic cycles, holo-
morphic vector bundles, etc.

We will divide this section into four parts corresponding to these topics.

1. COMPLEX AND ALMOST COMPLEX STRUCTURES

Let M be an even dimensional oriented differentiable manifold. The
existence of an almost complex structure J is equivalent to a reduction of
the structure group of the tangent bundle from GL(2n, R) to GL(n, C).
This is basically an algebraic problem and is well understood.

However, the question of when an almost complex structure is homotopic
to an integrable almost complex structure (i.e, one which comes from a
complex structure) is much harder. When n = 1, every M? admits an almost
complex structure and every such structure is integrable and algebraic.
For n = 2, ven de Van [V1] gave several examples of compact M*’s
which admit an almost complex structure but not a complex structure.
His argument is based on the computations of the first and second Chern
classes. When n > 3, there are no such examples known so far. In particular,
we do not know whether or not the almost complex manifold S® admits
a complex structure. This problem has been open for a long time.

The topology of complex surfaces is not well understood. By the works
of Donaldson, one may believe that every simply connected four dimensional
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compact manifold is the connected sum of algebraic surfaces. For nonsimply
connected algebraic surfaces, it is more difficult to speculate. The basic
problem is to find a way to construct complex structures. Perhaps one can
ask the following question. Suppose M is a compact almost complex
manifold satisfying x(M) = 3t(M) and covered topologically by R* (Here
x(M) 1s the Euler number and t(M) is the index of M.) If every abelian
subgroup of m;(M) is infinite cyclic, does M admit a complex structure so
that M is covered holomorphically by the unit ball in C2? The Lefschetz
theorem may be useful in the above question.

2. KAHLER AND ALGEBRAIC STRUCTURES

Let M" be an n complex dimensional compact manifold with complex
structure J. The first question is: When is J Kahlerian, ie., (M, J) admits
a Kahler metric? Harvey-Lawson [H-L] gave an intrinsic characterization
of the Kéahlerian condition if and only if M carries no positive currents
which are the (1, 1)-components of boundaries. Hodge theory gives a lot of
necessary conditions for complex manifolds to be Kahler. In particular,
their even Betti numbers must be positive and their odd Betti numbers are
even. Also, when (M, J) is Kéhlerian, its rational homotopy type is deter-
mined by its rational cohomology, see Deligne-Griffiths-Morgan-Sullivan
[DGMS].

Now suppose M is a Kahler manifold, i.e, M has some Kaihlerian
complex structure. When does M admit a non-Kahlerian complex structure ?
When does M have a unique complex (or Kahlerian) structure ?

When n = 2, every compact complex surface with even first Betti
number is Kédhlerian. (This follows from the classification of Kodaira because
Miyaoka [M1] and Siu [S1] proved respectively that elliptic surfaces with
even first Betti number and K —3 surfaces are Kihlerian. From this one
concludes that among the seven classes of surfaces in Kodaira’s classification,
the first five are Kahlerian for every complex structure. The remaining two
classes of surfaces have odd first Betti number and hence admit no Kéihler
metrics. In particular, one sees that on a Kéihler surface M2, all complex
structures on M? are Kihlerian.)

When n > 3, the situation is much more complicated. Calabi [Ca3]
proved that there is a non-Kédhlerian structure on X x T¢&, where X is a
hyperelliptic curve with genus g = 2k + 1, k > 0. On the other hand, we
know that the only Kéihlerian structures on X x Tg is the standard one.
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Are there non-Kihlerian complex structures on compact locally irreducible
Hermitian symmetric spaces which are covered by bounded domains?

Yau made the following conjecture: Suppose M"(n>2) is a compact
Kihler manifold with negative sectional curvature; then there exist a unique
Kihlerian complex structure. This statement is false if the condition “negative
sectional curvature” is replaced by “negative bisectional curvature”.

For a locally Hermitian symmetric space M", Calabi and Vesentini [CV]
proved that H)(TM) = 0 when n > 2. Siu [S2] partially settled Yau’s
conjecture by proving the following theorem: If M" is a compact Kahler
manifold with strongly negative curvature, then the Kdhler structure on M
is unique.

Now suppose that M is Kéhler and diffeomorphic to a compact quotient
DT of the unit ball D = C". Prior to Siu’s theorem, Yau [Y1] proved
that the Kihler structure on M is unique by using the following Chern
number inequality :

(=1)'n

2 (17 et ey > et

where ¢;(M) < 0. The question is: When is the complex structure on M
unique ? This is not known for n > 3. The only known result is that every
complex structure on M is hyperbolic in the sense of Kobayashi, i.e., there
are no non-constant holomorphic maps from C to M.

Inequality (2) also gives the uniqueness of the Kahler structure on CP”.
For n odd this result is due to Hirzebruch and Kodaira [HK]. We remark
that in these kinds of rigidity problems, harmonic maps seem to be very
useful. In particular, modifications of Siu’s d0-Bochner-Kodaira would hope-
fully be useful (see Siu [S2] and Sampson [Sa]).

For the deformation of Kdihler structures to algebraic structures, we
have the well-known Kodaira conjecture: Every compact Kéahler manifold
can be deformed to an algebraic manifold. This is known when n = 2;
in fact, Kodaira [Ko] proved that every compact Kéahler surface can be
deformed to an algebraic surface. The Kodaira conjecture is not known for
n > 3. In particular, if M" is a non-algebraic compact Kahler manifold and
TM is its holomorphic tangent bundle, is H(TM) # 0? Since a compact
Kahler manifold with h*° = 0 is algebraic, a related question is: If M is
Kiéhler, does h*° # 0 imply HY(TM) # 0? (It is easy to construct a map
from H* °(M) to HY(T(M)).)
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3. UNIFORMIZATION

In the one complex dimensional case, we know that every Riemannian
surface is one of the following:

CP': the Riemannian sphere, which has a unique complex structure,
E: an elliptic curve, which is covered holomorphically by C,

2,,(g>1): a surface covered holomorphically by the unit disk D = C.

In higher dimensions, many results and classifications come from trying to
generalize the above classification. One wants to know under what geometric
conditions is M biholomorphic to a higher dimensional analogue of CP!,
E or 2, (g>1). This corresponds to the manifold being elliptic, parabolic or
hyperbolic. As is usual, uniqueness will be in the sense of biregular,
birational or unirational. In the non-compact case, one basically tries to tame
infinity and compactify M as a Zariski open set of some projective algebraic
variety M so that M = M\ {subvariety}.

A. Elliptic manifolds

Frankel [Fr] conjectured that any compact Kéahler manifold with positive
bisectional curvature is biholomorphic to CP"; he proved this when n = 2.
Later, Mori [Mol] and Siu-Yau [SY1] proved the general case independently.
In fact, Mori proved the Hartshorne conjecture under the weaker assumption
that M has an ample tangent bundle.

The following is conjectured in [Y6]. If M is a simply connected compact
Kihler manifold with nonnegative bisectional curvature, then M is isometric
to a product of Hermitian symmetric spaces and complex projective spaces
(not necessarily with Fubini-Study metric). ,

S. Bando [B1] proved this when n = 3. Mok and Zhong [MZ] proved
that if, in addition, M is FEinstein then M is biholomorphically isometric
to a Hermitian symmetric space.

Recently, H.-D. Cao and B. Chow [CC] proved the conjecture assuming
in addition M has nonnegative curvature operator. Even more recently,
Mok claimed to prove the complete conjecture.

Let M" be a compact Kihler manifold with positive Ricci curvature
(this equivalent to c,;(M) > 0). We have the following questions:

(1) Under what condition is M" unirational? Namely, does there exist a
rational map from CP" to M"?
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(2) Are there only a finite number (in the topological sense) of n-dimen-
sional algebraic manifolds with positive first Chern class ?

(3) Is it true that ¢;(M)" is bounded by a constant depending only on n?

For n = 2, M? is a del Pezzo surface and (1), (2) and (3) are true. For
n = 3. M®is a Fano 3-fold, i.e., an algebraic 3-manifold with ample anti-
canonical bundle. Mori and Mukai [MM] give a complete classification of
Fano 3-folds with second Betti number b,(M) > 2. In fact, they proved that
there are exactly 87 types of Fano 3-folds with b,(M) > 2, up to deforma-
tion; moreover, a Fano 3-fold with 6 < by(M) < 10 is isomorphic to
CP! x S;;_j,un where S, denotes the del Pezzo surface of degree d.
The Fano 3-folds with b, = 1 are called Fano 3-folds of the first kind and
were classified by Isokovskih [Is]. Using the above classification, questions (2)
and (3) are easily checked to be true, but question (1) is not completely
known even for n = 3. Using certain properties of conic fiber spaces over
CP?, one can prove that some types of Feno’s 3-folds, such as cubic
3-folds in CP* are unirational. One does not know if every quartic 3-fold
in CP* is unirational; see the survey by Beauville [Be] for further details.
By the way, before the classification of Mori and Mukai, S. M. L’vovskii [Lv]
proved that c¢;(M)® < ¢,(CP?) = 64 for Fano 3-folds by Riemann-Roch
theorem and a detailed study of families of rational curves C with
(=K, C) = 4. It is interesting to study the families of rational curves in
Fano manifolds. Finally, for n > 4, the validity of (1), (2) and (3) are not
known. Mori-Mukai recently proved M is uniruled. One more problem is if
M" is rationally connected. It is not hard to see that rational connectedness
is stronger than uniruledness, but weaker than unirationalness.

Recall that Gromov’s theorem [Gr] says that there is a constant c(n)
depending only on n such that ) b(M") < c(n) for any Riemannian manifold
=0

M" with nonnegative sectional curvature. When M is Kéhler, can one replace
the condition “nonnegative sectional curvature” by “positive Ricci curvature” ?
One would also like to understand algebraic manifolds with Kodaira
dimension K(M) = — oo, ie, HY(M, K™ = 0 for each m > 0, where K
denotes the canonical line bundle. When n = 2, they are either rational
surfaces or ruled surfaces.

B. Parabolic manifolds

Suppose M" is a compact Kdhler manifold which can be holomorphically
covered by C" Is it true that M" can be also covered by the complex
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torus T'¢? For n = 2, Iitaka [Ii] proved that this is true. When n > 3,
it is not known. Even in the case n = 2, the Kihler condition cannot be
dropped (otherwise there exist counterexamples).

Let M" be a noncompact complete Kahler manifold with positive sectional
curvature; is M biholomorphic to C"? This question has been open for a
long time. Siu-Yau [SY2] and Mok-Siu-Yau [MSY] proved the following.
Let M be a complete noncompact Kéhler manifold, pe M and r(x)
= dist (x, p). Then

(a) If n, (M) = 0, — A/r**® < K,; < 0 for some ¢ > 0, then M is biholo-
morphic isometric to C".

(b) If | Ky | < A(1/r*)**® and A small enough, then M™ is biholomorphic
to C" If in addition K, < 0, then M” is isometric to C" with the
flat metric.

(c) If Ky = 0,0 < R < A/r*"® and vol (B(p, r)) = Cr?", then M is biholo-
morphic to C".

Here A and C are any positive constants; K,, and R denote the sectional
and scalar curvatures of M, respectively.

Mok [Mk1] improved these results by weakening the bound 1/r
to 1/r®. More precisely, he proved the following:

(d) If M has positive bisectional curvature, 0 < R < A4/r* and vol (B(p, r))
> Cr*" for some positive constants 4 and C, then M is biholomorphic
to an affine algebraic variety X.

Let M” be an algebraic manifold with Kodaira dimension K(M) = 0,
ie., there exists my > 0 such that dim H°M, K™) > 0, and for all m > 0,
dim H(M, K™ < C for some C independent of m, where K denotes the
canonical line bundle. Can one classify these manifolds ? Note that ¢;(M) = 0
is a special case of K(M) = 0. When n = 2, there are exactly two classes
of algebraic manifolds with Kodaira dimension K(M) = 0, quotients of
abelian varieties or K —3 surfaces. For n > 3, this 1s unknown; the case
n = 3.would be important for physics in view of the superstring theory.
It is not known how to classify the topology of threefolds with ¢, = 0.
Are there only finite number of such manifolds? Do they always admit
rational curves if n;(M) = 07?

2+g

C. Hyperbolic manifolds

If M" is an algebraic manifold with negative sectional curvature, can M
be holomorphically (branched) covered by a bounded domain Q = C"?
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A weaker question is: If M is a simply connected Kéahler manifold with
negative sectional curvature, are there enough bounded holomorphic functions
on M to separate points and give local coordinates? So far, no non-constant
holomorphic functions have been proved to exist on M even under the
assumption that M covers a compact manifold M.

B. Wong [Wo2] proved that if Q = C” is a bounded domain with
smooth boundary and Q covers a compact manifold, then Q is the ball
P. Yang [Yg] proved that if Q is a bounded symmetric domain in C" with
rank greater than one, then there does not exist any Kédhler metric on Q
with holomorphic bisectional curvature bounded between two negative
constants. In particular, Q cannot cover any compact Kahler manifold with
negative bisectional curvature. Hence if a bounded domain Q covers a compact
Kéhler manifold with negative curvature, it must be rather nonsmooth.

Recently, Mostow and Siu [MS] constructed a Kihler surface M? with
negative sectional curvature by delicately piecing together the Poincaré
metric of the 2-ball with the Bergman metric of the domain {(z;,z,)] | z; |2
+]z,1? < 1} in C" They proved that the universal cover M of M is
not the ball by showing that the Chern numbers of M satisfy c¢? < 3c,.
This manifold is not difftomorphic to a locally symmetric space and it is
not known whether the universal cover is a bounded domain. Is it possible
that a complete non-compact Kéhler manifold with (topologically) trivial
tangent bundle which covers a compact algebraic manifold is in fact
biholomorphic to a domain?

For algebraic surfaces with positive canonical line bundle, does | ¢,/c?
— 13| small enough imply that M has a Ké&hler metric with negative
sectional curvature ? This is not known.

The topology of algebraic surfaces is a very important subject. By the
recent activity of Freedman and Donaldson, it seems reasonable to believe
that every simply connected four-dimensional smooth manifold can be
written as a connected sum of algebraic surfaces (possibly with different
orientation). Very strong conclusions on the irreducibility of simply connected
algebraic surfaces was recently asserted by Donaldson. Apparently only CP2
factors can occur if one wants to write it as a connected sum of differen-
tiable manifolds. Perhaps simply connected four-dimensional manifolds with
such irreducible condition is diffeomorphic to an algebraic surface.

It is more difficult to predict the topology of algebraic surfaces when
the fundamental group is not finite. Shafarevich did make the conjecture that
universal cover of any algebraic manifold is holomorphically convex. This may
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give some information about the topology besides the known inequality on
Chern numbers.

4. ANALYTIC OBJECTS

In order to understand the complex structure, it is important to under-
stand the analytic objects attached to the structure. Here we give two
examples:

A. Holomorphic maps and vector bundles

For a complex manifold M, the natural holomorphic vector bundles
associated to it are TM, TM*, A*TM, ®*TM, etc. Of special importance
is the canonical line bundle K = A"TM*.

By blowing up points or submanifolds, one can get additional analytic
objects. The Riemann-Roch theorem, which relates a topological invariant
to an analytic invariant, is an important tool in constructing analytic
objects or invariants from the given topological or analytic information.

The Yang-Mills theory is often useful in constructing holomorphic vector
bundles and other objects over Kdhler manifolds. Taubes [T1] used the anti-
self-dual solutions to the Yang-Mills equations to construct holomorphic
vector bundles of rank two over Kihler surfaces M2 Is it possible to use
this theory to recover the author’s theorem that if M? is simply connected
and its cup product is positive definite, then M? is biholomorphic to
CP??

Taubes [T2] also constructed holomorphic vector bundles over Kahler
surfaces under the assumption of an inequality between the two Chern
numbers (see also Donaldson [D1] and [D2]). So far, the above arguments
only work in the two dimensional case. For higher dimensions, there is no
good way to construct holomorphic vector bundles. The idea of Taubes can
be extended to construct holomorphic vector bundles over high dimensional
manifold. But it is not clear how large a class can one achieve in such a way.

B. Analytic cycles

Recall that by an analytic cycle, one simply means the formal sum of
analytic subvarieties. Let M" be an algebraic manifold and V € M an
analytic subvariety of codimension p. Then the fundamental cohomology class
ny of V belongs to HPP’(M)~ H?*’(M;Z). Recall that an -element
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o e H??(M ; Q) is analytic if it can be represented by a linear combination,

with rational coefficients, of the fundamental classes of subvarieties of

codimension p, i.e., & = i bmy,, where b;e Q and V; is a subvariety of M.
i=1

Clearly, every analytic element in H*?(M ; Q) belongs to H 29(M ; Q) n HPP(M).

Conversely, we have the Hodge Conjecture: Every element o e H*?(M ; Q)

A HPP?(M) is analytic. This is true when p = 1 and is called the Lefschetz

theorem on (1, 1)-classes; it is not known for p > 2.

In a Kahler manifold M" every analytic subvariety is area-minimizing.
This follows in a straightforward way from the formulae of Wirtinger and
Stokes. Conversely, under suitable conditions, area-minimizing submanifolds
become subvarieties. For example, Siu-Yau [SY1] proved that if f: Cp!
—» M" is energy-minimizing and the bisectional curvature of M is positive,
then f is either holomorphic or anti-holomorphic.

Lawson-Simons’ argument gives an approach towards the Hodge con-
jecture. Given an embedding f: M" — CP" and an element e H”?(M)
group of projective transformations of CP". Set

d* _dg,
B(X, X) = F(VOI g{M)) ) where X = =

They proved that the trace of B is negative unless M is a subvariety.

Lawson-Simons’ argument gives an approach towards the Hodge con-

jecture. Given an embedding f:M" — CP" and an element B € H”?(M)

N H??(M ; Q), define a volume function as follows: Vol: PGL(N+1,C) - R

where Vol: g — inf {Vol(C) | C represents a}. Here a is the Poincaré dual
C

of B and Vol (C) is the volume with respect to the metric (go f)*ds}
where ds3 denotes the Fubini-Study metric on CPY. If there exists a holo-
morphic C representing o, then Vol (x) = Vol (C) is independent of the
choice of g. Hence Vol is a constant function which attains its minimum.
On the other hand, if Vol has a minimum, then Lawson-Simons’ argument
shows that there exists a holomorphic C representing o. Therefore the Hodge
conjecture would be proved if one could show the minimum of Vol is
attained.

Siu [S2] obtained the following result. Let M be a compact Kéhler
manifold with strongly negative curvature. Then any element in H,, (M ; Z),
for k > 2, can be represented by an analytic subvariety if it can be
represented by the continuous image of a compact Kidhler manifold. His
argument used the Bochner type formula for df A df to get the complex
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analyticity of the harmonic map f. However, it seems to be difficult to
decide which cycles can be represented by continuous images of Kihler
manifolds.

§ 6. CanNonNicaL METRICS OVER COMPLEX MANIFOLDS

Given a complex manifold M, one could like to find “canonical” metrics
on M so that one can produce invariants for the complex structure.
One natural requirement for canonical metrics is that the totality of them
can be parametrized by a finite dimension space and that they be invariant
under the group of biholomorphisms.

1. THE BERGMAN, KOBAYASHI-ROYDEN AND CARATHEODORY METRICS

The Bergman metric was first introduced as a natural metric defined
on bounded domains in C”". Later, the definition was generalized to complex
manifolds whose canonical bundle K admit sufficiently many sections. For a
domain D in C" let H*D) denote the space of square integrable holo-
morphic functions of D. Choose an orthonormal basis {¢;} of this space.
Then the Bergman kernel is defined as

Kizw) = 3 0:(2):(w).

Notice that the definition of the Bergman kernel is independent of the
choice of orthonormal basis. Moreover, K is holomorphic in the variables z
and w.

We can now define the Bergman metric by

52
ds* =) 52,07 log K(z, z) dz; ® dz; .

The naturality of the Bergman metric can easily be seen from the definition
of the Bergman kernel. Let D, and D, be two domains in C", and
K,(z, w) and K,(z, w') their respective Bergman kernels. If F: D; — D, is a
biholomorphism, then K; and K, are related by the formula

Ki(z w) = Ky(f(z), f(w)) det <‘ZF ) det @g

0z ow




	§5. Kähler Geometry
	1. Complex and almost complex structures
	2. KÄHLER AND ALGEBRAIC STRUCTURES
	3. Uniformization
	4. Analytic objects


