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124 S. T. YAU

cists. The simplest symmetric spaces are the real and complex projective spaces.
In [Cal], Calabi gave an effective parametrization of isotropic harmonic
maps from surfaces into real projective space. Following Calabi and the work
of physicists, Eells and Wood [EW2] set up a bijective correspondence
between full isotropic harmonic maps ¢: M? — CP" and pairs (f, r) where
f:M?* - CP" is a full holomorphic map and 0 < r < n is an integer
(see [Cal] and [EW2] for definitions). Their idea is based on the fact
that if ¢: M — CP” is a full isotropic map, then for some r,s,7r + s = n,
the map

f=[o@D ¢@-dDY 'dDD ¢@ D D)

1s full holomorphic. Here D' and D” are the (1,0) and (0, 1) components
of the covariant derivative.

Later, Bryant ([Brl], [Br2]) treated conformal harmonic maps from
surfaces into S°® and S*. Inspired by the twistor construction of Calabi and
Penrose, he considered a restricted class of conformal harmonic maps,
namely superminimal surfaces. (Note that Hopf already studied these surfaces
in its primitive form). He established a one-to-one correspondence between
superminimal surfaces and curves horizontal in CP?® with respect to the
twistor fibration CP3 5 S* By constructing such a curve, Bryant showed
that any Riemann surface be conformally immersed as a minimal surface
in S*. For the construction in a general 4-manifold, see [ESa].

Recently, K. Uhlenbeck [U3] has dealt with the space H of harmonic
maps from a simply-connected 2-dimensional domain into a real Lie group
Ggr (which is the chiral model in the language of theoretical physics).
She studied the algebraic structure of the manifold H and its relation with
Kac-Moody algebras.

Another uncultivated area in harmonic maps 1s the classification of
harmonic maps from a surface into a Ricci flat Kéahler three-fold. The
interest in this comes from the study of superstring theory in theoretical
physics.

§4. MINIMAL SUBMANIFOLDS

The study of minimal submanifolds is another important topic in diffe-
rential geometry. In this section we will mainly consider minimal surfaces
in compact three manifolds. The minimal surfaces will be assumed to be
regular and embedded, except when otherwise indicated.
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In general, it is not too difficult to find an immersed minimal surface
in a manifold M if the topology of M prevents the surface from contracting
to a point. Additionally, one can sometimes prove the embeddedness of this
surface. For example, Meeks-Yau [MY] proved that if m,(M) # 0, then there
exist embedded minimal S?’s and RP?’s in M which span m,(M) as a
n,(M)-module. This theorem can be used to study finite groups acting on
a three dimensional manifold.

It is relatively hard to find minimal surfaces by using the “mountain
pass principle”. Also, it is also unclear how to apply the Ljusternik-
Schnirelmann theory to find many minimal surfaces with restricted topological
type. Sacks-Uhlenbeck [Sa-U] used a perturbed energy combined with
the “Morse theory” to show that any n-dimensional manifold, with m(M) # 0
for some k, contains at least one immersed minimal S? This work
of Sachs-Uhlenbeck was used by Siu-Yau to settle the Frankel conjecture
in Kiahler geometry. Recently a similar type of argument was used by
M. Micalif [Mc] and D. Moore [MD] to give a proof of the classical
pinching theorem in Riemannian geometry. In fact, they need weaker pinching
assumptions.

In his thesis, Pitts [Pi] introduced the notion of “almost minimizing
varifold”, which roughly speaking is a varifold close to a locally minimizing
varifold. Using the nontriviality of the homotopy groups of the integral
cycle groups [Al], he proved that any manifold of dimension < 6 supports a
nonempty, compact, embedded smooth minimal hypersurface. His idea was to
apply the mini-max principle to maps from S! into integral currents,
which are nontrivial under the isomorphism set up by Almgren [Al].
Since this construction is so general, we do not obtain any topological
information about the minimal hypersurface. Recently, R. Schoen-L. Simon
[SS] generalized Pitts’ work. They showed that any manifold admits a minimal
hypersurface with the singular set of Hausdorff codimension at least seven.

On certain three manifolds, R. Schoen and the author can give an
estimate of the genus of the minimal surface constructed by Pitts. The
argument was done a long time ago. Since this has not been published yet,
we give an outline of the proof here.

Let M denote the 3-manifold, R, R;; and R;;; its scalar, Ricci and
sectional curvature. Let ¥ be the minimal surface constructed by Pitts;
K, A, and e; the Gaussian curvature, second fundamental form and normal
vector field of X. By Pitts’ construction, we know that the minimal surface
must have index 1. This condition is equivalent to the nonnegativity of the
second eigenvalue of the operator L, where
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L= —A—(Ricles) + || 43

and A is the intrinsic Laplacian of the surface . In other words,

J(RiC(es) + 1 A%)f*dv < fIVflz'dv

z

for all functions f orthogonal to the first eigenfunction u;, .

We are now going to use the concept of conformal area, which is a
conformal invariant, to give an upper estimate of the second eigenvalue A,
in terms of M and the genus of X.

Let F: X — S" be a conformal immersion into the unit n-sphere. Then F
composed with any conformal transformation g € Conf(S”) is also a conformal
immersion. Since u, is a positive function, by using the argument in [LY2],
one can find g, € Conf(S”) such that g, F L uy, i.e.,

J(gooF)-uldv =0.
b

Now consider the new map g,° F, which we will also denote by
F.F = (f,). Xf? = 1. Since X has index 1,

J(RiC(es) + 1A ]2)fPdv < JI Vfil*dv
z z

and by taking the summation,

J(RiC(eg,) + [ A4 Z)dU < jZ | Vfil?-dv.

z

Since F is conformal, JZ | Vfi|2%dv = 2 Area(F(Z)). Hence
z

2inf sup Area(g o F(X)) > J(Ric(eg,) + | Al ?)dv.
F g e Conf(S")
z
The term on the left hand side is a conformal invariant, V (n, ), called the
n-dimensional conformal area; its infimum over all n is V(X), the conformal

area of the surface X.
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By using the branched covering of % over S2, one can show V()

<4 <g_(22_) + 1) n, where g(Z) is the genus of X. Hence

8 (g(_fl + l)n > {(Ric(eg) + | Al ?)dv.

z

On the other hand, since Ric(e;) + | 4 | > = Ric(e;) + Ric(e,) — 2K, if we
assume M has nonnegative Ricci curvature, then

J(Ric(e3) +141% = — f2 - Kdv = 4n(29(Z)—2).
s s

Combining the previous two inequalities, we have
z
81 (g(z—) + 1) > 4n(29(X)—2).

Hence ¢g(X) < 4, which is the required upper bound for the genus of Z.
Actually, one should be able to improve this estimate since the estimate on
V(M) is not sharp. Can one generalize the arguments here to study
minimal surfaces with higher index?

The reason one would like to estimate the genus of minimal surfaces
is because they contain information about the ambient manifold M. For
example, an embedded minimal surface in a 3-manifold M with positive
scalar curvature provides a good candidate for a Heagard splitting of M.
Moreover, if M is a homotopy 3-sphere and the genus of this surface is
less than or equal to 2, then M is actually a sphere. Thus, if one can
construct a minimal surface which provides a Heagard splitting and find
a good bound for its genus, then one has made substantial progress towards
the Poincaré conjecture.

An important problem in minimal surface theory is the existence of more
than one minimal surface (or even infinitely many) in a manifold. An
analogous situation is that of closed geodesics. On a 2-sphere, there exist at
least three closed, embedded geodesics. An ellipsoid has exactly three, so
this estimate is sharp.

For the three-sphere, one hopes to show that there exist at least four
minimal two-spheres. One would also like to know if, for an ellipsoid
centered at the origin in R*, the only minimal 2-spheres are the four
coming from the intersections with the coordinate 3-spaces.
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Using an idea of Pitts, Smith and Simon [Sm-S] were able to show that
any 3-sphere supports an embedded 2-sphere. They considered degree one
mappings F:1 x S? — §® such that on each slice (except the ones at the
ends), F(t,"): S* - S* is an embedding. They showed that by taking the
mini-max

min max Area(F(t, $?)),
F te[0, 1]
one obtains an embedded minimal S?. Can one do similar theorems for
homotopic spheres?

Another problem is to understand the space of minimal surfaces with
fixed genus ¢ in three-manifolds with positive Ricci curvature. Recently,
Choi and Schoen [CS] proved that this space is actually compact for any
fixed genus g. We remark that this compactness is new even for the standard
sphere. Their proof is based on an upper estimate of the area of a
minimal surface X, due to Choi and Wang [CW]. The area bound will
then control the convergence of the minimal surfaces. Knowing this com-
pactness theorem, there are still several interesting questions. For example,
do there exist continuous families of minimal surfaces when M has no
symmetry ? When M is symmetric, do all of these continuous families come
from the isometry group?

Estimates for the first eigenvalue are always interesting, especially for
minimal surfaces. For minimal surfaces in the standard 3-sphere, the
coordinate functions are eigenfunctions with eigenvalue 2. The author
conjectured that 2 is actually the first eigenvalue in this case. In an attempt
to prove the conjecture, Choi and A. N. Wang [CW] showed that for a
minimal surface in a 3-manifold with Ricci curvature not less than 2, the
first eigenvalue A, is at least 1. In terms of the conformal area of the
minimal surface, Li and Yau [LY2] obtained the following upper bound
for A,,

2 conf area(X,) S M)
=z N\~y) -

area(X,)

It is in this way Choi-Wang obtained an upper bound of the area.
It would be interesting to generalize this inequality to higher eigenvalues and
also study higher eigenvalues of minimal surfaces.

Let M be a homotopy 3-sphere. If M is not a 3-sphere then it contains
a fake 3-disk. Put a metric which is asymptotically a product near the
boundary. If we minimize area among all S*’s isotopic to the boundary,
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then the limiting S* will enclose a fake disk. Take a Jordan curve on this
S? so that it decomposes the S? into two regions with equal area. Then
one expects this Jordan curve to bound an embedded minimal disk in the
fake disk. If one can achieve this, one can shrink the S? more and obtain
a contradiction which will give a proof of the Poincaré conjecture.

In conclusion, minimal surface theory is surprisingly successful in being
applied to three dimensional topology. I believe that a more thorough study
of minimal surfaces will reveal more secrets about three manifolds.

§ 5. KAHLER GEOMETRY

In the following we consider four basic topics in complex geometry.
1. Existence of complex and almost complex structure.

2. Existence of Kdhler and algebraic structures on complex manifolds.
3. Uniformization problems and the parametrization of metrics.
4

Analytic objects over complex manifolds, e.g., analytic cycles, holo-
morphic vector bundles, etc.

We will divide this section into four parts corresponding to these topics.

1. COMPLEX AND ALMOST COMPLEX STRUCTURES

Let M be an even dimensional oriented differentiable manifold. The
existence of an almost complex structure J is equivalent to a reduction of
the structure group of the tangent bundle from GL(2n, R) to GL(n, C).
This is basically an algebraic problem and is well understood.

However, the question of when an almost complex structure is homotopic
to an integrable almost complex structure (i.e, one which comes from a
complex structure) is much harder. When n = 1, every M? admits an almost
complex structure and every such structure is integrable and algebraic.
For n = 2, ven de Van [V1] gave several examples of compact M*’s
which admit an almost complex structure but not a complex structure.
His argument is based on the computations of the first and second Chern
classes. When n > 3, there are no such examples known so far. In particular,
we do not know whether or not the almost complex manifold S® admits
a complex structure. This problem has been open for a long time.

The topology of complex surfaces is not well understood. By the works
of Donaldson, one may believe that every simply connected four dimensional
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