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122 S. T. YAU

Yau [Sc-Y2] have generalized Eells-Sampson’s [ES] and Hartman’s [Hr]
work. They showed that if N is a compact manifold with nonpositive
sectional curvature, M is complete and f: M — N has finite energy, then f
1s homotopic on compact sets to a harmonic map with finite energy.

Later [Sc-Y3], by explicitly computing the hessian of the distance function
d* considered as a function on N x N, showed that the set of harmonic
maps in a homotopy class is connected (see [Hr] when M is compact)
and can be immersed in N as a totally geodesic submanifold. Moreover,
it 1s a point if ©;(N) has no nontrivial abelian subgroup and the image of M
is neither a point nor a circle. Here we assumed M has finite volume and
the harmonic maps have finite energy. (When N is locally symmetric,
this is also done by Sunada.) They also applied the theory of harmonic
maps to study finite groups acting on a compact manifold.

3. RiGipity

It is natural to ask if harmonic homotopy equivalences are isometries
when M and N are both negatively curved Einstein manifolds with dimension
> 3. This is based on the uniqueness of harmonic maps into negatively
curved manifolds and the Mostow rigidity theorem. If this is true, it would
give another proof of the Mostow rigidity theorem in the case of rank one
symmetric spaces.

It is a question for negatively curved manifolds M and N, whether a
harmonic homotopy equivalence is a diffeomorphism or not. Schoen-Yau
[Sc-Y4] and Sampson [Sa] have proved this when M and N are Riemann
surfaces. If we only assume non-positivity of curvature, Calabi has constructed
a counterexample when N is a torus.

By minimizing the energy among diffeomorphisms, combined with a
replacement argument, Jost-Schoen [JS] constructed a harmonic diffeo-
morphism between surfaces of the same genus without any curvature
assumption. (Hence it generalizes a theorem of Schoen-Yau where one assumes
the image has non-positive curvature.)

There are plenty of examples of harmonic maps when M and N are
Kéahler manifolds. In particular, holomorphic maps are harmonic. On the
other hand, it was conjectured by Yau that when N has negative curvature,
harmonic maps are holomorphic. In attempting to settle this conjecture of
Yau, Siu [S2], proved that a harmonic map f is either holomorphic or
antiholomorphic provided N is strongly negatively curved and the rank
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of f is not less than 4 at some point. The assumption of N being strongly
negatively curved is similar to the negativity of the curvature operator.
One expects to be able to weaken this condition. But, if one only assumes
negative bisectional curvature, the analog of Siu’s theorem is false. This is
because for M = B"/T" embedded in CP" as a regular subvariety, any
hyperplane section of M has negative bisectional curvature and it is not
rigid in general.

Recently, Jost-Yau [JY1, 2] looked at the complex structure of complex
surfaces M homotopy equivalent to N = D x D/T" where I' is irreducible.
Let f: M — N be a harmonic homotopy equivalence where M is Kahler.
By analyzing the foliation f* = const., they showed that the universal cover
of M is biholomorphic to D x D.

Subsequently, Mok [Mk2] generalized the theorem of Jost-Yau to
arbitrary dimension. He also considered the foliation studied by Jost and Yau.

A generalization of the rigidity theorem to quasi-projective manifolds was
made by Jost-Yau. They study the complex structure over Hermitian
symmetric spaces with finite volume.

For a compact manifold M with strongly nonpositive curvature, one likes
to prove M is either locally Hermitian symmetric or that the complex
structure is rigid. Sampson [Sa] treated the case where M is Kahler and N
is a Riemannian manifold with Hermitian negative curvature, that is
RYuvn*s! < 0. By applying Bochner’s technique in essentially the same
way as Siu, he showed that all harmonic maps between M and N are
holomorphic. Using Sampson’s result, combined with the existence theorem
for harmonic maps, we can easily obtain restrictions on the fundamental
group of a Kéhler manifold.

Another interesting situation is when M and N are Kihler manifolds and
N has positive sectional curvature. Is it true that any minimizing harmonic
map 1s holomorphic or antiholomorphic ? This is only known when M = CPL.
Also, if we can prove this assuming in addition that N is an irreducible
symmetric space, then the conjecture that an irreducible symmetric Kihler
manifold has only one Kéhler structure is probably true. Notice that for the
reducible Kéhler manifold CP* x CP’, there exists infinitely many complex
structures which are Kéhler.

4. HARMONIC MAPS IN PHYSICS

The classification theory of harmonic maps from surfaces to Riemannian
manifolds, especially symmetric spaces, is of interest to mathematical physi-
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