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is a manifold with boundary. This type of argument breaks down when we
drop the non-positivity condition. For example Eells and Wood [EW1] have
shown that there does not exist a degree 1 map from a 2-torus to a
2-sphere.

Instead of looking for harmonic maps in a homotopy class, one can
look for harmonic maps with the same action on m;. We say that two maps
f,g: M — N are m;_ equivalent if f, = g,: 7, (M) — n;(N). When M 1s a
Riemann surface, L. Lemaire [Lm] proved the existence of a regular,
energy minimizing harmonic map in the class of n,-equivalent maps.

Another treatment of this problem was given by Sacks-Uhlenbeck [SaU]
and R. Schoen-S. T. Yau [Sc-Y1]. Schoen-Yau considered the function space
L% and showed that for ue Li(M, N), u, is well-defined and preserved
under the weak limit. Using the class {f e LY(M, N)| f, = (fo),} Which is
weakly closed, combined with the regularity of minimizing harmonic maps
from a surface, one can show the existence of a smooth harmonic map
in this class.

Schoen-Yau’s argument could be generalized to higher dimensions by
restricting the map f to the two skeleton of M. (This was also observed
by White [Wh].) It is reasonable to expect that one can produce an energy
minimizing harmonic map whose action on m,(M) has some resemblance to a
given map.

For minimizing harmonic maps, R. Schoen and K. Uhlenbeck [ScU1, 2]
have done fundamental work. By delicate use of comparison maps, they
showed that the Hausdorff dimension of the singular set of energy minimizing
harmonic maps is of codimension at least three. Their theorem can be used
to recover the former theorems of Eells-Sampson and Sachs-Uhlenbeck.

2. NONCOMPACT MANIFOLDS

The theory for harmonic maps between noncompact manifolds is more
complicated than when the manifolds are compact. One reason is that when
we choose a minimizing sequence of maps, their energies may not be
concentrated in a bounded region. On the other hand, one hopes that this
can be prevented by making suitable topological assumptions on the
manifolds.

For L?-harmonic maps, i.e., weakly harmonic maps with finite energy,
one can sometimes prove existence by making geometric or topological
restrictions. When N is a manifold with nonpositive curvature, Schoen and
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Yau [Sc-Y2] have generalized Eells-Sampson’s [ES] and Hartman’s [Hr]
work. They showed that if N is a compact manifold with nonpositive
sectional curvature, M is complete and f: M — N has finite energy, then f
1s homotopic on compact sets to a harmonic map with finite energy.

Later [Sc-Y3], by explicitly computing the hessian of the distance function
d* considered as a function on N x N, showed that the set of harmonic
maps in a homotopy class is connected (see [Hr] when M is compact)
and can be immersed in N as a totally geodesic submanifold. Moreover,
it 1s a point if ©;(N) has no nontrivial abelian subgroup and the image of M
is neither a point nor a circle. Here we assumed M has finite volume and
the harmonic maps have finite energy. (When N is locally symmetric,
this is also done by Sunada.) They also applied the theory of harmonic
maps to study finite groups acting on a compact manifold.

3. RiGipity

It is natural to ask if harmonic homotopy equivalences are isometries
when M and N are both negatively curved Einstein manifolds with dimension
> 3. This is based on the uniqueness of harmonic maps into negatively
curved manifolds and the Mostow rigidity theorem. If this is true, it would
give another proof of the Mostow rigidity theorem in the case of rank one
symmetric spaces.

It is a question for negatively curved manifolds M and N, whether a
harmonic homotopy equivalence is a diffeomorphism or not. Schoen-Yau
[Sc-Y4] and Sampson [Sa] have proved this when M and N are Riemann
surfaces. If we only assume non-positivity of curvature, Calabi has constructed
a counterexample when N is a torus.

By minimizing the energy among diffeomorphisms, combined with a
replacement argument, Jost-Schoen [JS] constructed a harmonic diffeo-
morphism between surfaces of the same genus without any curvature
assumption. (Hence it generalizes a theorem of Schoen-Yau where one assumes
the image has non-positive curvature.)

There are plenty of examples of harmonic maps when M and N are
Kéahler manifolds. In particular, holomorphic maps are harmonic. On the
other hand, it was conjectured by Yau that when N has negative curvature,
harmonic maps are holomorphic. In attempting to settle this conjecture of
Yau, Siu [S2], proved that a harmonic map f is either holomorphic or
antiholomorphic provided N is strongly negatively curved and the rank
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