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NONLINEAR ANALYSIS IN GEOMETRY

by Shing Tung Yau!)

The basic purpose of geometry is to give a good description of a class
of geometric objects. Usually this means that we have to give a good
description of analytic structures over a space and the geometric objects
defined by such structures. In many cases, we have to know how to deform
these structures and study the dynamics of the geometric objects within
these structures. The description of all these geometric phenomena usually
are governed by differential equations. As geometric objects are in general
curved, most of these equations are nonlinear. Just like in physics, most
of the system of equations in geometry are variational in nature. As a
matter of fact, almost all the equations that we study in geometry are
related to physics. (We take a broad definition of physics here and therefore
also include many problems in engineering also.) Perhaps geometry is as real
as physics. Historically many problems that were considered by geometers
for their own beauty later arose naturally in problems in physics. This
often surprised both physicists and geometers. It seems that when nature
expresses her own beauty through mathematics, she also uses it to reveal
her depth. One of the most recent developments in high energy physics
is the superstring theory. It demands a great deal of knowledge from geometry.
We expect a continuous joint effort from both physicists and geometers.

Besides physics, geometry is also closely related to topology and algebraic
geometry. While topology tells us the very basic nature of space, algebraic
geometry provides us numerous natural examples on which we can test our
theory. We hope to indicate some of these connections in these lectures.

The lectures will roughly be divided into the following topics:

(I) Linear equations: Spectrum of Laplacian and harmonic functions.

1 This paper represents an extended version of three lectures held at the
ETH-Ziirich on November 20, 27, December 1, 1981, under the sponsorship of the
International Mathematical Union, while the author was supported in part by the
National Science Foundation.

This article has already been published in Monographie de PEnseignement Mathé-
matique, N° 33, Université de Geneve, 1986.
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(II) Semi-linear equations: Yamabe problem related to conformal defor-
mation.

(IIT) Minimal surface equations and harmonic maps.
(IV) Kahler geometry.

Before we go into those problems in detail, we offer a classification of
some views in geometry. In the past, a lot of geometers worked on
“local” problems. Nowadays, more attention is paid to “global” problems.
It often creates a conflict of views between these two different views of
geometers. Actually, as in the theory of differential equations, progress on
global problems is based on our understanding of local problems. In fact,
some local problems are more difficult than global problems. Let us discuss
it in the following:

(1) Local problem.

Most local problems in geometry can be reduced via algebra to local
existence theorems in differential equations. The algebra that is involved can
be very intricate. The work of Griffiths and his coworkers on the local
isometric embedding 1s a good example of this. The Cartan-K&hler theory
was devised exactly to accomplish the reduction of geometric problems to
local existence theorems like the Cauchy-Kovalevsky theorem. Various implicit
function theorems including the Nash-Moser iteration procedure are used in
these local problems. When the equations involved are degenerate (i.e., not
fully elliptic or hyperbolic or not changing type in a nondegenerate way)
the problem of local existence can be extremely difficult. This is especially
true when the equations are nonlinear.

An interesting example is the local embedding problem. An old classical
problem in geometry is the local metric embedding of a piece of surface
into three dimensional Euclidean space. The equation has the form

det (u;;—by;(x, y, Vu)) = F(x, y, u, Vu) .

When F changes sign or when the zero set of F is complicated, the local
existence is very difficult. In fact, Pogovelov and Jacobowitz gave counter-
examples when F > 0 and the surface is C* ! ([Pg], [Ja]). Therefore, it was
very remarkable when C. S. Lin demonstrated the local existence when the
surface is C1° ([Lnl, 2]).

In passing, one should also mention the deep work of Kurinishi on local
embedding theory on C-R structure.
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(i1) Semi-local theory.

The basic example is the development of singularities in the involved
equations. The understanding of the structure of symmetry is perhaps one
of the most difficult subjects in geometry and differential equations. In
algebraic geometry, singularity is a much more well-defined concept as “space”
here is the zero set of a class of polynomials and singularity is the set
of points where locally it does not look like the affine space.

In geometry, singularity is more difficult to define, especially when the
structure is governed by the hyperbolic system and the topology of the space
is allowed to change. A good example is the singularity developed in general
relativity. At this time, we do not really have a good definition of Black
Hole which is basically a singularity of the Einstein equations. Until we have
a good understanding of the global picture of the Einstein equations with
nonsingular initial data, it will be very difficult to give a more precise
definition of singularity in general relativity. Notice that in the famous
Schwarzchild solution, there is coordinate singularity which can be “cured”
by changing the coordinate system. This clearly complicated the problem.
Penrose formulated a famous problem called cosmic censorship which gives
a prediction for a generic phenomena of how singularities should develop.
It is probably the most fundamental problem in classical relativity.

The major problem here is that we have very little understanding of the
global behavior of nonlinear hyperbolic systems when the spatial dimension
is greater than one. It is almost for sure that a break through will be
accomplished in geometry if we know this type of equation better. For the
Einstein system, the best work was recently achieved by D. Christodoulou
who gave a very good understanding of the spherical symmetric case ([Cr]).
One expects that a lot of problems concerning spherical collapse can be
understood through his work.

For nonlinear elliptic problems, one has a well developed regularity theory.
The works go back to Bernstein, Schauder, Morrey, Nirenberg, De Giorgi,
Federer, Fleming, Allard, Almgren, Simon, etc. Most of the works are focused
on minimal subvarieties. The reason is very simple. Most difficulties arise in
nonlinear elliptic equations already appeared in minimal subvarieties. A
good understanding in minimal subvarieties usually give a breakthrough for a
more general class of nonlinear elliptic equations. Most of the accomplish-
ments in regularity theory of minimal subvariety assume that the minimal
subvariety minimizes area in a global way.

The best example is demonstrated by a codimension one area minimizing
subvariety. The works of De Giorgi, Federer, Fleming, Almgren, Allard,
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Simon, and Hardt show that there is no singularity for dimension less than
six. Recently, L. Simon gave a very good understanding of isolated singularity
by studying a neighborhood of the singularity [Si]. He proved that a neigh-
borhood is always described by the graph of a Hdélder continuous function
defined on the tangent cone.

(i) Global problems.

A lot of problems related to physics, topology and algebraic geometry
are global in nature. Hence most of the works of global geometry are related
to these subjects. Roughly speaking, “global” means that we study analytic
structure over compact spaces. For non-compact space, we request that the
structure be complete in some way. For geometric objects defined by these
structures, we would like to know their evolution for all time and their
asymptotic behavior.

In many ways, the basic questions are

(1) Given a complete analytic structure, how does one deduce global
information from local data?

(2) Given the topology of a space, can we put certain analytic structures
over this space?

Hence the second question corresponds to an existence theorem in analysis.
The first question corresponds to uniqueness. It should be clear from the
statements of these questions that understanding of global topology is essential
in the treatment of these problems. It turns out that one can turn the
argument around and give new theorems in topology. The most recent
example is the spectacular achievement of S. Donaldson ([ D3, 4]) of applying
gauge field theory to understand four dimensional topology. Here the
existence theorems was due to Taubes based on the works of K. Uhlenbeck
([T1, 2], [U1, 2]). Normally existence theorems based on pure information of
topology is the first step. Once the analytic structure is established, we can
deduce topological consequences from the analytic structure. We hope to be
able to give some feelings in the following lectures.

§ 1. EIGENVALUES AND HARMONIC FUNCTIONS

The most fundamental elliptic operator on a Riemannian manifold M

is the Laplace operator A. If M is compact then A has a discrete spectrum.
. We denote the spectrum (i.e., the eigenvalues of A) by 0 < A; <A, < =

< A; < . It is a basic fact that A; —» o0 as i — oo.

2

I
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There are two basic directions in the study of eigenvalues and they are
closely related to each other. The first is the study of the asymptotic
behavior of the sequence {A;}. The fundamental results can be found in
[BGM].

The well-known Weyl’s formula gives the first term in the asymptotic
expansion for A;. It says that

2 2

A ~ Ci" /(volM)" as  i— o,

where C, is a universal constant depending only on n = dim M.

It is a much harder problem to determine the second term in the
asymptotic expansion for A;. Ivrii [Iv] has done some significant work in
this direction (substantial work was also done by Melrose). His results can
be stated briefly as follows. Let M be a compact manifold with boundary
oM # (. We first consider the Dirichlet problem. For a positive real
number A, let N(A) denote the number of eigenvalues (counting multiplicity)
which do not exceed A% Under a certain technical assumption related to
the set of closed geodesics on M, the following asymptotic formula holds:

1
N(A) = 2n) "W (vol M) - A" — 2 2m)~ "W, _(vol M) - A"t + oM"Y

where W, and W,_, are constants depending only on n. A similar result
holds for the Neumann problem. The method Ivrii used was to study the
singularity of the fundamental solution of the wave equation d%u/dt*> = Au.

Another problem related to Weyl’s formula is the Polya conjecture. It
says the following. If Q is a bounded domain in R", then

N = c,(vol Q)™ 2/ j2in
and

W < C,(vol Q)™ 2/m j2n

Here {;} are the eigenvalues for the Dirichlet problem and {u;} are the
eigenvalues for the Neumann problem.

In [LY1], Li and Yau proved that in the average, the Polya conjecture
is true. The method depends on Fourier transform of the Laplacian. If
one can take care of the boundary term for the Fourier transform of high

power of the Laplacian, one will be able to settle the conjecture. Furthermore,
for any closed manifold M, they also prove

M < Cy + Cyli+ 1) - (vol M)~
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where C; and C, are constants depending only on m, the diameter of M
and a lower bound on the Ricci curvature of M.

The heat kernel, or the fundamental solution of the operator 0/t — A,
was a basic tool in understanding eigenvalues of the Laplacian. It often
gives an estimate of the eigenvalues with less dependence on the geometry.
However, except for the first term in the Weyl’s asymptotic estimate, the
heat kernel argument is not capable to give information for the lower
order asymptotic term at this moment. In any case, a lot of information was
obtained in the past by studying the trace of the heat kernel which is
Z e ' In particular, one can recover the volume, the total scalar cur-

vature, etc. from this infinite series when t — 0. However, since we have to
know all the eigenvalues in order to calculate the asymptotic value, it is not
an effective way to recover the invariants. Can one find an effective way
to calculate the heat invariants? When M is a convex domain, one can
actually recover the volume. When M is not convex, the problem is not stable
and difficult. In any case, in general one cannot recover all the information
about the geometry of the manifold (see [Mi]). C. Gordon and Wilson [GW]
found a non-trivial continuous family of metrics on a compact manifold with
the same spectrum. However, all the known examples of the manifolds with
the same spectrum have the property that they are locally isometric to
each other. Is this a generic phenomena ?

The second direction in the study of the spectrum is to estimate the low
eigenvalues, especially A, for a general manifold by using the mini-max
principle. An upper bound was found by Cheng [Chl] depending only on
the diameter of the manifold and a lower bound for the Ricci curvature.
Later, Li and Yau [LY1] obtained a lower bound for A, depending on
the same data. A sharp lower estimate was found by Zhong [Z]. Both of these
estimates have nice applications in geometry. Cheng’s theorem implies that
a compact manifold, whose Ricci curvature is not less than n — 1 and whose
diameter is m, is isometric to S". The estimate of Li-Yau was used by
E. Ruh to provide a new proof of a strengthened version of Gromov’s
theorem on almost flat manifolds.

It is an interesting and important problem to estimate the gap between
eigenvalues. For example, one knows that the multiplicity of A,(S?) is less
than or equal to three (see [Ch2]). Thus one would like to estimate
Ay — A;. For a convex domain Q in R", A; < A, for the Dirichlet boundary
condition. In [SWYY], I. Singer, B. Wong, S. S.-T. Yau and S.-T. Yau gave
a lower bound for A, — A; for convex domains. The basic idea of the proof
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is as follows. Let f, and f, denote the first two eigenfunctions. Since €2
is convex, the function u = f,/f, is well-defined and smooth up to the
boundary of Q. Let G = |Vu|? + Mp—u)> where A =X, —A; and

w = sup u by the maximum principle, it is not hard to see that
Q

G < sup G = sup Mp—u)*.
oQ

oQ

This implies
| Vi |2 + Msup u—u)? < M (sup u—infu)® — (sup u—u)?]

and hence

ﬁ> | Vu |

- J/(sup u—inf u)? — (sup u—u)’ .

Integrating this inequality along the line segment joining two points
where the minimum and maximum of u are obtained, we obtain

TCZ

Ay — Ay = A 2> 12’
where d is the diameter of Q. Can one improve the constant of this
inequality so that equality actually holds for the interval?

It should be clear that the understanding of eigenvalues depends crucially
on understanding the eigenfunctions. A basic part of the eigenfunction is its
zero set. It is called the nodal set. Even for two dimensional manifolds,
we do not really understand the nodal set. A very famous old problem
was to study the nodal line of the second eigenfunction of a convex domain.
It was conjectured that it cannot enclose any compact subset of the domain.
Recently C. S. Lin [Ln3] proved it under the assumption that the domain
has a symmetry. Another interesting question can be posed as follows. Let [,
be the length of the n-th eigenfunction. Can we obtain an asymptotic

estimates of [,? It looks like that it has order \/E where A, is the n-th

eigenvalue. The difficult question is to give an upper estimate of [,.
In the following we will consider the case where M is a complete

noncompact manifold. In this case, there should be two theories. An

L?>- and an L*®-theory. We first consider the L2-theory. The spectrum is

then not discrete in general. However, one may still ask: When does

—A have an eigenvalue? That is, there exists f e L3(M), f # 0, such that
Af = — Af(A>0). We hope that the following are true.
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(1) M doesn’t have a pure point spectrum when M is complete with
K > 0 (K is the sectional curvature). Escobar [Es] demonstrated this
when M is rotationally symmetric outside a compact set.

(2) M does not have an infinite number of eigenvalues when M is
complete, simply connected with — C < K < — 1.

(3) M has an infinite number of eigenvalues when M is a complete
locally symmetric space with finite volume.

The validity of these conjectures are unknown even whenn = dim M = 2.
It is known that conjecture 3 is true assuming M is the quotient of a
symmetric domain by an arithmetic subgroup.

It is especially interesting to understand the case A = 0. In particular,
when does M have nonconstant harmonic functions with desired properties,
and if so, how many are there ?

In [Y5], Yau proved that there are no non-constant LP-harmonic functions
on any complete, noncompact manifold for 1 < p < + oo. In particular,
there are no L*-harmonic functions besides constants. Because of this, we
will concentrate our attention on positive or bounded harmonic functions.
The basic problem we would like to discuss here is to give geometric
conditions on M so that the Liouville theorem is either true or false.

A result due to Yau [Y7] says that if the Ricci curvature is nonnegative,
then the only positive harmonic functions are the constants. Such manifolds
may be called strongly parabolic.

Very recently, P. Li and Tam [LT] investigated the situation where M
has nonnegative sectional curvature outside a compact set. He classified all
of the bounded or positive harmonic functions on M. It would be nice if
one could replace the above condition by nonnegative Ricci curvature. By
using Yau’s argument, Donnelly showed that the space of positive harmonic
functions is finite dimensional. Such manifolds may be called parabolic. 1t
will be interesting to prove that manifolds which are uniformly equivalent
to a complete manifold with non-negative Ricci curvature are parabolic.

In the other direction, one would like to prove that many manifolds are
hyperbolic, i.e., non-parabolic. Anderson [A] and Sullivan [Su] were able to
solve the Dirichlet problem for simply connected complete manifolds with
curvature bounded by two negative constants. Later, Anderson and Schoen
[AS] did some beautiful work on positive harmonic functions on these
manifolds. They prove the existence of a C*-homeomorphism between
the Martin boundary and the sphere at infinity S(co). The identification of
the Martin boundary with the sphere at infinity allows us to begin a
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systematic study of positive harmonic functions. One can prove that every
positive harmonic function u on M can be obtained by the following
formula,

u = J K(x, Q)du, ,

S(o0)

where p is the unique positive Borel measure on S(o0), and K(x, Q) is the
Poisson kernel. This is the Martin representation formula. Anderson and
Schoen were able to study the regularity of K.

One can define harmonic measure on the Martin boundary. It is an
important question to study the regularity of this measure. Perhaps a lot of
classical facts on harmonic measure for bounded domain have analogues here.

It is not known how to carry through the above theory when the
curvature is unbounded from below. It is also not known what the Martin
boundary looks like when the curvature is only non-positive. For the case
of symmetric domain, there is a well-developed theory. It would be nice to be
able to understand symmetric domains through this general framework.

Another important question is to prove that a non-compact complete
manifold M is hyperbolic if lim A,(Q;) > 0 where Q; is a compact exhaustion
of M.

There are many interesting questions concerning harmonic functions on
complete manifolds. A function has polynomial growth of degree k if
| /] < C(1+7)*¢ for any ¢ > 0, where r = d(x, p) and p is a fixed point
on M. A function has linear growth if it satisfies the previous inequality
for k = 1. One would like to know a bound on the dimension of harmonic
functions with linear or polynomial growth on a complete Riemannian
manifold with non-negative Ricci curvature. If M is Kéhler, the holomorphic
functions with polynomial growth form a ring. In this case, one would like
to know when this ring is finitely generated, and when the generators may
be chosen to have linear growth. This question is very much related to the
following conjecture in Kédhler geometry. A complete non-compact Kihler
manifold with positive bisectional curvature is biholomorphic to C".

Siu-Yau [S-Y2] and Mok-Siu-Yau [MSY] made an attempt to settle this
questions by using the L*-theory of Hormander. However, the assumption was
rather strong. The method was to construct holomorphic functions with slow
growth. Recently, Li-Yau [L-Y3] used arguments from elliptic theory to
study linear growth holomorphic functions. They made the assumption
that the volume growth of the manifold is polynomial with degree 2n.
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In the other direction, it is a major problem to construct bounded
holomorphic functions on a complete simplete connected Kahler manifold
with strongly negative curvature. In fact, one would like to prove that it is
biholomorphic to a bounded domain in C" or at least that bounded holo-
morphic functions separate points of the manifold. It looks like the problem
is very much related to a possible generalization of the classical Corona
problem to higher dimensional bounded domains.

§2. YAMABE'S EQUATION AND CONFORMALLY FLAT MANIFOLDS

Yamabe’s equation is a nonlinear elliptic scalar equation related to the
conformal deformation of a metric on a Riemannian manifold. Given a
metric g, with scalar curvature R,, let g be a metric pointwise conformal
to go. Then g = u*""2g,, where u > 0 is a smooth function. The scalar
curvature R of g is given by the equation

(1) Lou = — yoAou + Rou = Ru*,

4(n—1) n+ 2

where A, is the Laplacian with respect to gq, vo = 5 o = )
n— n—

and n = dim M.

In [Ya], Yamabe asserted that there is always a solution u > 0 to
equation (1) with R = const. That is to say, any metric on a compact
Riemannian manifold is conformally equivalent to a metric with constant
scalar curvature. However, his proof contained an error. This was discovered
by Trudinger. Moreover, Trudinger [Tr] showed that (1) could be solved
for R = const. provided the lowest eigenvalue A; of the linear operator L,
is nonpositive.

Let Y be the functional on L% (M) defined by

2
ot 1
Y = J(yIVOu |2 + Rouz)/<JRu°‘“>
M

M

where V, is the gradient with respect to the metric g,. By a simple
computation, one finds that (1) is the Euler-Lagrange equation for the
functional Y.

Aubin [Aul] gave a sufficient condition for Y to have a minimum in
L%(M). It can be described as follows. Fix R = 1 and let o(g,) be the

S
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minimum of Y, A, = o(§) where 4 is the standard metric on the unit
sphere S™. Then

(a) o(gy) < A, for any metric g,,
(b) If o(gy) < A,, there exists a smooth function u minimizing Y.

Since u is a solution to (1) with R = const., Yamabe’s conjecture translates
to whether or not o(g,) < A, for metrics not conformal to the standard
metric on S”. Aubin [Aul] proved that if n > 6 and g, is not conformally
flat, then o(g,) < A,. The argument of Aubin is local. He constructed a
function supported in a small open set which is radial. Thus, the remaining
cases are when n = 3,4 or 5 and when M is locally conformally flat
forn = 6.

Recently, R. Schoen [Sc] gave a complete solution to Yamabe’s conjecture.
His argument is global and uses the generalized positive mass theorem
([ScY5]), Schoen gave a higher order estimate for Y(u®) for a suitable
sequence {u°} in the case where M is conformally flat or n = 3. The case
n > 4 requires perturbation arguments using again the positive mass theorem.

We may also consider the same questions for complete, noncompact
manifolds. Recently, Schoen announced some new results. A particularly
interesting result is as follows. If M has the topological type of S* — {p;, ..., P }
for k > 1, then one can find a metric with scalar curvature equal to one in
each conformal class of complete metrics.

Another topic related to the Yamabe conjecture is the study of (locally)
conformally flat manifolds. A theorem of Kuiper [Ku] says that for any
conformally flat, simply connected manifold M, one can find an open
conformal mapping from M into the standard sphere which is unique up to a
conformal diffeomorphism of S”". This map is called the developing map.
We denote its image by Q and let A = §" — Q.

Schoen and Yau [ScY6] obtained results relating the Hausdorff dimension

of A to the sign of the scalar curvature of M. The results can be stated
as follows.

1. If M is a complete (possibly compact) conformally flat manifold with
positive scalar curvature R > 1, then the developing map is a conformal
diffeomorphism into S". Hence, conformally, M is covered by an open
subset of S”. The argument here uses crucially the Green’s function of
the conformal operator.

2. If M is a compact conformally flat manifold with positive scalar

curvature, then LA 1(A) = 0. Here y, is the k dimensional Hausdorff
measure.
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3. If M 1s a compact Riemannian manifold covered conformally by
Q < §" with u%_l(/\) < o0, then M admits a metric with scalar

curvature R > 0 in the same conformal class. It is conjectured that if
R > 0, then “‘%—1(/\) < o0. '

The basic idea is that by using the developing map, we can reduce the
problems to the study of a scalar equation, namely the Yamabe equation
on an open subset of S". The remaining parts of the proofs are relatively
easy. By using the same technique, Schoen and Yau proved that for a
compact conformally flat manifold with positive scalar curvature, (M) = 0
for 2 < i < n/2. Some of their results are also valid for complete manifolds.

§ 3. HARMONIC MAPS

Harmonic maps are important objects in geometry and analysis. They
appear naturally as critical points of an energy functional of the appropriate
function space. Harmonic maps reflect a lot about the geometric properties
of manifolds.

Given Riemannian manifolds M and N, consider the mapping space
C"(M, N). One problem is to find nice (i.e., canonical) representatives in this

space. For a map f: M — N we define its energy by E(f) = J| df |2dV .
M

A harmonic map is a critical point of this energy. The first question is that

of existence, uniqueness and regularity.

1. EXISTENCE, UNIQUENESS AND REGULARITY

The first major work was done by J. Eells and L. Sampson [ES].
They proved the existence of a harmonic map in any homotopy class in
the case where M and N are compact manifolds with K, < 0. They deformed
an arbitrary map through a nonlinear heat equation. By passing to the limit,
with the appropriate estimates, one obtains a harmonic map in this way.
In fact, harmonic maps are unique in their homotopy classes if Ky < 0
and rank > 2 [Hr]. Later, R. Hamilton [Ha] using the same method as in
[ES] together with delicate estimates, settled the Dirichlet problem when M
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is a manifold with boundary. This type of argument breaks down when we
drop the non-positivity condition. For example Eells and Wood [EW1] have
shown that there does not exist a degree 1 map from a 2-torus to a
2-sphere.

Instead of looking for harmonic maps in a homotopy class, one can
look for harmonic maps with the same action on m;. We say that two maps
f,g: M — N are m;_ equivalent if f, = g,: 7, (M) — n;(N). When M 1s a
Riemann surface, L. Lemaire [Lm] proved the existence of a regular,
energy minimizing harmonic map in the class of n,-equivalent maps.

Another treatment of this problem was given by Sacks-Uhlenbeck [SaU]
and R. Schoen-S. T. Yau [Sc-Y1]. Schoen-Yau considered the function space
L% and showed that for ue Li(M, N), u, is well-defined and preserved
under the weak limit. Using the class {f e LY(M, N)| f, = (fo),} Which is
weakly closed, combined with the regularity of minimizing harmonic maps
from a surface, one can show the existence of a smooth harmonic map
in this class.

Schoen-Yau’s argument could be generalized to higher dimensions by
restricting the map f to the two skeleton of M. (This was also observed
by White [Wh].) It is reasonable to expect that one can produce an energy
minimizing harmonic map whose action on m,(M) has some resemblance to a
given map.

For minimizing harmonic maps, R. Schoen and K. Uhlenbeck [ScU1, 2]
have done fundamental work. By delicate use of comparison maps, they
showed that the Hausdorff dimension of the singular set of energy minimizing
harmonic maps is of codimension at least three. Their theorem can be used
to recover the former theorems of Eells-Sampson and Sachs-Uhlenbeck.

2. NONCOMPACT MANIFOLDS

The theory for harmonic maps between noncompact manifolds is more
complicated than when the manifolds are compact. One reason is that when
we choose a minimizing sequence of maps, their energies may not be
concentrated in a bounded region. On the other hand, one hopes that this
can be prevented by making suitable topological assumptions on the
manifolds.

For L?-harmonic maps, i.e., weakly harmonic maps with finite energy,
one can sometimes prove existence by making geometric or topological
restrictions. When N is a manifold with nonpositive curvature, Schoen and
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Yau [Sc-Y2] have generalized Eells-Sampson’s [ES] and Hartman’s [Hr]
work. They showed that if N is a compact manifold with nonpositive
sectional curvature, M is complete and f: M — N has finite energy, then f
1s homotopic on compact sets to a harmonic map with finite energy.

Later [Sc-Y3], by explicitly computing the hessian of the distance function
d* considered as a function on N x N, showed that the set of harmonic
maps in a homotopy class is connected (see [Hr] when M is compact)
and can be immersed in N as a totally geodesic submanifold. Moreover,
it 1s a point if ©;(N) has no nontrivial abelian subgroup and the image of M
is neither a point nor a circle. Here we assumed M has finite volume and
the harmonic maps have finite energy. (When N is locally symmetric,
this is also done by Sunada.) They also applied the theory of harmonic
maps to study finite groups acting on a compact manifold.

3. RiGipity

It is natural to ask if harmonic homotopy equivalences are isometries
when M and N are both negatively curved Einstein manifolds with dimension
> 3. This is based on the uniqueness of harmonic maps into negatively
curved manifolds and the Mostow rigidity theorem. If this is true, it would
give another proof of the Mostow rigidity theorem in the case of rank one
symmetric spaces.

It is a question for negatively curved manifolds M and N, whether a
harmonic homotopy equivalence is a diffeomorphism or not. Schoen-Yau
[Sc-Y4] and Sampson [Sa] have proved this when M and N are Riemann
surfaces. If we only assume non-positivity of curvature, Calabi has constructed
a counterexample when N is a torus.

By minimizing the energy among diffeomorphisms, combined with a
replacement argument, Jost-Schoen [JS] constructed a harmonic diffeo-
morphism between surfaces of the same genus without any curvature
assumption. (Hence it generalizes a theorem of Schoen-Yau where one assumes
the image has non-positive curvature.)

There are plenty of examples of harmonic maps when M and N are
Kéahler manifolds. In particular, holomorphic maps are harmonic. On the
other hand, it was conjectured by Yau that when N has negative curvature,
harmonic maps are holomorphic. In attempting to settle this conjecture of
Yau, Siu [S2], proved that a harmonic map f is either holomorphic or
antiholomorphic provided N is strongly negatively curved and the rank
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of f is not less than 4 at some point. The assumption of N being strongly
negatively curved is similar to the negativity of the curvature operator.
One expects to be able to weaken this condition. But, if one only assumes
negative bisectional curvature, the analog of Siu’s theorem is false. This is
because for M = B"/T" embedded in CP" as a regular subvariety, any
hyperplane section of M has negative bisectional curvature and it is not
rigid in general.

Recently, Jost-Yau [JY1, 2] looked at the complex structure of complex
surfaces M homotopy equivalent to N = D x D/T" where I' is irreducible.
Let f: M — N be a harmonic homotopy equivalence where M is Kahler.
By analyzing the foliation f* = const., they showed that the universal cover
of M is biholomorphic to D x D.

Subsequently, Mok [Mk2] generalized the theorem of Jost-Yau to
arbitrary dimension. He also considered the foliation studied by Jost and Yau.

A generalization of the rigidity theorem to quasi-projective manifolds was
made by Jost-Yau. They study the complex structure over Hermitian
symmetric spaces with finite volume.

For a compact manifold M with strongly nonpositive curvature, one likes
to prove M is either locally Hermitian symmetric or that the complex
structure is rigid. Sampson [Sa] treated the case where M is Kahler and N
is a Riemannian manifold with Hermitian negative curvature, that is
RYuvn*s! < 0. By applying Bochner’s technique in essentially the same
way as Siu, he showed that all harmonic maps between M and N are
holomorphic. Using Sampson’s result, combined with the existence theorem
for harmonic maps, we can easily obtain restrictions on the fundamental
group of a Kéhler manifold.

Another interesting situation is when M and N are Kihler manifolds and
N has positive sectional curvature. Is it true that any minimizing harmonic
map 1s holomorphic or antiholomorphic ? This is only known when M = CPL.
Also, if we can prove this assuming in addition that N is an irreducible
symmetric space, then the conjecture that an irreducible symmetric Kihler
manifold has only one Kéhler structure is probably true. Notice that for the
reducible Kéhler manifold CP* x CP’, there exists infinitely many complex
structures which are Kéhler.

4. HARMONIC MAPS IN PHYSICS

The classification theory of harmonic maps from surfaces to Riemannian
manifolds, especially symmetric spaces, is of interest to mathematical physi-
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cists. The simplest symmetric spaces are the real and complex projective spaces.
In [Cal], Calabi gave an effective parametrization of isotropic harmonic
maps from surfaces into real projective space. Following Calabi and the work
of physicists, Eells and Wood [EW2] set up a bijective correspondence
between full isotropic harmonic maps ¢: M? — CP" and pairs (f, r) where
f:M?* - CP" is a full holomorphic map and 0 < r < n is an integer
(see [Cal] and [EW2] for definitions). Their idea is based on the fact
that if ¢: M — CP” is a full isotropic map, then for some r,s,7r + s = n,
the map

f=[o@D ¢@-dDY 'dDD ¢@ D D)

1s full holomorphic. Here D' and D” are the (1,0) and (0, 1) components
of the covariant derivative.

Later, Bryant ([Brl], [Br2]) treated conformal harmonic maps from
surfaces into S°® and S*. Inspired by the twistor construction of Calabi and
Penrose, he considered a restricted class of conformal harmonic maps,
namely superminimal surfaces. (Note that Hopf already studied these surfaces
in its primitive form). He established a one-to-one correspondence between
superminimal surfaces and curves horizontal in CP?® with respect to the
twistor fibration CP3 5 S* By constructing such a curve, Bryant showed
that any Riemann surface be conformally immersed as a minimal surface
in S*. For the construction in a general 4-manifold, see [ESa].

Recently, K. Uhlenbeck [U3] has dealt with the space H of harmonic
maps from a simply-connected 2-dimensional domain into a real Lie group
Ggr (which is the chiral model in the language of theoretical physics).
She studied the algebraic structure of the manifold H and its relation with
Kac-Moody algebras.

Another uncultivated area in harmonic maps 1s the classification of
harmonic maps from a surface into a Ricci flat Kéahler three-fold. The
interest in this comes from the study of superstring theory in theoretical
physics.

§4. MINIMAL SUBMANIFOLDS

The study of minimal submanifolds is another important topic in diffe-
rential geometry. In this section we will mainly consider minimal surfaces
in compact three manifolds. The minimal surfaces will be assumed to be
regular and embedded, except when otherwise indicated.
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In general, it is not too difficult to find an immersed minimal surface
in a manifold M if the topology of M prevents the surface from contracting
to a point. Additionally, one can sometimes prove the embeddedness of this
surface. For example, Meeks-Yau [MY] proved that if m,(M) # 0, then there
exist embedded minimal S?’s and RP?’s in M which span m,(M) as a
n,(M)-module. This theorem can be used to study finite groups acting on
a three dimensional manifold.

It is relatively hard to find minimal surfaces by using the “mountain
pass principle”. Also, it is also unclear how to apply the Ljusternik-
Schnirelmann theory to find many minimal surfaces with restricted topological
type. Sacks-Uhlenbeck [Sa-U] used a perturbed energy combined with
the “Morse theory” to show that any n-dimensional manifold, with m(M) # 0
for some k, contains at least one immersed minimal S? This work
of Sachs-Uhlenbeck was used by Siu-Yau to settle the Frankel conjecture
in Kiahler geometry. Recently a similar type of argument was used by
M. Micalif [Mc] and D. Moore [MD] to give a proof of the classical
pinching theorem in Riemannian geometry. In fact, they need weaker pinching
assumptions.

In his thesis, Pitts [Pi] introduced the notion of “almost minimizing
varifold”, which roughly speaking is a varifold close to a locally minimizing
varifold. Using the nontriviality of the homotopy groups of the integral
cycle groups [Al], he proved that any manifold of dimension < 6 supports a
nonempty, compact, embedded smooth minimal hypersurface. His idea was to
apply the mini-max principle to maps from S! into integral currents,
which are nontrivial under the isomorphism set up by Almgren [Al].
Since this construction is so general, we do not obtain any topological
information about the minimal hypersurface. Recently, R. Schoen-L. Simon
[SS] generalized Pitts’ work. They showed that any manifold admits a minimal
hypersurface with the singular set of Hausdorff codimension at least seven.

On certain three manifolds, R. Schoen and the author can give an
estimate of the genus of the minimal surface constructed by Pitts. The
argument was done a long time ago. Since this has not been published yet,
we give an outline of the proof here.

Let M denote the 3-manifold, R, R;; and R;;; its scalar, Ricci and
sectional curvature. Let ¥ be the minimal surface constructed by Pitts;
K, A, and e; the Gaussian curvature, second fundamental form and normal
vector field of X. By Pitts’ construction, we know that the minimal surface
must have index 1. This condition is equivalent to the nonnegativity of the
second eigenvalue of the operator L, where
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L= —A—(Ricles) + || 43

and A is the intrinsic Laplacian of the surface . In other words,

J(RiC(es) + 1 A%)f*dv < fIVflz'dv

z

for all functions f orthogonal to the first eigenfunction u;, .

We are now going to use the concept of conformal area, which is a
conformal invariant, to give an upper estimate of the second eigenvalue A,
in terms of M and the genus of X.

Let F: X — S" be a conformal immersion into the unit n-sphere. Then F
composed with any conformal transformation g € Conf(S”) is also a conformal
immersion. Since u, is a positive function, by using the argument in [LY2],
one can find g, € Conf(S”) such that g, F L uy, i.e.,

J(gooF)-uldv =0.
b

Now consider the new map g,° F, which we will also denote by
F.F = (f,). Xf? = 1. Since X has index 1,

J(RiC(es) + 1A ]2)fPdv < JI Vfil*dv
z z

and by taking the summation,

J(RiC(eg,) + [ A4 Z)dU < jZ | Vfil?-dv.

z

Since F is conformal, JZ | Vfi|2%dv = 2 Area(F(Z)). Hence
z

2inf sup Area(g o F(X)) > J(Ric(eg,) + | Al ?)dv.
F g e Conf(S")
z
The term on the left hand side is a conformal invariant, V (n, ), called the
n-dimensional conformal area; its infimum over all n is V(X), the conformal

area of the surface X.
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By using the branched covering of % over S2, one can show V()

<4 <g_(22_) + 1) n, where g(Z) is the genus of X. Hence

8 (g(_fl + l)n > {(Ric(eg) + | Al ?)dv.

z

On the other hand, since Ric(e;) + | 4 | > = Ric(e;) + Ric(e,) — 2K, if we
assume M has nonnegative Ricci curvature, then

J(Ric(e3) +141% = — f2 - Kdv = 4n(29(Z)—2).
s s

Combining the previous two inequalities, we have
z
81 (g(z—) + 1) > 4n(29(X)—2).

Hence ¢g(X) < 4, which is the required upper bound for the genus of Z.
Actually, one should be able to improve this estimate since the estimate on
V(M) is not sharp. Can one generalize the arguments here to study
minimal surfaces with higher index?

The reason one would like to estimate the genus of minimal surfaces
is because they contain information about the ambient manifold M. For
example, an embedded minimal surface in a 3-manifold M with positive
scalar curvature provides a good candidate for a Heagard splitting of M.
Moreover, if M is a homotopy 3-sphere and the genus of this surface is
less than or equal to 2, then M is actually a sphere. Thus, if one can
construct a minimal surface which provides a Heagard splitting and find
a good bound for its genus, then one has made substantial progress towards
the Poincaré conjecture.

An important problem in minimal surface theory is the existence of more
than one minimal surface (or even infinitely many) in a manifold. An
analogous situation is that of closed geodesics. On a 2-sphere, there exist at
least three closed, embedded geodesics. An ellipsoid has exactly three, so
this estimate is sharp.

For the three-sphere, one hopes to show that there exist at least four
minimal two-spheres. One would also like to know if, for an ellipsoid
centered at the origin in R*, the only minimal 2-spheres are the four
coming from the intersections with the coordinate 3-spaces.
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Using an idea of Pitts, Smith and Simon [Sm-S] were able to show that
any 3-sphere supports an embedded 2-sphere. They considered degree one
mappings F:1 x S? — §® such that on each slice (except the ones at the
ends), F(t,"): S* - S* is an embedding. They showed that by taking the
mini-max

min max Area(F(t, $?)),
F te[0, 1]
one obtains an embedded minimal S?. Can one do similar theorems for
homotopic spheres?

Another problem is to understand the space of minimal surfaces with
fixed genus ¢ in three-manifolds with positive Ricci curvature. Recently,
Choi and Schoen [CS] proved that this space is actually compact for any
fixed genus g. We remark that this compactness is new even for the standard
sphere. Their proof is based on an upper estimate of the area of a
minimal surface X, due to Choi and Wang [CW]. The area bound will
then control the convergence of the minimal surfaces. Knowing this com-
pactness theorem, there are still several interesting questions. For example,
do there exist continuous families of minimal surfaces when M has no
symmetry ? When M is symmetric, do all of these continuous families come
from the isometry group?

Estimates for the first eigenvalue are always interesting, especially for
minimal surfaces. For minimal surfaces in the standard 3-sphere, the
coordinate functions are eigenfunctions with eigenvalue 2. The author
conjectured that 2 is actually the first eigenvalue in this case. In an attempt
to prove the conjecture, Choi and A. N. Wang [CW] showed that for a
minimal surface in a 3-manifold with Ricci curvature not less than 2, the
first eigenvalue A, is at least 1. In terms of the conformal area of the
minimal surface, Li and Yau [LY2] obtained the following upper bound
for A,,

2 conf area(X,) S M)
=z N\~y) -

area(X,)

It is in this way Choi-Wang obtained an upper bound of the area.
It would be interesting to generalize this inequality to higher eigenvalues and
also study higher eigenvalues of minimal surfaces.

Let M be a homotopy 3-sphere. If M is not a 3-sphere then it contains
a fake 3-disk. Put a metric which is asymptotically a product near the
boundary. If we minimize area among all S*’s isotopic to the boundary,
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then the limiting S* will enclose a fake disk. Take a Jordan curve on this
S? so that it decomposes the S? into two regions with equal area. Then
one expects this Jordan curve to bound an embedded minimal disk in the
fake disk. If one can achieve this, one can shrink the S? more and obtain
a contradiction which will give a proof of the Poincaré conjecture.

In conclusion, minimal surface theory is surprisingly successful in being
applied to three dimensional topology. I believe that a more thorough study
of minimal surfaces will reveal more secrets about three manifolds.

§ 5. KAHLER GEOMETRY

In the following we consider four basic topics in complex geometry.
1. Existence of complex and almost complex structure.

2. Existence of Kdhler and algebraic structures on complex manifolds.
3. Uniformization problems and the parametrization of metrics.
4

Analytic objects over complex manifolds, e.g., analytic cycles, holo-
morphic vector bundles, etc.

We will divide this section into four parts corresponding to these topics.

1. COMPLEX AND ALMOST COMPLEX STRUCTURES

Let M be an even dimensional oriented differentiable manifold. The
existence of an almost complex structure J is equivalent to a reduction of
the structure group of the tangent bundle from GL(2n, R) to GL(n, C).
This is basically an algebraic problem and is well understood.

However, the question of when an almost complex structure is homotopic
to an integrable almost complex structure (i.e, one which comes from a
complex structure) is much harder. When n = 1, every M? admits an almost
complex structure and every such structure is integrable and algebraic.
For n = 2, ven de Van [V1] gave several examples of compact M*’s
which admit an almost complex structure but not a complex structure.
His argument is based on the computations of the first and second Chern
classes. When n > 3, there are no such examples known so far. In particular,
we do not know whether or not the almost complex manifold S® admits
a complex structure. This problem has been open for a long time.

The topology of complex surfaces is not well understood. By the works
of Donaldson, one may believe that every simply connected four dimensional
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compact manifold is the connected sum of algebraic surfaces. For nonsimply
connected algebraic surfaces, it is more difficult to speculate. The basic
problem is to find a way to construct complex structures. Perhaps one can
ask the following question. Suppose M is a compact almost complex
manifold satisfying x(M) = 3t(M) and covered topologically by R* (Here
x(M) 1s the Euler number and t(M) is the index of M.) If every abelian
subgroup of m;(M) is infinite cyclic, does M admit a complex structure so
that M is covered holomorphically by the unit ball in C2? The Lefschetz
theorem may be useful in the above question.

2. KAHLER AND ALGEBRAIC STRUCTURES

Let M" be an n complex dimensional compact manifold with complex
structure J. The first question is: When is J Kahlerian, ie., (M, J) admits
a Kahler metric? Harvey-Lawson [H-L] gave an intrinsic characterization
of the Kéahlerian condition if and only if M carries no positive currents
which are the (1, 1)-components of boundaries. Hodge theory gives a lot of
necessary conditions for complex manifolds to be Kahler. In particular,
their even Betti numbers must be positive and their odd Betti numbers are
even. Also, when (M, J) is Kéhlerian, its rational homotopy type is deter-
mined by its rational cohomology, see Deligne-Griffiths-Morgan-Sullivan
[DGMS].

Now suppose M is a Kahler manifold, i.e, M has some Kaihlerian
complex structure. When does M admit a non-Kahlerian complex structure ?
When does M have a unique complex (or Kahlerian) structure ?

When n = 2, every compact complex surface with even first Betti
number is Kédhlerian. (This follows from the classification of Kodaira because
Miyaoka [M1] and Siu [S1] proved respectively that elliptic surfaces with
even first Betti number and K —3 surfaces are Kihlerian. From this one
concludes that among the seven classes of surfaces in Kodaira’s classification,
the first five are Kahlerian for every complex structure. The remaining two
classes of surfaces have odd first Betti number and hence admit no Kéihler
metrics. In particular, one sees that on a Kéihler surface M2, all complex
structures on M? are Kihlerian.)

When n > 3, the situation is much more complicated. Calabi [Ca3]
proved that there is a non-Kédhlerian structure on X x T¢&, where X is a
hyperelliptic curve with genus g = 2k + 1, k > 0. On the other hand, we
know that the only Kéihlerian structures on X x Tg is the standard one.
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Are there non-Kihlerian complex structures on compact locally irreducible
Hermitian symmetric spaces which are covered by bounded domains?

Yau made the following conjecture: Suppose M"(n>2) is a compact
Kihler manifold with negative sectional curvature; then there exist a unique
Kihlerian complex structure. This statement is false if the condition “negative
sectional curvature” is replaced by “negative bisectional curvature”.

For a locally Hermitian symmetric space M", Calabi and Vesentini [CV]
proved that H)(TM) = 0 when n > 2. Siu [S2] partially settled Yau’s
conjecture by proving the following theorem: If M" is a compact Kahler
manifold with strongly negative curvature, then the Kdhler structure on M
is unique.

Now suppose that M is Kéhler and diffeomorphic to a compact quotient
DT of the unit ball D = C". Prior to Siu’s theorem, Yau [Y1] proved
that the Kihler structure on M is unique by using the following Chern
number inequality :

(=1)'n

2 (17 et ey > et

where ¢;(M) < 0. The question is: When is the complex structure on M
unique ? This is not known for n > 3. The only known result is that every
complex structure on M is hyperbolic in the sense of Kobayashi, i.e., there
are no non-constant holomorphic maps from C to M.

Inequality (2) also gives the uniqueness of the Kahler structure on CP”.
For n odd this result is due to Hirzebruch and Kodaira [HK]. We remark
that in these kinds of rigidity problems, harmonic maps seem to be very
useful. In particular, modifications of Siu’s d0-Bochner-Kodaira would hope-
fully be useful (see Siu [S2] and Sampson [Sa]).

For the deformation of Kdihler structures to algebraic structures, we
have the well-known Kodaira conjecture: Every compact Kéahler manifold
can be deformed to an algebraic manifold. This is known when n = 2;
in fact, Kodaira [Ko] proved that every compact Kéahler surface can be
deformed to an algebraic surface. The Kodaira conjecture is not known for
n > 3. In particular, if M" is a non-algebraic compact Kahler manifold and
TM is its holomorphic tangent bundle, is H(TM) # 0? Since a compact
Kahler manifold with h*° = 0 is algebraic, a related question is: If M is
Kiéhler, does h*° # 0 imply HY(TM) # 0? (It is easy to construct a map
from H* °(M) to HY(T(M)).)
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3. UNIFORMIZATION

In the one complex dimensional case, we know that every Riemannian
surface is one of the following:

CP': the Riemannian sphere, which has a unique complex structure,
E: an elliptic curve, which is covered holomorphically by C,

2,,(g>1): a surface covered holomorphically by the unit disk D = C.

In higher dimensions, many results and classifications come from trying to
generalize the above classification. One wants to know under what geometric
conditions is M biholomorphic to a higher dimensional analogue of CP!,
E or 2, (g>1). This corresponds to the manifold being elliptic, parabolic or
hyperbolic. As is usual, uniqueness will be in the sense of biregular,
birational or unirational. In the non-compact case, one basically tries to tame
infinity and compactify M as a Zariski open set of some projective algebraic
variety M so that M = M\ {subvariety}.

A. Elliptic manifolds

Frankel [Fr] conjectured that any compact Kéahler manifold with positive
bisectional curvature is biholomorphic to CP"; he proved this when n = 2.
Later, Mori [Mol] and Siu-Yau [SY1] proved the general case independently.
In fact, Mori proved the Hartshorne conjecture under the weaker assumption
that M has an ample tangent bundle.

The following is conjectured in [Y6]. If M is a simply connected compact
Kihler manifold with nonnegative bisectional curvature, then M is isometric
to a product of Hermitian symmetric spaces and complex projective spaces
(not necessarily with Fubini-Study metric). ,

S. Bando [B1] proved this when n = 3. Mok and Zhong [MZ] proved
that if, in addition, M is FEinstein then M is biholomorphically isometric
to a Hermitian symmetric space.

Recently, H.-D. Cao and B. Chow [CC] proved the conjecture assuming
in addition M has nonnegative curvature operator. Even more recently,
Mok claimed to prove the complete conjecture.

Let M" be a compact Kihler manifold with positive Ricci curvature
(this equivalent to c,;(M) > 0). We have the following questions:

(1) Under what condition is M" unirational? Namely, does there exist a
rational map from CP" to M"?
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(2) Are there only a finite number (in the topological sense) of n-dimen-
sional algebraic manifolds with positive first Chern class ?

(3) Is it true that ¢;(M)" is bounded by a constant depending only on n?

For n = 2, M? is a del Pezzo surface and (1), (2) and (3) are true. For
n = 3. M®is a Fano 3-fold, i.e., an algebraic 3-manifold with ample anti-
canonical bundle. Mori and Mukai [MM] give a complete classification of
Fano 3-folds with second Betti number b,(M) > 2. In fact, they proved that
there are exactly 87 types of Fano 3-folds with b,(M) > 2, up to deforma-
tion; moreover, a Fano 3-fold with 6 < by(M) < 10 is isomorphic to
CP! x S;;_j,un where S, denotes the del Pezzo surface of degree d.
The Fano 3-folds with b, = 1 are called Fano 3-folds of the first kind and
were classified by Isokovskih [Is]. Using the above classification, questions (2)
and (3) are easily checked to be true, but question (1) is not completely
known even for n = 3. Using certain properties of conic fiber spaces over
CP?, one can prove that some types of Feno’s 3-folds, such as cubic
3-folds in CP* are unirational. One does not know if every quartic 3-fold
in CP* is unirational; see the survey by Beauville [Be] for further details.
By the way, before the classification of Mori and Mukai, S. M. L’vovskii [Lv]
proved that c¢;(M)® < ¢,(CP?) = 64 for Fano 3-folds by Riemann-Roch
theorem and a detailed study of families of rational curves C with
(=K, C) = 4. It is interesting to study the families of rational curves in
Fano manifolds. Finally, for n > 4, the validity of (1), (2) and (3) are not
known. Mori-Mukai recently proved M is uniruled. One more problem is if
M" is rationally connected. It is not hard to see that rational connectedness
is stronger than uniruledness, but weaker than unirationalness.

Recall that Gromov’s theorem [Gr] says that there is a constant c(n)
depending only on n such that ) b(M") < c(n) for any Riemannian manifold
=0

M" with nonnegative sectional curvature. When M is Kéhler, can one replace
the condition “nonnegative sectional curvature” by “positive Ricci curvature” ?
One would also like to understand algebraic manifolds with Kodaira
dimension K(M) = — oo, ie, HY(M, K™ = 0 for each m > 0, where K
denotes the canonical line bundle. When n = 2, they are either rational
surfaces or ruled surfaces.

B. Parabolic manifolds

Suppose M" is a compact Kdhler manifold which can be holomorphically
covered by C" Is it true that M" can be also covered by the complex
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torus T'¢? For n = 2, Iitaka [Ii] proved that this is true. When n > 3,
it is not known. Even in the case n = 2, the Kihler condition cannot be
dropped (otherwise there exist counterexamples).

Let M" be a noncompact complete Kahler manifold with positive sectional
curvature; is M biholomorphic to C"? This question has been open for a
long time. Siu-Yau [SY2] and Mok-Siu-Yau [MSY] proved the following.
Let M be a complete noncompact Kéhler manifold, pe M and r(x)
= dist (x, p). Then

(a) If n, (M) = 0, — A/r**® < K,; < 0 for some ¢ > 0, then M is biholo-
morphic isometric to C".

(b) If | Ky | < A(1/r*)**® and A small enough, then M™ is biholomorphic
to C" If in addition K, < 0, then M” is isometric to C" with the
flat metric.

(c) If Ky = 0,0 < R < A/r*"® and vol (B(p, r)) = Cr?", then M is biholo-
morphic to C".

Here A and C are any positive constants; K,, and R denote the sectional
and scalar curvatures of M, respectively.

Mok [Mk1] improved these results by weakening the bound 1/r
to 1/r®. More precisely, he proved the following:

(d) If M has positive bisectional curvature, 0 < R < A4/r* and vol (B(p, r))
> Cr*" for some positive constants 4 and C, then M is biholomorphic
to an affine algebraic variety X.

Let M” be an algebraic manifold with Kodaira dimension K(M) = 0,
ie., there exists my > 0 such that dim H°M, K™) > 0, and for all m > 0,
dim H(M, K™ < C for some C independent of m, where K denotes the
canonical line bundle. Can one classify these manifolds ? Note that ¢;(M) = 0
is a special case of K(M) = 0. When n = 2, there are exactly two classes
of algebraic manifolds with Kodaira dimension K(M) = 0, quotients of
abelian varieties or K —3 surfaces. For n > 3, this 1s unknown; the case
n = 3.would be important for physics in view of the superstring theory.
It is not known how to classify the topology of threefolds with ¢, = 0.
Are there only finite number of such manifolds? Do they always admit
rational curves if n;(M) = 07?

2+g

C. Hyperbolic manifolds

If M" is an algebraic manifold with negative sectional curvature, can M
be holomorphically (branched) covered by a bounded domain Q = C"?
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A weaker question is: If M is a simply connected Kéahler manifold with
negative sectional curvature, are there enough bounded holomorphic functions
on M to separate points and give local coordinates? So far, no non-constant
holomorphic functions have been proved to exist on M even under the
assumption that M covers a compact manifold M.

B. Wong [Wo2] proved that if Q = C” is a bounded domain with
smooth boundary and Q covers a compact manifold, then Q is the ball
P. Yang [Yg] proved that if Q is a bounded symmetric domain in C" with
rank greater than one, then there does not exist any Kédhler metric on Q
with holomorphic bisectional curvature bounded between two negative
constants. In particular, Q cannot cover any compact Kahler manifold with
negative bisectional curvature. Hence if a bounded domain Q covers a compact
Kéhler manifold with negative curvature, it must be rather nonsmooth.

Recently, Mostow and Siu [MS] constructed a Kihler surface M? with
negative sectional curvature by delicately piecing together the Poincaré
metric of the 2-ball with the Bergman metric of the domain {(z;,z,)] | z; |2
+]z,1? < 1} in C" They proved that the universal cover M of M is
not the ball by showing that the Chern numbers of M satisfy c¢? < 3c,.
This manifold is not difftomorphic to a locally symmetric space and it is
not known whether the universal cover is a bounded domain. Is it possible
that a complete non-compact Kéhler manifold with (topologically) trivial
tangent bundle which covers a compact algebraic manifold is in fact
biholomorphic to a domain?

For algebraic surfaces with positive canonical line bundle, does | ¢,/c?
— 13| small enough imply that M has a Ké&hler metric with negative
sectional curvature ? This is not known.

The topology of algebraic surfaces is a very important subject. By the
recent activity of Freedman and Donaldson, it seems reasonable to believe
that every simply connected four-dimensional smooth manifold can be
written as a connected sum of algebraic surfaces (possibly with different
orientation). Very strong conclusions on the irreducibility of simply connected
algebraic surfaces was recently asserted by Donaldson. Apparently only CP2
factors can occur if one wants to write it as a connected sum of differen-
tiable manifolds. Perhaps simply connected four-dimensional manifolds with
such irreducible condition is diffeomorphic to an algebraic surface.

It is more difficult to predict the topology of algebraic surfaces when
the fundamental group is not finite. Shafarevich did make the conjecture that
universal cover of any algebraic manifold is holomorphically convex. This may
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give some information about the topology besides the known inequality on
Chern numbers.

4. ANALYTIC OBJECTS

In order to understand the complex structure, it is important to under-
stand the analytic objects attached to the structure. Here we give two
examples:

A. Holomorphic maps and vector bundles

For a complex manifold M, the natural holomorphic vector bundles
associated to it are TM, TM*, A*TM, ®*TM, etc. Of special importance
is the canonical line bundle K = A"TM*.

By blowing up points or submanifolds, one can get additional analytic
objects. The Riemann-Roch theorem, which relates a topological invariant
to an analytic invariant, is an important tool in constructing analytic
objects or invariants from the given topological or analytic information.

The Yang-Mills theory is often useful in constructing holomorphic vector
bundles and other objects over Kdhler manifolds. Taubes [T1] used the anti-
self-dual solutions to the Yang-Mills equations to construct holomorphic
vector bundles of rank two over Kihler surfaces M2 Is it possible to use
this theory to recover the author’s theorem that if M? is simply connected
and its cup product is positive definite, then M? is biholomorphic to
CP??

Taubes [T2] also constructed holomorphic vector bundles over Kahler
surfaces under the assumption of an inequality between the two Chern
numbers (see also Donaldson [D1] and [D2]). So far, the above arguments
only work in the two dimensional case. For higher dimensions, there is no
good way to construct holomorphic vector bundles. The idea of Taubes can
be extended to construct holomorphic vector bundles over high dimensional
manifold. But it is not clear how large a class can one achieve in such a way.

B. Analytic cycles

Recall that by an analytic cycle, one simply means the formal sum of
analytic subvarieties. Let M" be an algebraic manifold and V € M an
analytic subvariety of codimension p. Then the fundamental cohomology class
ny of V belongs to HPP’(M)~ H?*’(M;Z). Recall that an -element
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o e H??(M ; Q) is analytic if it can be represented by a linear combination,

with rational coefficients, of the fundamental classes of subvarieties of

codimension p, i.e., & = i bmy,, where b;e Q and V; is a subvariety of M.
i=1

Clearly, every analytic element in H*?(M ; Q) belongs to H 29(M ; Q) n HPP(M).

Conversely, we have the Hodge Conjecture: Every element o e H*?(M ; Q)

A HPP?(M) is analytic. This is true when p = 1 and is called the Lefschetz

theorem on (1, 1)-classes; it is not known for p > 2.

In a Kahler manifold M" every analytic subvariety is area-minimizing.
This follows in a straightforward way from the formulae of Wirtinger and
Stokes. Conversely, under suitable conditions, area-minimizing submanifolds
become subvarieties. For example, Siu-Yau [SY1] proved that if f: Cp!
—» M" is energy-minimizing and the bisectional curvature of M is positive,
then f is either holomorphic or anti-holomorphic.

Lawson-Simons’ argument gives an approach towards the Hodge con-
jecture. Given an embedding f: M" — CP" and an element e H”?(M)
group of projective transformations of CP". Set

d* _dg,
B(X, X) = F(VOI g{M)) ) where X = =

They proved that the trace of B is negative unless M is a subvariety.

Lawson-Simons’ argument gives an approach towards the Hodge con-

jecture. Given an embedding f:M" — CP" and an element B € H”?(M)

N H??(M ; Q), define a volume function as follows: Vol: PGL(N+1,C) - R

where Vol: g — inf {Vol(C) | C represents a}. Here a is the Poincaré dual
C

of B and Vol (C) is the volume with respect to the metric (go f)*ds}
where ds3 denotes the Fubini-Study metric on CPY. If there exists a holo-
morphic C representing o, then Vol (x) = Vol (C) is independent of the
choice of g. Hence Vol is a constant function which attains its minimum.
On the other hand, if Vol has a minimum, then Lawson-Simons’ argument
shows that there exists a holomorphic C representing o. Therefore the Hodge
conjecture would be proved if one could show the minimum of Vol is
attained.

Siu [S2] obtained the following result. Let M be a compact Kéhler
manifold with strongly negative curvature. Then any element in H,, (M ; Z),
for k > 2, can be represented by an analytic subvariety if it can be
represented by the continuous image of a compact Kidhler manifold. His
argument used the Bochner type formula for df A df to get the complex
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analyticity of the harmonic map f. However, it seems to be difficult to
decide which cycles can be represented by continuous images of Kihler
manifolds.

§ 6. CanNonNicaL METRICS OVER COMPLEX MANIFOLDS

Given a complex manifold M, one could like to find “canonical” metrics
on M so that one can produce invariants for the complex structure.
One natural requirement for canonical metrics is that the totality of them
can be parametrized by a finite dimension space and that they be invariant
under the group of biholomorphisms.

1. THE BERGMAN, KOBAYASHI-ROYDEN AND CARATHEODORY METRICS

The Bergman metric was first introduced as a natural metric defined
on bounded domains in C”". Later, the definition was generalized to complex
manifolds whose canonical bundle K admit sufficiently many sections. For a
domain D in C" let H*D) denote the space of square integrable holo-
morphic functions of D. Choose an orthonormal basis {¢;} of this space.
Then the Bergman kernel is defined as

Kizw) = 3 0:(2):(w).

Notice that the definition of the Bergman kernel is independent of the
choice of orthonormal basis. Moreover, K is holomorphic in the variables z
and w.

We can now define the Bergman metric by

52
ds* =) 52,07 log K(z, z) dz; ® dz; .

The naturality of the Bergman metric can easily be seen from the definition
of the Bergman kernel. Let D, and D, be two domains in C", and
K,(z, w) and K,(z, w') their respective Bergman kernels. If F: D; — D, is a
biholomorphism, then K; and K, are related by the formula

Ki(z w) = Ky(f(z), f(w)) det <‘ZF ) det @g

0z ow
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If the canonical bundle K of M admits enough global, square integrable
sections, we can choose an orthonormal basis {¢;} of sections which will
give rise to an embedding F: M — CP*. The pull-back metric F*(ds®) is
the Bergman metric of M. This definition agrees with the previous definition
of the Bergman metric when M is a complex domain because any holo-
morphic function over D can be though of as a section of K.

Intuitively speaking, a complete understanding of the Bergman metric
would give us a clear picture of the geometry of the automorphisms of a
domain; it would also provide us with a lot of invariants of the domain.
In the past few years there has been a lot of progress based on
Fefferman’s work [Fe]. Fefferman looked at the asymptotic behavior of
K(z, z) near the boundary of a domain. Roughly, he proved that the Bergman
kernel has the following expansion along the diagonal.

K(z,2) = 0(2)/¥""'(2) + $(2) log ¥(z)

where ¢, e C°(D), d|,p = 0, and ¥ is the defining function for the
domain D.
Moreover, near the boundary we have

K(z, w) = oz, w)/¥P" " Y(z, w) + P(z, w) log ¥(z, w)

where ¢(z, w), d(z, w) and W(z, w) are extensions of ¢, § and ¥, respectively,
which satisfy certain conditions.

One would actually like to know more about the boundary behavior
of the Bergman kernel and metric, the behavior of the curvature of the
metric, and other related geometric properties of the metric when Q is not
smooth. Let Q be a manifold and ds? the Bergman metric. If Q admits
a properly discontinuous group of automorphisms we can consider the
quotient manifold Q/I' and pull-back its Bergman metric dsgr to Q.
Kazhdan [Kz] proved that if the discrete automorphism group I' of Q
has a filtration ' 2 'y 2~ 2T, 2 -~ with [T, T;;;] < coand n T'; = (1),

then the pull-backs of the Bergman metrics ds} = dsdr, will converge on Q
to the Bergman metric ds3 of Q.

Another interesting direction is to look at the global sections of the
powers of the canonical bundle. Consider H(M, K") for r sufficiently large;
a choice of basis gives a map ¢,: M — P(H*M, K")). Taking the 1/r
multiple of the restriction of Fubini-Study metric of P(H*(M, K")), one has a
sequence of metrics on M. One would like to know if, as r tends to
infinity, a limiting metric exists. If such a metric does exist, it should be
“canonical” and hopefully Kahler-Einstein.
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For a complex manifold Q there are two other intrinsically defined
pseudometrics: the Kobayashi-Royden metric and the Caratheodory metric.
Let A be the Poincaré¢ disk in C. We denote by A(Q) the set of holo-
morphic maps from Q to A, Q(A) the set of holomorphic maps from A to
Q. Fix the Poincaré distance on A. The Caratheodory metric is defined by

Fo: TQ - R™  where Fg(z,2) = sup {| f.(2)|: f € AQ), f(z) = 0}.
The Kobayashi-Royden metric on Q is defined by
F.. TQ > R" where Fz, & = inf{lul: feQA), f(0) =z, f,u) = &}.

Clearly, these two intrinsically defined metrics are distance decreasing under
holomorphic maps and invariant under biholomorphic maps.

B. Wong [Wol] has shown that the holomorphic sectional curvature of the
Caratheodory metric is less than or equal to —4, whereas the holomorphic
sectional curvature of the Kobayashi metric is not less than —4 when the
metric is nontrivial (for the Bergman metric, it is known that the holo-
morphic sectional curvature is not greater than 4). However, one dis-
advantage of these two metrics is that they are neither bilinear nor smooth
on the tangent spaces (F is only upper-semicontinuous in general).

In some special cases we have a better understanding of these two metrics.
For example, a manifold with strongly negative holomorphic sectional
curvature always admits a nontrivial Kobayashi-Royden metric. The major
theorem in this subject is due to Royden who showed that the Kobayashi-
Royden metric is actually the Teichmiiller metric. It is a curious fact
that the Teichmiiller metric has constant holomorphic sectional curvature.
Can we classify those complex manifolds that admit Finsler metric with
constant holomorphic sectional curvature?

Lempert [Lel], [Le2] proved that the Kobayashi and Caratheodory
metrics are actually the same for convex domains in C". By using the
existence of an extremal mapping, he constructed a lot of bounded holo-
morphic functions. His theory only works for convex domains; still, it is
interesting to see how one can generalize his ideas or use these two metrics
to construct bounded holomorphic functions on more general manifolds.

Another interesting fact, proved by B. Wong [Wo2], is that if a smooth,
bounded domain in C" covers a closed manifold, then it must be the unit
ball. This partially confirms the conjecture that a bounded convex domain
(not required to be smooth) which covers a closed manifold must be
symmetric. His proof needed the boundary estimate of the Kobayashi and
Caratheodory metrics.
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In general, one would like to compare the Bergman, Kobayashi-Royden,
Caratheodory metrics and the Kihler-Einstein metric discussed in the next
section. We know that the Caratheodory metric is the smallest of the three.
This can be seen by using the generalized Schwarz lemma for Kéhler mani-
folds [Y4]. Yau (see the later improvement by Chan-Cheng-Lu) proved that
if f: M — N is a holomorphic map where M is a complete Ké&hler manifold
with Ricci curvature bounded from below by a constant and N is a Her-
mitian manifold with holomorphic sectional curvature bounded from above
by a negative constant, then f decreases distances up to a constant
depending on the curvatures of M and N. Is this true if N is only a
Finsler space? If it were true, then one expects that Teichmiiller metric is
uniformly equivalent to the Kéhler-Einstein metric.

2. KAHLER-EINSTEIN METRICS ON COMPACT KAHLER MANIFOLDS

Let M be a compact Kédhler manifold. A necessary condition for the
existence of a Kahler-Einstein metric on M is as follows.

(*) There exists a Kaéhler class Q such that the first Chern class c¢;(M)
is cohomologous to some real constant multiple of Q.

This condition is equivalent to the following:
(*) The first Chern class satisfies ¢,(M) > 0, ¢;(M) = 0 or c¢,(M) < O.

It was proved by the author [Y1], [Y2] that when c¢,(M) = 0 or
c1(M) < 0O, (for the latter case see also Aubin [Au3]) there exists in every
Kéahler class a unique Kahler-Einstein metric. When ¢,(M) > 0, the space
Kéhler-Einstein metrics are invariant under automorphism group. However,
existence does not hold in general and one would like to impose conditions
on M to ensure existence.

We now consider the obstruction, due to Futaki [Ful], to the existence
of Kihler-Einstein metrics when c¢;(M) > 0; we also consider the notion
of “extremal metrics” due to Calabi [Ca2]. Fix a Kéihler class Q = [w]
€ H"'(M) on a compact Kéhler manifold M and denote by H,, the space
of all Kahler metrics with Kéhler class Q. Define the functional

F:Hy— R by F:(g)—»JRZ,
M

where R denotes the scalar curvature of the metric g. Calabi called a critical
point of this functional an extremal metric. Any Kaihler-Einstein metric
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minimizes J R? in its Kéihler class and hence is an extremal metric.

M

This follows from the Schwarz inequality and the fact that JR i1s equal

M .
to ¢,(M) U @"" ! evaluated on the fundamental class of M, where o is the

Kahler form of g.
Calabi proved that for an extremal metric g, the gradient vector field

_0R 0 .
X = Zg”ﬁ P is holomorphic. He also proved that a decomposition
z7) 0z

theorem holds, analogous to that of Matsushima and Lichnerowicz for
constant scalar curvature, for the automorphism group of M. In particular,
he proved that X gives rise to a compact subgroup of Aut (M). Levine [Lv]
gave an example of a compact surface M? with no compact connected
subgroup in Aut (M); hence M? does not admit any Kéhler-Einstein metrics.

For other examples of when Aut (M) is not reductive, see Sakane [Sk1],
[Sk2], Ishikawa-Sukane [I-S] and Yau [Y3]. By the theorems of Calabi or
Matsushima-Lichnerowicz, these examples do not admit any Kahler-Einstein
metrics. Futaki [Ful] also has constructed examples where Aut (M) is
reductive and we will consider them later. So far, however, all examples
of a Kédhler manifold with positive first Chern class which does not admit a
Kihler-Einstein metric admit nontrivial holomorphic vector field, it is natural
to ask the following question: If there exists no nonzero holomorphic
vector field on M, and if the tangent bundle of M is stable, can we always
minimize the functional F ? The motivation for the assumption on the stability
will be discussed later. Of course, if the answer to the above question is yes,
then (*) would also be a sufficient condition for the existence of Kahler-
Einstein metrics.

In fact, suppose c;(M) = Clw] and g is an extremal metric. Since

X =) g7 gg ;ZT is holomorphig, it follows that X = 0, R is constant and
the Ricci form of g is a harmonic form representing c;(M). One concludes
that R; = Cg;; from the uniqueness of harmonic forms in a cohomology
class; hence g is a Kéhler-Einstein metric. Calabi [Ca2] proved that, each
 extremal metric g is a local, nondegenerate point of the functional F. The
 metric g also exhibits the greatest possible degree of symmetry compatible
~ with the complex structure of M. Let Cq, denotes the set of extremal metrics

in H,, which is difffomorphic to a finite dimensional Euclidean space.
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Moreover, if one metric in Co has constant scalar curvature, then every
metric in C, has constant scalar curvature. One expects that the only
critical points of F are global minimums of F, form a connected set, and
that the group of automorphisms of M which preserve the class Q acts
transitively on Cgq.

We now consider Futaki’s obstruction to the existence of a Kdéhler-
Einstein metric on compact Kéhler manifold M with ¢;(M) > 0. Let n(M)
denote the Lie algebra of holomorphic vector fields of M, o a Kéhler
form representing c,(M), and v, its Ricci form which also represents

/ — -1 =
c,(M). Then vy, = ! = 00 G

- 90 log det (g;;) and hence y, — ® = o=

for some smooth function G. Define the character f:n(M) - C by f: X

- J(X G)- @". Futaki proved that f is independent of the choice of
M
representative o of ¢,(M). Hence the integer 8,, = dim (n(M)/ker(f)) depends
only on the complex structure of M.
If M has a Kéhler-Einstein metric then 3,, = 0; Futaki conjectures that
the converse is also true. This would be the case if Calabi’s functional F

=1
attains a minimum. Since y, — ® = 5 00 G, one has that R = n + AG.
T

Then f(X) = J(XG)CO" = J(R“Ga)co" = jl AG |?0"; hence §,, = 0 implies

that G = constant, i.e., g is a Kahler-Einstein metric.

Using the obstruction §,,, Futaki gave examples of compact Kaihler
manifolds with ¢;(M) > 0, Aut (M) reductive, and §,, = 1. Hence, there does
not exist Kahler-Finstein metrics on these examples. Let H, denote the hyper-
plane bundle of CP" and =,: H, — CP” the projection map (n=1, 2). If we let
M?> = P(E) where E = n¥(H,) + n%(H,) is considered as a bundle over
CP?, then M is such an example. The following is the lowest dimensional
example. If H = CP? is a hyperplane and C < H a quadratic curve, then let
M be CP? blown up along C and at a point outside of H.

Futaki’s 1dea is to construct an obstruction for the Ricci form to be
harmonic. For the curvature forms representing the higher Chern classes,
see Bando [B2]. For questions related to the character f, see Futaki [Fu2]
and Futaki-Morita [F-M]. Bando also proved the uniqueness of Kéihler-

Einstein metric on M with ¢;(M) > 0, up to holomorphic automorphisms
of M.




144 S. T. YAU

3. HERMITIAN MANIFOLDS AND STABLE VECTOR BUNDLES

We will consider canonical metrics on compact complex manifolds which
are not necessarily Kéhlerian. For Hermitian manifolds in general, it is
difficult to find canonical metrics because the Hermitian connection has
torsion and hence is not Riemannian. Therefore one would like to assume
extra conditions on M. Let g be a Hermitian metric on M and o its
Kahler form. One natural condition is to assume that

(1) 000" ) =0,

which is weaker than the condition of being Kéhler. One would like to put
more conditions on g, besides (1), to make the metric more canonical.
Motivated by the theory of supersymmetry, Hull and Witten [HW] proposed
the following condition on ®. Locally one should be able to write ® as
00 + 00 where 0 is a (0, 1) form. Notice that if o is Kihler, it can always
be written as 90 f.

Let us now demonstrate that the above condition is equivalent to the
condition ddw = 0. Clearly, we have only to prove the condition ddw = 0
implies that ® can be written in the above form. As dw is a closed form,
it is locally exact. By comparting the types, we can find a (0, 2) form Q
and a (1,1) form ®, so that do = dQ + Jdw’ with 0Q = 0 and do’ = O.
Noticing that ® = &, we can then prove that ® — o —® — Q — Q
is a closed form. Therefore, locally it is exact and we can find a (0, 1)
form so that ® — @ — @' = 00 + 00. Since oo’ = 0, locally @' is J-exact
and we have proved locally o is the form that we seek.

Recently Todorov observed that any compact complex manifold admits a
Hermitian form @ with ddw = 0. Therefore it seems that for any compact
complex manifold, it is of interest to study the group obtained by taking
the quotient of (1,1) form ® with ddw = O by the subgroup cosets of
00 + 00 where 0 is globally defined (0, 1) form.

Now let ¥V be a holomorphic vector bundle over a compact manifold M
with the property dd(w"~ ') = 0. We can define the degree of the bundle V
with respect to @ by

deg, V = JEI(V) Aot
M

where Z,(V) denotes the Ricci form of the bundle V. Since dd(w"™!) = 0,
this definition is independent of the choice of metric on V.
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In [U-Y], Uhlenbeck and Yau proved the following:

(2) Suppose V is a holomorphic vector bundle over a compact Kahler
deg,V’ deg,V
<
rank V' rank V
subsheaf V' < V such that 0 < rank (V') < rank (V), then there exists a
Hermitian-Einstein metric on V which is unique up to a constant.

for every coherent

manifold M. If V is stable, ie.,

Conversely, the existence of a Hermitian-Einstein metric on V implies that
V is direct sum of stable bundles. This was proved by Kobayashi and Liibke
[Lu]. Moreover, it is likely that the condition M be Kihler can be replaced
by (1). It should be noted that the above theorem was proved by Donaldson
[D2] for algebraic surfaces.

We now state some corollaries of (2). First of all, the symmetric tensor
product bundle of a stable holomorphic vector bundle is also stable.
Secondly, if V is a stable bundle, then for r = rank (V),

(3) j(2r (V) — r=1e2(V) A 0”220,

and equality holds if and only if up to finite cover of M, V is a direct
sum of line bundles (when n = 2, this was due to Bogomolov [Bo])
without dealing with the case of equality. Therefore, if c¢$(V) = 0 then

JcZ(V) A ®""2 > 0 and equality holds if and only if V is flat and unique
M

up to a scalar. These results are in fact generalizations of those in the
Riemann surface case. In particular, let V' be a holomorphic vector bundle
over a Riemann surface X,. Then V is stable and c¢;(V) = 0 if and only
if there exists a Hermitian metric on V with zero curvature, i.e., if and if
there is a unitary representation of m;(X,) (see Narashimhan and Seshadri
[N-S] for details.

We now consider the moduli space of stable vector bundles. Let M(r, d)
be a complete family of stable vector bundles of fixed rank r and fixed
degree d over a Riemann surface X£,. Can one prove that c¢,(M,) > 0,
in particular, can one construct a Kéhler metric on M, with positive Ricci
curvature? Cho [Co] proved that there exists a Kéhler metric on M (r, d)
with nonnegative holomorphic sectional curvature. However, even the posi-
tivity of the holomorphic sectional curvature does not imply the positivity
of the Ricci curvature. For example, let H be the hyperplane bundle over
CP' and (1) the trivial line bundle. Then the Hirzebruch surfaces M d
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= P(H’+(1)) have Kihler metrics with positive holomorphic sectional
curvature. On the other hand, for d > 3, M, does not have positive first
Chern class.

4. CHERN NUMBER INEQUALITIES

In 1976, the author proved the Calabi conjecture and demonstrated the
following Chern number inequality for algebraic manifolds with either ample
or trivial canonical line bundles:

=,

* (=1ee ™ > 5Tt

where equality holds if and only if M is covered by the ball, ie, M = B/I’
for some I' < SU(n, 1). Around the same time, Miyaoka [M3], extending
the method of Bogomolov, obtained the same inequality for n = 2 under
the weaker assumption that the Kodaira dimension of the surface is non-
negative. However, he has not shown that equality holds if and only if M
is covered by the ball. |

By studying surfaces with singularities, Cheng and Yau [C-Y2] proved
inequality (*) for surfaces of general type (equality holds if and only if M?
is covered by the ball). The arguments in [C-Y2] can also be generalized
to higher dimensions. One can also characterize surfaces M which are
biholomorphic to B*/I' where I' < SU(2, 1) is allowed to have fixed points.
Note that M is, in general, a variety since I' may have fixed points.

It is also interesting to study manifolds which satisfy certain Chern
number inequalities. Surfaces which satisfy inequality (*) have been studied by
Hirzebruch, Deligne, Mostow, etc. A corollary of [Y2] is the following
rigidity theorem for Kaéhlerian structures on CP": The only Kahlerian
structure on CP" is the standard one; moreover, the only complex structure
on CP? is the standard one. For n odd, this result was due to Hirzebruch
and Kodaira [H-K].

We now sketch the proof of inequality (*) when the canonical line bundle
K of M is ample. In this case, there exists a Kahler-Einstein metric on K.
For Kihler-Einstein metrics one observes that the Chern integral associated
to the left hand side of (*) can be expressed in terms of the length
squared of the curvature tensor. Since the Ricci tensor is the only part
of the curvature tensor, the right hand side, which can be written as the
determinant of the Ricci tensor, can be dominated by the left hand side.
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If equality holds for (*), one sees that the integrands of both sides are equal.
This last fact turns out to be equivalent to M having constraint holomorphic
sectional curvature. Hence equality holds in (*) if and only if M is covered
by the ball.

Kihler-Finstein metrics do not exist on algebraic manifolds whose
canonical line bundle is not a multiple of some ample line bundle. However,
it is still possible to study the inequality (*) for algebraic manifolds whose
canonical line bundle is almost ample. In [Y1] it was proven that there
exists a Kahler-Einstein metric which is degenerate along the divisor where
the canonical line bundle is trivial. Similarly one can require the metric
to blow up in a certain way. This fact was used by Cheng and Yau
[C-Y2] to prove the inequality (*) for surfaces of general type.

(**) ¢,(M)<O0OonM, and c¢;(M) < 0outside a subvariety of M .
Recall that the Kodaira dimension K(M) is defined by

— © if NM) =0

KM) = {max dim {,} (M) if NM) # 0’

where N(M) = {m > 0| H (M, K™) = 0} and ¢,, is the pluricanonical
mapping. It is easy to see that K(M) < the algebraic dimension of M < n.
If K(M) = n, then M is called a manifold of general type.

In dimension two, surfaces can be classified bimeromorphically by their
Kodaira dimension. The surfaces with K(M) = — oo, 0 or 1 are well
understood; moreover, K(M) = 2 (i.e., M is a surface of general type) if
and only if M satisfies (*¥*). Suppose M is a three-fold of general type
and K is the canonical line bundle divisor. Kawatama [Ka] proved that if
K - C < 0 for every algebraic curve C < M, then M satisfies (**).

Most likely (**) always implies (*); that 1s, if M" is an algebraic
manifold with almost ample canonical line bundle, then the inequality (¥*)
holds. This is not known for n > 3. One would also like to know what
the relationship is between manifolds of general type and the inequality (**).
In this respect, consider the following theorem of Siu [S5]. First recall
that Siegel’s theorem [Sg] says that for a complex manifold M", the
transcendence degree of the meromorphic function field of M over C is
less than or equal to n. When equality holds, M is called a Moishezon
manifold. A Moishezon manifold can always be obtained by blowing up
and down an algebraic manifold a finite number of times and hence is
birational to some projective algebraic manifold. For a Moishezon manifold,
there always exists a holomorphic vector bundle L over M such that
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cy(L) =20 on M and c¢4(L) > 0 outside some subvariety of M. Siu [S5]
proved that the converse is also true under the weaker assumption that
c,(L) is nonnegative everywhere and positive at some point. Thus, a manifold
which satisfies (**) is Moishezon. It is also not known whether CP”
n > 4, can admit a nonstandard structure which is Moishezon. For n = 3,
T. Peternell [Pe] proved that if M is a Moishezon 3-fold which is topo-
logically isomorphic to CP?, then M is the standard CP3. His proof depends
heavily on Mori’s theory of extremal rays in 3-folds. One might expect
that it is helpful for this problem to study rational curves in a Moishezon
manifold which is a topological CP”.

5. KAHLER-EINSTEIN METRICS ON NONCOMPACT MANIFOLDS

We now consider Kahler-Einstein metrics on complete noncompact
manifolds. Let g be a complete Kahler-Einstein metric on M”, i.e., R;; = cg;
for some constant c. If ¢ > 0, Myer’s theorem would imply N is compact.
Hence, ¢ < 0 and ¢;(M) < 0. In this section we consider the case ¢;(M) < 0
and leave the case c;(M) = 0 for the next section.

One would like to characterize noncompact manifolds which admit com-
plete Kahler-Einstein metrics g;; with R;; = — g;;. In particular, one would
like to impose conditions on M to guarantee the existence and uniqueness
of a Kahler-Einstein metric. First of all, uniqueness always holds. That is
to say, if M and N are complete Kahler-Einstein manifolds with R = — 1
and F: M — N is a biholomorphism, then F is an isometry. To prove this,
let g and dv and ¢’ and dv’ denote the Kahler-Einstein metrics and volume
forms of M and N, respectively. If we let p = log (F*dv'/dv), then 90p
= — f*Ric' + Ric = F*g' + g. Taking traces, we have Ap = —n
+ n-e”". Hence, the maximum principle implies p < 0 and F*dv < dv.
Replacing F by F~ !, we have F*dv' > dv and F is an isometry.

Uniqueness also holds for “almost” complete Kahler-Einstein metrics with
scalar curvature equal to minus one. Here, a metric ds* on M is said to be
almost complete if we can write M as an increasing union of domains Q,
and there exist complete metrics ds2 on Q, for each o such that ds? converges
to ds®* on compact subsets of M. See Cheng-Yau [C-Y1] for details.

We now consider the existence of Kahler-Finstein metrics with negative
scalar curvature. Of course, the existence of such a metric would give
restrictions on the complex structure of M. For example, Eiseman [FEi]
proved that if there exists a Hermitian metric with scalar curvature less than
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a negative constant on M, then the pseudomeasure in the sense of Eiseman
is in fact a measure, that is to say, M is measure hyperbolic.

In [C-Y1], Cheng and Yau obtained the existence of Kéhler-Einstein
metrics on a large class of noncompact manifolds. More precisely, they
proved the following. Let M" be a Hermitian manifold whose Ricci tensor
defines a Kahler metric whose curvature and its covariant derivatives are
bounded. Then M admits a Kéihler-Einstein metric which is uniformly
equivalent to the above metric.

If M admits a Hermitian metric with strongly negative Ricci curvature
and is the increasing union of relatively compact, smooth, pseudoconvex open
submanifolds, then there exists a unique (up to a scalar) almost complete
Kéihler-Einstein metric on M. Moreover, this metric is complete if M is
complete.

In particular, there exists a complete Kéhler-Einstein metric on any
bounded domain in C" which is the intersection of domains with C2-
boundaries. In the above statement, C" can also be replaced by a Hermitian
manifold with Ricci curvature bounded from above by a negative constant.

Mok and Yau [Mk-Y] proved that there exists a complete Kahler-
Einstein metric on any bounded pseudoconvex domain in C". This is the
only known “canonical” metric on arbitrary bounded domains of holomorphy
which is complete.

We now consider the case where the volume of M 1s finite. In this case,
the “infinity” of M is very small (whereas the infinity of a bounded
domain in C” is quite large). The following is then conjectured: If the Ricci
curvature 1s negative and M has finite topological type, then M can be
compactified, that is, M = M/(subvariety) for some compact K#hler manifold
M. In some cases, M is actually algebraic and hence M is quasi-projective.

For a locally Hermitian symmetric space M of finite volume, Baily and
Borel [B-B], Satake [St] and Mumford [Mu] obtained (different) compactifi-
cations more or less explicitly. For these manifolds, Kdhler-Einstein metrics
exist. Siu and Yau [S-Y3] proved that a complete manifold, with finite
volume with its curvature bounded between two negative constants, is quasi-
projective.

If the above conjecture is true, then in studying Kéhler manifolds with
finite volume (and bounded covariant derivatives of the curvature) one need
only consider M\(D, u -~ U D,) where M is a compact Kahler manifold
and Dy, .., D, are connected divisors. If we have suitable algebraic data
on how D; looks like and how D; intersects D;, then one hopes that
one may be able to construct Kédhler-Einstein metrics on M. In dimension
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two, this is well understood. For example, suppose C = M? is an elliptic
curve and C-C < 0. If s is a section of the bundle [C] and C = {s=0}
then dvg/| s|*(log|s|?)? is a complete asymptotic Kihler-Einstein metric
on M/C with C as the cusps of the metric.

Suppose that D is a divisor on a compact Kdhler manifold M satisfying
¢)(K+[D]) = 0onM, ¢,(K+[D]) > Oon M\D and (K+[D]) — ¢[D] |p > O
then M\D admits a Kéhler-Einstein metric with finite volume. Moreover,
the curvature of the metric and all of its covariant derivatives are bounded.
It is not clear whether complete Kahler-Einstein metrics should have
bounded curvature.

For a quasi-projective manifold M = M\D, a Kihler-Einstein metric
always has finite volume and one can define logarithmic Chern classes
¢{M, D). The existence of the Kdahler-Einstein metric implies the following
inequality for the log Chern classes ¢; and ¢é,:

*) (=% “- ¢, 2

A particularly significant fact is that equality holds in (*) if the quasi-
projective manifold M\D is the quotient of the unit ball in C".

Recall that a complex manifold 1s called measure hyperbolic if the
Kobayashi measure is positive everywhere. Moreover, for a complete Kahler-
Einstein manifold, the following inequality holds,

CldUKobayashi = dUKﬁhler—Einstein = CZdUCaratheodory

where ¢, and c, are two universal positive constants. We have the following
question: If the Caratheodory metric of M is complete, does M admit a
complete Kahler-Finstein metric?

6. Riccti FLAT METRICS ON NONCOMPACT MANIFOLDS

We now consider Ricci flat metrics on a complete, noncompact manifold M.
We first remark that in this case uniqueness is unknown. Even for compact
manifolds, Kahler-Einstein metrics are only unique in each Kdihler class.
Suppose g and g’ are two Ricci flat Kahler metrics on M. If they satisfy
gi; — g = OOF with F bounded, then g; = gj;. Note that in the compact
case, the above condition means that g and g’ belong to the same Kahler
class. It also may be possible to drop the condition that F is bounded
since there do not exist too many Ricci flat metrics.
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In any case, the uniqueness problem is far from solved. Even when
M = C", Calabi proposed the following open problem: If u:C" —» R is a

2y
> = 1, then if the Kahler

strictly plurisubharmonic function with det (

0z'0z7
fxzu
metric ds; = ) = = dz' ® dz’ is complete does it have zero curvature?
020z

Note that ds?2 is not complete in general. For example, Fatou and Bieberbach
(see the book of Bochner and Martin [B-M], p. 45) gave a biholomorphism
F:C? > Q, where Q < C? is open and C?/Q contains an open set, such
that the Jacobian of F is identically equal to one. For u = |z |% + | z? |2,
ds? ; = F*ds? = F*ds§ is not complete.

There are a lot of biholomorphisms F in Aut (C?) with Jacobian equal
to one; for example, let F(z, w) = (z+ f(w), w) for any entire function f.
For the above u, ucF is still strictly plurisubharmonic and ds, p 18
complete and Ricci flat. Thus, intuitively, the larger the group Aut (M), the
more difficult the problem is.

We now consider the question of existence. Just as in the case of
negative scalar curvature, the existence of a complete, Ricci flat, Kéahler
metric will impose restrictions on the complex structure of M. For example,
by the Schwarz lemma [Y4], we know that there does not exist any
nontrivial holomorphic maps from M to a Hermitian manifold with holo-
morphic sectional curvature bounded from above by a negative constant.
As a corollary, if there exists a nontrivial holomorphic map from M
to an algebraic curve of genus greater than one, then M = M cannot
admit any complete Kahler metric with nonnegative Ricci curvature.

We conjecture that if M" admits a complete Ricci flat Kdhler metric,
then M = M\(divisor) where M is compact and Kahler. This would mean
that the infinity of M cannot be too large. Now suppose M? = M\(divisor)
and dv 1s a Ricci flat volume form on M. One would like to determine M ;
by going to the universal cover, we can assume M is simply connected.

Locally, dv = (\/~—1)2kdz1 A dz* A di* A dz? for some positive real function
k. Since Ric(dv) = 0, we have 0d(logk) = 0 and k can be written as
k = | h|? for some locally defined holomorphic function 4. By a monodromy
argument, we obtain a holomorphic 2-form n = hdz! A dz?, with h nowhere
zero and 1 A | = dv. Hence n™' = h™'dz! A dz? can be considered as a
global section of the anti-canonical bundle K 1.

Intuitively, one might expect that h approaches oo near the infinity of M
and n~! can be extended to M, that is, there exists a nontrivial section
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S e H°(M, K~ 1). This would imply that either K is trivial on M or H°(M, K"
= 0 for every m > 0 and hence the Kodaira dimension of M * would either
be —oo or 0. This is because if t e HY(M, K"), then t- S" is a holomorphic
function on M and hence constant; since S is zero somewhere unless K
is trivial, we have t-S" = 0, so that t = 0 unless K is trivial on M.

Since M is Kéhler and simply connected, the minimal model of M
1s a Kahler surface with K = 0 or —oo and b; = 0. When K = 0, it is
either a K—3 surface or Enriques’ surface. When K = — oo it is either a
rational surface or a ruled surface of genus zero, M? is equal the minimal
model blown up successively at a finite number of points, and M = M\{s=0}
for some 0 # se HYM,K™!). Conversely, if M = M\{s=0} with
se H(M, K™1) and M is as above, then M should admit a Ricci flat,
complete, Kahler metric. In higher dimensions, the situation is much more
complicated.

In physics, the following question has been studied. Is a Ricci flat
metric with a suitable locally asymptotic property actually unique? This is
the case when the metric is asymptotically flat. One would also like to
know what happens when the metric is locally asymptotic to a cone.
Perhaps assuming that the metric is Kahler may make this problem easier.

The existence of Ricci flat metrics has many applications. For example,
using Ricci flat metrics, Siu [S1] proved that any surface M* with ¢,(M) = 0
and HY(M,R) = 0 must be Kéhler. See also Todorov [To] for higher
dimensions. One can also ask the following question: Let M?" be a simply-
connected, compact, complex manifold where n > 2. If there exists a non-
degenerate 2-form @ € H* °(M), is M then Kihler? Todorov claimed that M
is Kdhler under an additional assumption: dim H*»°(M) = 1.
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