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96 L. CERLIENCO, M. MIGNOTTE ET F. PIRAS

— Si m# 0(mod3) on a (F,,L,) =1 donc F, = y? et L, = z>. Par
conséquent m = 1 ou 3, F, = 1 ou 8; le seul carré est encore 1.

— Si m = 0 (mod 3) alors (F,,,L,) = 2 et donc F,, = 2y* et L, = 2z
Si m est impair on a z* — 5y* = —1, ce qui est impossible modulo 8.
Si m =2m' alors F,, L, = 2y% Si m' est impair on a F, = 2t
et L,, = w®* doncm’ = 1ou3etF, =1ou 144. Si m’ est pair alors
F,. = t*; dans ce cas, tout ce qui précéde montre que n = 3.25s > 3
et que les nombres de Fibonacci d’indices n/4, n/16 .. sont tous des
carrés mais, comme F, = 8 et F,g ne sont pas des carrés, ce dernier cas
est impossible. [Il n’est pas nécessaire de calculer F,g: si F,q = x?
alors F,, = 2 y* puis L,, = 2 z* mais L,, = 322.]

II. METHODES p-ADIQUES

Pour une introduction aux nombres p-adiques, le lecteur pourra consulter
Borevitch et Schafarevitch [10] ou J. P. Serre [54], et pour une étude plus
détaillée de 'analyse p-adique Y. Amice [2] ou K. Mahler [36].

1. Le théoréme de Skolem-Mahler

THEOREME. Soit (§,) wune suite récurrente linéaire a valeurs entiéres.
Alors lensemble des indices n tels que &, soit nul est égal a une union
finie de progressions arithmétiques (certaines de ces progressions peuvent étre
de raison nulle et l'union peut méme étre vide! ).

Comme en A.L3, écrivons &, sous la forme
&, = Pinot + ..+ Pmo; pour n=0,

les P; étant des polynomes a coefficients dans le corps de nombres L
= Q(®y, ..., ), et soit P un idéal premier de L tel que les m; soient
tous des ‘B-unités. Il est facile de voir que, pour tout € > 0, il existe un
entier T tel que

lof —1|p<e, j=1.k

En particulier, il existe un entier T tel que chacune des T fonctions
(2 valeurs dans le complété Legg de L)

fw:x = P;(xT+moT exp(Logw])x), m=201,.,T—-1,

ou exp et Log sont l'exponentielle et le logarithme *B-adiques, soient
définies et analytiques pour x parcourant Panneau Z, des entiers p-adiques
(p étant le nombre premier au-dessous de ).
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Bien sdr, pour n entier, on a fu(n) = &ur4m- Donc, s la suite (§,)
posséde une infinité de zéros, il en est de méme pour certaines des fonctions
f... Or, chaque f, est une fonction analytique sur 'ensemble compact Z{,
et, 2 moins d’étre identiquement nulle, elle ne possede qu'un nombre fini
de zéros. D’ou la conclusion. ]

COROLLAIRE. Si (&,) admet une infinité de zéros, alors, si §, sécrit
comme plus haut

En = Pi(n) 07 + .. + Pi(n) o,

ou les P; sont des polynémes non nuls et les ®; des nombres algébriques
non nuls; pour tout i il existe un indice j # i tel que ®;/®; soit une
racine de l'unité.

Soit en effet m tel que l'on ait §,7,,, = 0 pour tout n. La conclusion
résulte de la formule

P.(nT+mo?. o+ . + PuT+mor.of =0, n=0,

et du fait qu'un polyndme exponentiel  R,(n) p}, relatifs a des p, deux a deux
distincts, ne peut s’annuler que si les polyndmes R, sont tous nuls (ce qu'on
a déja vu en A.IIL.3.c)). O

On peut se poser le probléeme de savoir décider si (§,) comporte ou
non une infinité de zéros. Pour cela, remarquons d’abord que lidéal
et le nombre T qui apparaissent dans la démonstration ci-dessus peuvent étre
déterminés effectivement; il suffit, par exemple, de choisir B au-dessus d’'un
nombre premier qui ne divise pas le produit o, .. ®;. Discr (o, ..., 0),
on peut alors prendre T = p/ — 1 avec f = [L:Q] (donc f<k!). On
considére alors les T suites (§,7+mhnz0, m = 0,1,.., T — 1 et on a vu que
(£,) a une infinit¢é de zéros si, et seulement si, une de ces suites est
(identiquement) nulle. Enfin comme chacune de ces T suites est une s.r.l
d’ordre k, elle est identiquement nulle si, et seulement si, ses k premiéres
valeurs sont nulles. Pour répondre a la question il suffit donc de calculer
les Tk premiéres valeurs &,. (A ce sujet, voir aussi Berstel-Mignotte [6].)

Par contre la preuve du théoreme de Skolem-Mahler ne permet pas de
déterminer effectivement tous les zéros de (§,), mais seulement — comme
nous venons de voir — tous les zéros sauf peut-étre un nombre fini d’entre
eux. Cependant, le théoréme suivant — dii & Strassman — permet de majorer
le nombre de zéros de (£,), lorsque ce nombre est fini.
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THEOREME. Soit f(x) = Y, a,x*, les a, appartenant d un corps
k>0

PB-adiqgue Kz, une série qui converge sur Panneau O3, et qui nest
pas identiquement nulle. Alors le nombre de zéros de f dans lensemble
O est majoré par la quantité max {k > 0;|a, | est maximal}.

On trouvera une démonstration dans I’article de Lewis [32]. O

2. Un exemple

Avec de la chance, on peut quelquefois déterminer I’ensemble des zéros
d’une suite récurrente linéaire en n’utilisant que ’analyse p-adique.
Considérons l'exemple suivant, di a J. Berstel, de la suite définie par

630:&1:0’ &,2:1, E.m+3=2£n+3_4§n+1+4&m
pour n=0.

On constate que 'on a
Co =8 =8 =8C =8&3 =85, =0.

Nous allons montrer que les zéros trouvés ci-dessus sont les seuls.
Choisissons p = 53. Modulo p, le polyndbme G = X3 —2X2 +4X — 4
se décompose en facteurs linéaires distincts. Soient ®;, ®, et w5 les racines
de G dans le corps Q,, ce sont des p-unités. Comme p divise les
w?~t — 1, les 52 fonctions

n= &52n+m ’ m = O) 17 ) 51 H

se prolongent en des fonctions analytiques f,, de Z, dans lui-méme. Posons

fa¥) = 2, e mx";
k=0

on vérifie facilement que I'on a
(*) Plag,., si k=i, pour i=123

(ou le symbole | signifie divise).
On constate que

PA S0 =&, si m¢{0,1,4613} et O0<m<S5l,
et dans ce cas une égalité

JuX) = ao,m + (k; m X*) = 0
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est impossible pour x dans Z, [puisque p divise la somme entre parentheses
mais pas aO,m = ém]
Pourm = 1,4,6,13, ona

£.0) =0, 53| f (1) mais f,(1) # 0(mod 53%)
et, en utilisant la propriété (x) pour i = 2, on voit que

flX) = X(@ym+ Y GuXH#0 si xeZjp.
k=2

Enfin, pour m = 0, on a (en oubliant I'indice zéro)

f0) = f(1) =0, f(@=0(modp’) et f(2)# 0(modp’,

f(x) = x(a; + Y ax*"') avec p?la; mais a; ¥ 0(mod p3);
k=2

mais ici la méthode précédente ne s’applique plus, nous avons besoin d’un
outil plus puissant.
Pour k entier positif, posons

(X), = X(X—1)..(X—k+1), eten particulier (X), = 1.

Du fait que X" est une combinaison linéaire a coefficients entiers des
(X); pour 0 < i < n, on voit qu’une série X a, X" peut se mettre sous forme
T b,.(X), avec p’|b, si p’'|a, pour tout m > n. Si on applique ceci a
I'exemple de f,, on trouve

f(x) = folx) = by.(x)2 + kZ% by . (X

ou p?| b,, b, # 0(mod p3) et p*>| by si k = 3 (utiliser (*) avec i=3). Donc f
s’écrit

f(x) = byx(x—1)(1+g(x)) avec plglx) si xeZ,.

Ceci montre que, pour z parcourant Z,, les seuls zéros de f; sont 0 et 1.
D’ou le résultat annonce.

Pour d’autres détails sur cet exemple voir [37] et [44].

3. Multiplicités de suites récurrentes linéaires

Ce sujet a été traité trés en détail par R. Tijdeman dans son exposé [60],
ce qui nous permet d’étre relativement brefs.

Nous ne considérerons ici que des suites a valeurs dans un anneau .o
contenu dans le corps des complexes. Pour un élément a de cet anneau, la
a-multiplicité de la suite (§,) est le nombre d’indices n pour lesquels
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&, = a; la multiplicité est la borne supérieure de ses a-multiplicités lorsque
a parcourt /. Lorsque (§,) est une s.r.l. de rang m, sa multiplicité est égale
a la O-multiplicité d’une s.r.l. de rang au plus m + 1 [ceci résulte de 'exemple
de A.II]. Inversement, si </ est un corps et si le polynoOme caractéristique
d’une s.rl (§,) a une racine simple ®, alors la O-multiplicit¢ de (&) est
majorée par la multiplicité d’une s.r.l. (n,) de rang m — 1, m étant le rang
de (§,); en effet on a alors

&, = Pin ot + ..+ P,_,(n)o;_, + P, o}, P, constant ,
et il suffit de poser

Nm = P1() (01/0)" + ... + Pi_1(n) (@1/0 )",

et la O-multiplicit¢ de (§,) est égale a la — P, — multiplicité de (n,).

On dira que (§,) est dégénérée lorsqu’il existe o tel que son a-multiplicité
soit infinie. Cette définition difféere de celle de [60] ou la suite est dite
dégénérée ssi sa O-multiplicité est infinie. D’apres le paragraphe précédent,
on sait tester si une s.r.l. est dégénérée ou non.

Le probleme de la multiplicité a surtout été ¢tudié pour le premier
cas non trivial, celui des s.r.l. binaires non dégénérées et a valeurs entieres.
M. Ward, qui a écrit plusieurs dizaines d’articles sur les suites récurrentes
linéaires, avait conjecturé dans les années trente que la multiplicit¢é d’une
telle suite ne dépasse pas 5.

Aprés des travaux de Skolem, Chowla, Dunton, Lewis, Laxton... Kubota
a prouvé cette conjecture, et méme montré que la multiplicité d’une telle
suite n’excéde jamais 4, voir [31]. Nous avons placé I'étude de la multi-
plicité d’une s.rl. dans le chapitre relatif aux méthodes p-adiques, en effet
la preuve de Kubota utilise de maniére essentielle la méthode de Skolem,
mais elle est trop compliquée pour que nous puissions en donner une idée ici.
Les résultats de Kubota ont ensuite €té ameéliorés par Beukers [8] qui a
montré que la somme de la ag-multiplicité et de la (—a)-multiplicité d’une
suite récurrente binaire entiére non dégénérée est au plus 3 sauf dans le cas
de la suite

§n+2=§n+1_2&m’ &0=&1=1

ou cette somme vaut S (§p=&;=1et&,=&,=8&;,=—1)

et dans quatre autres cas (explicites) ou cette somme vaut 4. L’exemple
de la suite (§,) définie par

Eo =& =1, &= —&11 +NE, (donc&; = 1),
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avec N entier quelconque montre qu’il existe une infinité de suites recurrentes
linéaires entiéres et non dégénérées dont la multiplicité est égale a tros.
Notons une conjecture énoncée en [60] par R. Tijdeman.

CONJECTURE. Si (£,) est une s.rl. binaire entiére non dégénérée et si
£, = £, avec r < s < t alors la différence t — r est bornée par une constante
absolue.

Récemment Beukers et Tijdeman ont démontré des résultats genéraux sur
la multiplicité des s.r.l. binaires a valeurs complexes, voir [9], leur article
contient en particulier le trés joli résultat suivant.

THEOREME. Soit o un nombre complexe de module > 2 et soit L
une droite du plan complexe qui ne passe pas par lorigine. Alors, au plus
sept puissances entiéres de o sont sur L.

Ce travail n’utilise pas l'analyse p-adique mais les polyndmes hyper-
géomeétriques, méthode qui remonte & Thue et Siegel.
4. Criteres de rationalité

La partie A conduit au critére de rationalité suivant: Une série formelle
Bt) = ), & t"

nz0

a coefficients dans un corps # représente une fraction rationnelle si, et
seulement si, il existe k tel que, pour N assez grand, le déterminant de
Hankel d’ordre N associ¢ a la suite (§,4,),>0 st nul.

Grace a cette caractérisation, Dwork a considérablement généralisé un
résultat de Borel et obtenu un théoréme qui, dans le cas rationnel,
s’énonce ainsi.

THEOREME. Soit une série formelle da coefficients rationnels

BE(it) = ) &, t".

n>0
S’il existe un ensemble fini S de nombres premiers tels que

(1) pour p¢S, chaque &, admet un dénominateur non divisible par p,
(1) E définit une fonction méromorphe dans un disque de C de rayon R,,

() pour peS, f définit dans C, une fonction méromorphe dans un
disque ouvert du centre 0 et de rayon R,,

(iv ona Ry.[[R, =1,

peS




102 L. CERLIENCO, M. MIGNOTTE ET F. PIRAS

alors f est une fonction rationnelle. (Le corps C, est le compléte de la
cloture algébrique de Q,).

Le théoreme de Borel correspond au cas ou S est vide. Le principe de la
démonstration du théoréme ci-dessous est le suivant. On considére, pour k
assez grand, le déterminant du Hankel Hy d’ordre N de la suite (§,.x)
et on majore | Hy |, pour toutes les places v du corps Q:

— Si v est ultramétrique et n’appartient pas a S, alors trivialement
I HN Iu < 1 .
— Sive S on utilise les inégalités de Cauchy dans C,.

— Si v est la valeur absolue ordinaire, on utilise les inégalités de Cauchy
dans C.

Pour k et N assez grands, on aboutit a ’estimation

HIHNIU< 1)

qui implique Hy = 0. D’ou la conclusion.
Une démonstration détaillée figure en [2], ainsi que celle du théoréme
de Polya-Bertrandias, qui généralise le théoréme précédent.

III. METHODES TRANSCENDANTES

1. Minoration de |E&, |

Grace au théoreme de Roth-Ridout, K. Mahler [35] avait obtenu une
minoration non effective de |§,| pour une s.r.l binaire. Les méthodes
transcendantes conduisent a des résultats effectifs.

Soit (§,) une s.r.l. donnée par

E, = P(no] + ..+ Pmo; pour n=0, of,.,0,€C distincts.

On peut supposer |®; | = |®,| = ... = | o, |. Lorsque |®;| > |®,| on a
trivialement

&l ~ [ Pi() | @y |”

1 :
donc | E,| = > P,(n)| o, |" pour n = n, (effectif).

Minorer | €, | n’est plus aussi facile lorsque ®; et @, sont de méme module.
Considérons en effet le cas le plus simple ou (&,) est réelle et donnée par

&, = o} + 0}, '
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