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— Si m ^ 0 (mod 3) on a (Fm, LJ 1 donc Fm y2 et Lm z2. Par
conséquent m 1 ou 3, Fn 1 ou 8; le seul carré est encore 1.

— Si m EE 0 (mod 3) alors (Fm, LJ 2 et donc Fm 2 y2 et Lm 2 z2.

Si m est impair on a z4 - 5 / — 1, ce qui est impossible modulo 8.

Si m 2 m' alors Fm, Lm< 2 y2. Si m' est impair on a Fm> 2 t2

et Lm, w2 donc m' 1 ou 3 et Fn 1 ou 144. Si mr est pair alors

Fm> t2 ; dans ce cas, tout ce qui précède montre que n 3. 2S s ^ 3

et que les nombres de Fibonacci d'indices n/4, nj16 sont tous des

carrés mais, comme F6 8 et L48 ne sont pas des carrés, ce dernier cas

est impossible. [Il n'est pas nécessaire de calculer F48: si F48 x2

alors F24. 2 y2 puis L12 — 2 z2, mais L12 322.]

II. Méthodes p-adiques

Pour une introduction aux nombres p-adiques, le lecteur pourra consulter
Borevitch et Schafarevitch [10] ou J. P. Serre [54], et pour une étude plus
détaillée de l'analyse p-adique Y. Amice [2] ou K. Mahler [36].

1. Le théorème de Skolem-Mahler

Théorème. Soit (£J une suite récurrente linéaire à valeurs entières.

Alors l'ensemble des indices n tels que £„ soit nul est égal à une union

finie de progressions arithmétiques (certaines de ces progressions peuvent être

de raison nulle et l'union peut même être vide

Comme en A.I.3, écrivons sous la forme

Pfin) coï + + Pk(n) (ùnk pour n ^ 0,

les Pj étant des polynômes à coefficients dans le corps de nombres L
œj, et soit ^3 un idéal premier de L tel que les cOj soient

tous des ^-unités. Il est facile de voir que, pour tout s > 0, il existe un
entier T tel que

| co J -11 < e ;'=1,k
En particulier, il existe un entier T tel que chacune des T fonctions

(à valeurs dans le complété Lçp de L)

fm :x-»Pj(xT + m)coJ' exp((Log aj)x), 0,1,T - 1,

où exp et Log sont l'exponentielle et le logarithme ^3-adiques, soient

définies et analytiques pour x parcourant l'anneau Zp des entiers p-adiques

(p étant le nombre premier au-dessous de ^ß).
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Bien sûr, pour n entier, on a fm(n) Donc, si la suite (ÇJ

possède une infinité de zéros, il en est de même pour certaines des fonctions

fm. Or, chaque fm est une fonction analytique sur l'ensemble compact Zp

et, à moins d'être identiquement nulle, elle ne possède qu'un nombre fini

de zéros. D'où la conclusion. n

Corollaire. Si (£„) admet une infinité de zéros, alors, si £,n s'écrit

comme plus haut

^ Pfin) ©ï + + Pfin) ®nk

où les Pj sont des polynômes non nuls et les coj des nombres algébriques

non nuls ; pour tout i il existe un indice j ^ i tel que coJcùj soit une

racine de l'unité.

Soit en effet m tel que l'on ait £>nT + m
0 pour tout n. La conclusion

résulte de la formule

PfinT-\-m) co? co[n + + PfinT + m) co œj 0 n ^ 0

et du fait qu'un polynôme exponentiel 2 Rfin) p J, relatifs à des ph deux à deux

distincts, ne peut s'annuler que si les polynômes Rh sont tous nuls (ce qu'on
a déjà vu en A.III.3.c)).

On peut se poser le problème de savoir décider si (£„) comporte ou

non une infinité de zéros. Pour cela, remarquons d'abord que l'idéal ?ß

et le nombre T qui apparaissent dans la démonstration ci-dessus peuvent être

déterminés effectivement; il suffit, par exemple, de choisir ^3 au-dessus d'un
nombre premier qui ne divise pas le produit oq... o>fc. Discr (co1?..., cofc),

on peut alors prendre T pf — 1 avec / [L : Q] (donc / ^ k On
considère alors les T suites (Ç„r+m)„^05 m 0, 1,..., T — 1 et on a vu que
(£„) a une infinité de zéros si, et seulement si, une de ces suites est

(identiquement) nulle. Enfin comme chacune de ces T suites est une s.r.l.

d'ordre k, elle est identiquement nulle si, et seulement si, ses k premières
valeurs sont nulles. Pour répondre à la question il suffit donc de calculer
les Tk premières valeurs (A ce sujet, voir aussi Berstel-Mignotte [6].)

Par contre la preuve du théorème de Skolem-Mahler ne permet pas de

déterminer effectivement tous les zéros de (£„), mais seulement — comme
nous venons de voir — tous les zéros sauf peut-être un nombre fini d'entre
eux. Cependant, le théorème suivant — dû à Strassman — permet de majorer
le nombre de zéros de (£J, lorsque ce nombre est fini.
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Théorème. Soit f(x) £ akxk, les ak appartenant à un corps
k^O

ty-adique Ksp, une série qui converge sur l'anneau Osp, et qui n'est

pas identiquement nulle. Alors le nombre de zéros de f dans l'ensemble

0<p est majoré par la quantité max {k ^ 0; | ak |

<p est maximal}.

On trouvera une démonstration dans l'article de Lewis [32].

2. Un exemple

Avec de la chance, on peut quelquefois déterminer l'ensemble des zéros

d'une suite récurrente linéaire en n'utilisant que l'analyse p-adique.
Considérons l'exemple suivant, dû à J. Berstel, de la suite définie par

Si 0, 1, ^+3 2^3-4^^+4^
pour n ^ 0

On constate que l'on a

^0 ~ ^1 ^4 — ^6 — £l3 ^52 0

Nous allons montrer que les zéros trouvés ci-dessus sont les seuls.

Choisissons p 53. Modulo p, le polynôme G X3 — 2 X2 A 4 X — 4

se décompose en facteurs linéaires distincts. Soient col9 co2 et (d3 les racines
de G dans le corps Qp, ce sont des p-unités. Comme p divise les

œj_1 — 1, les 52 fonctions

"^52n + m> 0, 1, 51

se prolongent en des fonctions analytiques fm de Zp dans lui-même. Posons

/mW E ak,mXk;
0

on vérifie facilement que l'on a

(*) V{ I ak,m si k^i, pour i 1,2,3

(où le symbole | signifie divise).

On constate que

P Xfm(0)si m$ {0,1,4, 6,13} et 0 < 51,

et dans ce cas une égalité

fm(x)a0,m + Œ ak,mXk) 0
k> 1
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est impossible pour x dans Zp [puisque p divise la somme entre parenthèses

mais pas Uo,m

Pour m 1, 4, 6, 13, on a

fm(0)0, 53 | /m(l) mais fjl) # 0 (mod 532)

et, en utilisant la propriété (*) pour i2, on voit que

fjx) x(alim + £ fl4>m X4-1) #0 si X 6 Z*
k^2

Enfin, pour m 0, on a (en oubliant l'indice zéro)

/(0) /( 1) 0, /(2) 0 (mod et /(2) # 0 (mod p3),

/(x) x(fll + £ ^x'"1) avec p2 | ai mais ai^0(modp3);
fe^2

mais ici la méthode précédente ne s'applique plus, nous avons besoin d'un

outil plus puissant.
Pour k entier positif, posons

(X)k X(X-l)... (X — k+1), et en particulier (X)0 1

Du fait que Xn est une combinaison linéaire à coefficients entiers des

(X)i pour 0 ^ i ^ n, on voit qu'une série Z an Xn peut se mettre sous forme

£ bn. (X)„ avec pj \ bn si pj \ am pour tout m ^ n. Si on applique ceci à

l'exemple de /0, on trouve

/M fo(x) b2 (x)2 + X bk - M* >

où p2 | b2> b2 # 0 (mod p3) et p3 | bk si k ^ 3 (utiliser (*) avec i 3). Donc /
s'écrit

/(x) h2 — 1) (1 + ö'(x)) avec p | g(x) si xeZp.
Ceci montre que, pour z parcourant Zp, les seuls zéros de f0 sont 0 et 1.

D'où le résultat annoncé.

Pour d'autres détails sur cet exemple voir [37] et [44].

3. Multiplicités de suites récurrentes linéaires

Ce sujet a été traité très en détail par R. Tijdeman dans son exposé [60],
ce qui nous permet d'être relativement brefs.

Nous ne considérerons ici que des suites à valeurs dans un anneau sé
contenu dans le corps des complexes. Pour un élément a de cet anneau, la
a-multiplicité de la suite (^„) est le nombre d'indices n pour lesquels
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S„ a; la multiplicité est la borne supérieure de ses a-multiplicités lorsque
a parcourt sä. Lorsque (SJ est une s.r.l. de rang m, sa multiplicité est égale
à la O-multiplicité d'une s.r.l. de rang au plus m + 1 [ceci résulte de l'exemple
de A.II]. Inversement, si sä est un corps et si le polynôme caractéristique
d'une s.r.l. (SJ a une racine simple alors la O-multiplicité de (S) est

majorée par la multiplicité d'une s.r.l. (qn) de rang m — 1, m étant le rang
de (S„); en effet on a alors

S„ Pi(n)©" + + Pk_!(«)©?_! + Pk(ùnk,Pk constant,

et il suffit de poser

fim PMiPl/WlcY + - + Pk-iWCöi/ök-i)",

et la O-multiplicité de (£„) est égale à la — Pm — multiplicité de (qn).
On dira que (SJ est dégénérée lorsqu'il existe a tel que son a-multiplicité

soit infinie. Cette définition diffère de celle de [60] où la suite est dite

dégénérée ssi sa O-multiplicité est infinie. D'après le paragraphe précédent,

on sait tester si une s.r.l. est dégénérée ou non.
Le problème de la multiplicité a surtout été étudié pour le premier

cas non trivial, celui des s.r.l. binaires non dégénérées et à valeurs entières.

M. Ward, qui a écrit plusieurs dizaines d'articles sur les suites récurrentes

linéaires, avait conjecturé dans les années trente que la multiplicité d'une

telle suite ne dépasse pas 5.

Après des travaux de Skolem, Chowla, Dunton, Lewis, Laxton... Kubota
a prouvé cette conjecture, et même montré que la multiplicité d'une telle

suite n'excède jamais 4, voir [31]. Nous avons placé l'étude de la multiplicité

d'une s.r.l. dans le chapitre relatif aux méthodes p-adiques, en effet

la preuve de Kubota utilise de manière essentielle la méthode de Skolem,
mais elle est trop compliquée pour que nous puissions en donner une idée ici.

Les résultats de Kubota ont ensuite été améliorés par Beukers [8] qui a

montré que la somme de la a-multiplicité et de la — a)-multiplicité d'une
suite récurrente binaire entière non dégénérée est au plus 3 sauf dans le cas

de la suite

Ê„ + 2 Sn+1 -2?U, So Si 1

où cette somme vaut 5 (S0 Si 1 et S2 ^4 S12 ~~ 1)

et dans quatre autres cas (explicites) où cette somme vaut 4. L'exemple
de la suite (£„) définie par

So Si 1
» + 2 ~ + N^n (donc S3 1)
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avec N entier quelconque montre qu'il existe une infinité de suites récurrentes

linéaires entières et non dégénérées dont la multiplicité est égale à trois.

Notons une conjecture énoncée en [60] par R. Tijdeman.

Conjecture. Si (^„) est une s.r.l. binaire entière non dégénérée et si

£s ^ avec r < s < t alors la différence t - r est bornée par une constante

absolue.

Récemment Beukers et Tijdeman ont démontré des résultats généraux sur

la multiplicité des s.r.l. binaires à valeurs complexes, voir [9], leur article

contient en particulier le très joli résultat suivant.

Théorème. Soit a un nombre complexe de module ^2 et soit L
une droite du plan complexe qui ne passe pas par l'origine. Alors, au plus

sept puissances entières de a sont sur L.

Ce travail n'utilise pas l'analyse p-adique mais les polynômes hyper-

géométriques, méthode qui remonte à Thue et Siegel.

4. Critères de rationalité

La partie A conduit au critère de rationalité suivant: Une série formelle

m
n^O

à coefficients dans un corps représente une fraction rationnelle si, et

seulement si, il existe k tel que, pour N assez grand, le déterminant de

Hankel d'ordre N associé à la suite {fin+k)n^0 est nul-
Grâce à cette caractérisation, Dwork a considérablement généralisé un

résultat de Borel et obtenu un théorème qui, dans le cas rationnel,
s'énonce ainsi.

Théorème. Soit une série formelle à coefficients rationnels

m i f.
n^O

S'il existe un ensemble fini S de nombres premiers tels que

(i) pour p £ S, chaque £,n admet un dénominateur non divisible par p,

(ii) S définit une fonction méromorphe dans un disque de C de rayon R0,

(iii) pour p e S, f définit dans Cp une fonction méromorphe dans un
disque ouvert du centre 0 et de rayon Rp,

(iv) on a R0 f] Rp ^ 1,
peS
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alors f est une fonction rationnelle. (Le corps Cp est le complété de la
clôture algébrique de Qp).

Le théorème de Borel correspond au cas où S est vide. Le principe de la
démonstration du théorème ci-dessous est le suivant. On considère, pour k

assez grand, le déterminant du Hankel HN d'ordre N de la suite (£n+fc)

et on majore \ HN\V pour toutes les places v du corps Q:

— Si v est ultramétrique et n'appartient pas à S, alors trivialement

\HN\V^1.
— Si v g S on utilise les inégalités de Cauchy dans Cp.

— Si v est la valeur absolue ordinaire, on utilise les inégalités de Cauchy
dans C.

Pour k et N assez grands, on aboutit à l'estimation

m*wi.<i,
V

qui implique HN 0. D'où la conclusion.
Une démonstration détaillée figure en [2], ainsi que celle du théorème

de Polya-Bertrandias, qui généralise le théorème précédent.

III. Méthodes transcendantes

1. Minoration de | £„ |

Grâce au théorème de Roth-Ridout, K. Mahler [35] avait obtenu une
minoration non effective de | \n | pour une s.r.l. binaire. Les méthodes

transcendantes conduisent à des résultats effectifs.

Soit (£„) une s.r.l. donnée par

\n Pi(n) co" + + Pk(n) cOfe pour n ^ 0 aq,..., cok s C distincts

On peut supposer | ccq | ^ | co2 I ^ ^ I I
• Lorsque | cox | > | co2 I on a

trivialement

\U - \Pi(n)\ I ©i r
donc | \n | ^ ^ Pi(n) | (ù1 \

n
pour n ^ n0 (effectif).

Minorer | %n | n'est plus aussi facile lorsque (ûx et co2 sont même module.

Considérons en effet le cas le plus simple où (ÇJ est réelle et donnée par
CO" + ©2-
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