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ramènent le problème de la recherche de conditions nécessaires et suffisantes

pour l'existence du Q.D.-schéma à celui de la distribution des zéros dans les

s.r.L Hj n. (Ce problème — relativement à une s.r.l. arbitraire a été

étudié en [6].)

B. ÉTUDE ARITHMÉTIQUE

La théorie des suites récurrentes est une mine inépuisable

qui renferme toutes les propriétés des nombres ; en calculant
les termes consécutifs de telles suites, en décomposant
ceux-ci en facteurs, en recherchant par l'expérimentation les

lois de l'apparition et de la reproduction des nombres

premiers, on fera progresser d'une manière systématique
l'étude des propriétés des nombres et de leurs applications
dans toutes les branches des Mathématiques.

Edouard Lucas (Théorie des Nombres)

I. Méthodes élémentaires

1. Propriétés de périodicité

Le premier résultat de ce type est dû à Lagrange, la proposition
suivante est essentiellement due à Carmichael.

Proposition. Soit £, une suite à valeurs dans un anneau sé et

vérifiant la relation de récurrence linéaire (à coefficients dans sé)

^n + k &k— 1 ^n + k—1 tljç— 2 ^n + k—2 ~b ••• ^0 s n ^ 0

On suppose que £, ne prend qu'un nombre fini de valeurs; alors Ç est

ultimement périodique. De plus, lorsque a0 n'est pas un diviseur de zéro,

la suite £, est purement périodique.

Considérons la suite (£„, £n + 1,^n+k-i)n>o des tuples de valeurs
successives de Si I ne prend qu'un nombre fini de valeurs alors ces /c-uples

ne prennent aussi qu'un nombre fini de valeurs, il existe donc n0 ^ 0

et t > 0 tels que

^n + k-l) fén+l+O-. ï>n+t+k-l)POUr H U0

Grâce à la relation de récurrence cette égalité reste vraie pour tout n ^ n0
et on a donc t)n+t pour n ^ n0. C'est la première assertion.

Supposons en outre a0 non diviseur de zéro et que n0 a été choisi
minimal. Si on a n0 ^ 1 alors la relation de récurrence montre que
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a0&no-i-t>no+t-i) 0, ce qui implique ^no_1 ^0+ï_l5 formule qui
contredit la minimalité de n0. On a donc n0 0, autrement dit la suite
E, est bien purement périodique.

On peut en déduire une démonstration du théorème de Kronecker.

Corollaire. Soit 0 un entier algébrique non nul dont tous les conjugués
sont de module au plus 1, alors 0 est une racine de l'unité.

Soient 0X 0, 02,..., 0d les conjugués de 0 et Xd — ad^1 Xd~1 — — a0

son polynôme minimal sur Z. Pour n entier ^ 0 posons 0" + 02

+ + 02- Alors la suite (£„) vérifie

£>n + d — ad- 1
£>n + d- 1 + — + a0^n, n ^ 0

de plus les Çn sont des entiers de l'intervalle [ —d, +d~]. Enfin a0 est

non nul, la proposition implique donc que (£J est purement périodique.
Soit t la période, on a ^ ^0; soit 0j_ + + 0^ d, et comme | 0f | < 1

pour i 1,..., d, 0' 1.

Le cas particulier de la proposition 1 le plus intéressant est celui où
sé Fp( Z/pZ), p étant (comme toujours un nombre premier. Considérons
donc une série s.r.l. E, à valeurs dans Fp et vérifiant

ak-1 L+k-i + - + a0^n, n ^ 0 (a0,a^eFp).

Soit L Fpd la plus petite extension de Fp dans laquelle le polynôme
G Xk — ak_x Xk~x — — a0 se décompose en facteurs linéaires. Alors
E, est ultimement périodique (purement périodique si a0 ^ 0) et sa période
est un diviseur de p(pd— 1), ce qu'on voit en utilisant les formules (3) et

(4) de A.I.2 [d'une part les pj appartiennent à L* et vérifient donc

p Jd
1

1, d'autre part les coefficients du binôme modulo p admettent p

comme période] ; en outre si G n'a que des racines simples alors la période
divise pd — 1. Le cas des suites récurrentes linéaires binaires est très simple.
L'entier d ne peut alors prendre que les valeurs 1 ou 2. Plus précisément,
si Ç vérifie

Çb + 2 «i£n + i +a0£>n,n^O,a0, e Fp » 0,

posons A a\ + 4 a0etsupposons p impair. Le symbole de Legendre

permet de caractériser les cas d 1 ou 2 : on a
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/A\
d 2 si et seulement si — — 1

\PJ

Ainsi, on a les trois possibilités suivantes :

(i) À est un résidu quadratique modulo p, alors la période t divise

p -i,
(ii) À n'est pas un résidu quadratique modulo alors divise 1,

(iii) A 0, alors t divise p(p— 1).

On peut raffiner l'assertion (ii) de la manière suivante. Supposons

—) — 1. Soient p1 et p2 les racines du polynôme X2 — a^X — a0
PJ

dans le corps Fp2 et soit a l'automorphisme de Frobenius de ce corps
(ct(oc) ap). On a d'une part

et d'autre part

D'où

t.n aiPÏ + a2p2 a1,cc2e L

Pî P! Pi et Pip2

PÎ+1 P2+1 P1P2 -
ce qui prouve l'assertion suivante.

(ii)' Soit e l'ordre de — a0 dans le corps Fp, alors si À n'est pas résidu
quadratique modulo p, la période divise e{p+ 1).

Exemple 1 : Reprenons la suite de Fibonacci. On a alors,

Fn + 2 Fn+1 + Fn, À 5 e 2

et les trois cas précédents sont

(i) p 5k ± 1, la période divise p — 1,

(ii) p 5k ± 2, la période divise 2(p + l) (c'est encore vrai pour p 2)

(iii) p 5 la période est égale à 20.

On en déduit aussitôt les propriétés de divisibilité suivantes :

si p 5k ± 1 alors p divise Fn lorsque p — 1 divise n,
si p 5k ± 2 alors p divise Fn lorsque p + 1 divise n,
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[en effet, F„
P" ~ P"2

donc Fp+1
Plp2 ~ PlPz

0],
Pl — P2 Pl ~ P2

enfin si p 5 on vérifie directement que 5 divise Fn si et seulement si 5

divise n.

Exemple 2 : Le critère de Lucas peut être obtenu comme corollaire de l'étude

précédente. Soit co —'le nombre d'or. On considère la suite d'entiers

rm co2w + co~2m, m 1, 2, 3,..., ainsi rm 3, 7, 47,..., et on peut calculer
aisément les rm grâce à la relation évidente rm + 1 r2 — 2. En fait si

(Ln) est la s.r.l. — dite de Lucas — définie par L0 2, L1 1, Ln+2

Ln + 1 + Ln pour n ^ 0, on a rm L2m. On a alors le critère de primalité
suivant.

Proposition 2. Soit p un nombre premier de la forme An + 3 et soit
M Mp 2P — 1, le pieme nombre de Mersenne. Alors M est premier
si, et seulement si, rp-1 0 (mod M).

Supposons d'abord M premier, M 8. 16"— 1 2 (mod 5), donc
coM+1 — 1 (mod M), ce qui implique bien

rp_1 (œM + 1 + l) cû_2p-1 0 (mod M).

Inversement, supposons rp_1 0 (mod M). On a alors

(*) co2P — 1 (mod M) [comme deux lignes plus haut]

donc

(**) co2P
+ 1

1 (mod M).

Supposons que M se décompose sous la forme

m n Pi. n qj

où les Pi sont des nombres premiers de la forme 5a ± 1 et les q} sont
des nombres premiers de la forme 5a ± 2, et on a

coPi_1 1 (mod Pi), ö)2(9j + 1) 1 (mod qf).

Comme les congruences (*) et (**) sont valables pour tout diviseur de

M, on voit que l'ordre de g> modulo chaque diviseur premier de M est

exactement 2P+1. Donc les pt et les qj sont respectivement de la forme

Pi 2p+1hi + l et qj 2pkj-l.
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Le premier cas est impossible puisqu'on aurait pt > M ; le second cas n est

possible que pour kj 1 et on a donc M qj, M est bien premier!

Ce test s'applique par exemple pour p 7 et montre que 127 est

premier, de la même manière (mais après plus de calculs on peut montrer

que M127 est aussi premier.
D'autres tests de primalité sur les nombres de Mersenne et de Fermât

figurent dans l'ouvrage de Sierpinski [56], chap. X.

2. L'équation de Pell-Fermat

Soit T une «conique» définie sur Z, elle peut alors être caractérisée

par une équation à coefficients entiers de la forme

ax2 + 2bxy + cy2 + 2dx + ley + / 0.

En multipliant cette équation par a, on a la forme équivalente (si a^O)

(<ax + byFd)2 + (<ac — b2)y2 + 2(ac — bd)y + af — d2 0

Si a 0 et c ^ 0 on obtient une écriture analogue.
Si a c 0 alors b est non nul (sinon F est une droite) et en posant

x' x + y, y' x — y on peut mettre l'équation de F sous la forme

Ibx'2 - 2by'2 + 2(d + e)x' + 2(d-e)y' + / 0,

ce qui nous ramène au cas précédent.

Ainsi, par un changement convenable de coordonnées, on peut se limiter
à l'étude de l'équation

x'2 + c'y'2 + 2d'y' + f 0 ;

— pour c' > 0, T est une ellipse qui, bien entendu, n'a qu'un nombre
fini de coordonnées entières (que l'on peut calculer facilement),

— pour c' 0, T est une parabole, nous n'étudierons pas ce cas (on peut
encore déterminer facilement les points entiers de T),

— pour c' < 0, T est une hyperbole et par un nouveau changement de

coordonnées on peut mettre l'équation sous la forme

(E) X2 — DY2 k, avec D > 0.

Nous excluons encore le cas trivial où k est nul. Nous sommes donc ramenés
à l'étude de cette équation, dite de Pell-Fermat. Si D u2 est le carré
d'un entier on a la décomposition
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(.X-uY)(X + uY) k

et r n'a qu'un nombre fini de points que l'on trouve de manière évidente.

On supposera donc désormais que D n'est pas un carré.

La théorie de l'équation de Pell-Fermat est bien connue. On montre
(cf. par exemple Borevitch et Schafarevitch [10], chap. II, § 5, Th. 1) qu'il
existe un nombre fini de solutions (x(1), y(1)),..., (x(k\ y(k)) qui peuvent être

calculées effectivement, telles que toute solution (x, y) vérifie

où 1 ^ i ^ h, se Z, et e est l'unité fondamentale de l'anneau Z[^/D]
dont la norme est égale à 1.

On a donc les formules

Ceci montre qu'il existe un nombre fini de suites récurrentes binaires
^(1),..., ^(k), ri(1),..., r|(/c) admettant toutes X2 — (e + e-1)X — 1 comme échelle

telles que les solutions de l'équation (E) soient exactement les couples

h i°), 1 < i < fc et n ^ 0.

Exemple 1 : Considérons l'équation

X2 — 5Y2 — 1, avec X et Y positifs

On sait que l'unité fondamentale du corps Q(y/5) est le nombre d'or

co de conjugué —go"1. D'autre part l'anneau des

entiers de ce corps est principal, donc si x, y est une solution avec x > 0

et y ^ 0, il existe n ^ 0 tel que

x + VD y (x^ + VDj/^s5,

X xf ^-((x{i) + jD y^ßS + ix^-jD y(i)) e~s)

et

y y? +

On voit aussitôt que les deux signes doivent être +, donc

x +
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Ensuite, on constate que n doit être multiple de trois, soit

x + 75 j; (9 + 5)s, s > 0.

Les solutions sont donc (xs,ys) (1, 0), (9, 4), (161, 72),... et elles vérifient

xs+2 18xs+1 - xs) ys+218ys+1 - ys pour s>0.
On peut exprimer ces nombres en fonction des nombres de Fibonacci et

de Lucas,

1 1

2
^3 S 5 yS 2

^3s •

[On a plus généralement L2 — 5 F2 (—1)" 4 pour tout n ^ 0].

x(x -f- 1)
Exemple 2 : Considérons l'équation — 3 2k — 5 où x et k sont

inconnus (et entiers Posons X 2x + 1 ; l'équation devient

X2 - 3.2" -39, où n k + 3.

Si n 2m + 1 est impair, posons y 2m, alors

X2 - 6y2 -39,

mais comme J — 1, l'équation n'a pas de solution. Donc n est pair,

disons n 2m. Posons encore y 2m, alors

X2 - 3y2 -39.
Donc X 3z et

y2 - 3z2 13

On peut montrer (cf. [42]) que les solutions y ^ 0 sont les valeurs de la
suite (ys) définie par

— 4, jù il > ys ~~ 4ys_i ~ ys-2 > s g z.

Donc y-2 16, y-x 5, y0 4, y! 11, y2 40... et on constate
que pour les petites valeurs de | s | seuls y0 et y_2 sont des puissances de 2
qui correspondent aux deux solutions de l'équation initiale

1
1(1 + 1)

x 1, k 1:\ =3.2-5,
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et

X 13 k 5 : ^ 3 25 - 5
13(13 + 1)

o o5

Nous allons montrer que ce sont les seules. D'abord ce sont les seules

pour k ^ 6. Supposons que l'équation ait une solution avec k ^ 7 (i.e. m ^5)
alors y yt 2m. On vérifie sans peine que ceci impose t 6 mod 16

(regarder ys modulo 32). On considère enfin (ys) modulo 31, cette suite est

de période 32 (on a — — 1) et
31;

t 6 mod 16 => yt +7 mod 31

Mais, modulo 31, les puissances de 2 sont 1, 2, 4, 8 et 16. Donc
l'équation considérée n'a que les deux solutions notées précédemment.

La méthode appliquée ici est un cas particulier d'un algorithme général

présenté en [42] et qui s'applique à toutes les équations diophantiennes
de la forme f(x) c. an, où / est un polynôme du second degré ; c'est

ainsi que l'on peut obtenir une nouvelle démonstration du fait que l'équation
de Ramanujan-Nagell x2 + 7 2" sont obtenues pour n 3, 4, 5, 7, 15

(on considère des congruences modulo 7681, voir [43]).

Exemple 3 : Nous allons montrer que les seuls carrés de la suite de

Lucas 2, 1, 3, 4, 7 sont 1 et 4 et que les seuls carrés de la suite de Fibonacci

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 sont 0, 1 et 144. Ce

résultat est dû à Cohn [20] (voir aussi le chapitre 8 du livre de Mordell [48]).

1 + -n/5
#

1 - J5
Si œ — et cd —on sait deja que

oo" — co

Fn —— et Ln œ" + cû

ce qui permet d'étendre la définition de ces suites à n ^ 0. Modulo 4,

les deux suites sont de période 6

n 0 1 2 3 4 5 6 7

Fn mod 4 0 1 1 2 3 1 0 1

Ln mod 4 2 1 3 0 3 3 2 1
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comme on le voit sur cette table.

De la relation L2 - 5 F2 4(-1)" et de la table on déduit que

{Fn,Ln)= 1 si n ^ 0 (mod 3),

(Fn, Ln) 2 si n 0 (mod 3).

Démontrons d'abord l'assertion sur Ln.
Si n 2m est pair la formule Llm L„ — 2 montre que Ln ne peut être

un carré.

Supposons donc n impair. Il suffit de considérer le cas n > 0, et même

n ^ 5 (L1 1 et L3 4 sont des carrés). On peut écrire n c + 2 t k

avec t 3r, k > 0, k ±2 (mod 6) et c 1 ou 3. Et les formules

2Em+2fc 5FmL2/c + Lm L2k

5 FmFkLk H- Lm(Lk — 2)

- 2 vm (mod Lk)

jointes au fait que Lk est impair montrent que

Ln Lc + ltk - Lc -1, —4 (mod Lk).

Si L„ est un carré + 1 mais comme Lk 3 (mod 4) c'est impossible.

Passons maintenant aux nombres de Fibonacci Fn.
Si n 1 (mod 4), supposons n ^ 1 (sinon Fn — 1 est un carré). Comme

plus haut écrivons n 1 + 2 t k avec t 3r, k ± 2 modulo 6. Les
formules

^ Fm + 2/c — Fn L2k + F2k Ln

Fn(Lk— 2) + FkLkLn

- 2 F„ (mod Lk)

et le fait que Lk est impair, impliquent

Ln -1 (mod Lk),

et comme nous l'avons déjà vu cette congruence est impossible. Donc
n 1 et Fn 1.

Si n 3 (mod 4), le changement de n en -n nous ramène au cas
précédent.

Si n 2n est pair alors F2m FmLm x2 et on peut supposer m > 0.
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— Si m ^ 0 (mod 3) on a (Fm, LJ 1 donc Fm y2 et Lm z2. Par
conséquent m 1 ou 3, Fn 1 ou 8; le seul carré est encore 1.

— Si m EE 0 (mod 3) alors (Fm, LJ 2 et donc Fm 2 y2 et Lm 2 z2.

Si m est impair on a z4 - 5 / — 1, ce qui est impossible modulo 8.

Si m 2 m' alors Fm, Lm< 2 y2. Si m' est impair on a Fm> 2 t2

et Lm, w2 donc m' 1 ou 3 et Fn 1 ou 144. Si mr est pair alors

Fm> t2 ; dans ce cas, tout ce qui précède montre que n 3. 2S s ^ 3

et que les nombres de Fibonacci d'indices n/4, nj16 sont tous des

carrés mais, comme F6 8 et L48 ne sont pas des carrés, ce dernier cas

est impossible. [Il n'est pas nécessaire de calculer F48: si F48 x2

alors F24. 2 y2 puis L12 — 2 z2, mais L12 322.]

II. Méthodes p-adiques

Pour une introduction aux nombres p-adiques, le lecteur pourra consulter
Borevitch et Schafarevitch [10] ou J. P. Serre [54], et pour une étude plus
détaillée de l'analyse p-adique Y. Amice [2] ou K. Mahler [36].

1. Le théorème de Skolem-Mahler

Théorème. Soit (£J une suite récurrente linéaire à valeurs entières.

Alors l'ensemble des indices n tels que £„ soit nul est égal à une union

finie de progressions arithmétiques (certaines de ces progressions peuvent être

de raison nulle et l'union peut même être vide

Comme en A.I.3, écrivons sous la forme

Pfin) coï + + Pk(n) (ùnk pour n ^ 0,

les Pj étant des polynômes à coefficients dans le corps de nombres L
œj, et soit ^3 un idéal premier de L tel que les cOj soient

tous des ^-unités. Il est facile de voir que, pour tout s > 0, il existe un
entier T tel que

| co J -11 < e ;'=1,k
En particulier, il existe un entier T tel que chacune des T fonctions

(à valeurs dans le complété Lçp de L)

fm :x-»Pj(xT + m)coJ' exp((Log aj)x), 0,1,T - 1,

où exp et Log sont l'exponentielle et le logarithme ^3-adiques, soient

définies et analytiques pour x parcourant l'anneau Zp des entiers p-adiques

(p étant le nombre premier au-dessous de ^ß).
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Bien sûr, pour n entier, on a fm(n) Donc, si la suite (ÇJ

possède une infinité de zéros, il en est de même pour certaines des fonctions

fm. Or, chaque fm est une fonction analytique sur l'ensemble compact Zp

et, à moins d'être identiquement nulle, elle ne possède qu'un nombre fini

de zéros. D'où la conclusion. n

Corollaire. Si (£„) admet une infinité de zéros, alors, si £,n s'écrit

comme plus haut

^ Pfin) ©ï + + Pfin) ®nk

où les Pj sont des polynômes non nuls et les coj des nombres algébriques

non nuls ; pour tout i il existe un indice j ^ i tel que coJcùj soit une

racine de l'unité.

Soit en effet m tel que l'on ait £>nT + m
0 pour tout n. La conclusion

résulte de la formule

PfinT-\-m) co? co[n + + PfinT + m) co œj 0 n ^ 0

et du fait qu'un polynôme exponentiel 2 Rfin) p J, relatifs à des ph deux à deux

distincts, ne peut s'annuler que si les polynômes Rh sont tous nuls (ce qu'on
a déjà vu en A.III.3.c)).

On peut se poser le problème de savoir décider si (£„) comporte ou

non une infinité de zéros. Pour cela, remarquons d'abord que l'idéal ?ß

et le nombre T qui apparaissent dans la démonstration ci-dessus peuvent être

déterminés effectivement; il suffit, par exemple, de choisir ^3 au-dessus d'un
nombre premier qui ne divise pas le produit oq... o>fc. Discr (co1?..., cofc),

on peut alors prendre T pf — 1 avec / [L : Q] (donc / ^ k On
considère alors les T suites (Ç„r+m)„^05 m 0, 1,..., T — 1 et on a vu que
(£„) a une infinité de zéros si, et seulement si, une de ces suites est

(identiquement) nulle. Enfin comme chacune de ces T suites est une s.r.l.

d'ordre k, elle est identiquement nulle si, et seulement si, ses k premières
valeurs sont nulles. Pour répondre à la question il suffit donc de calculer
les Tk premières valeurs (A ce sujet, voir aussi Berstel-Mignotte [6].)

Par contre la preuve du théorème de Skolem-Mahler ne permet pas de

déterminer effectivement tous les zéros de (£„), mais seulement — comme
nous venons de voir — tous les zéros sauf peut-être un nombre fini d'entre
eux. Cependant, le théorème suivant — dû à Strassman — permet de majorer
le nombre de zéros de (£J, lorsque ce nombre est fini.
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Théorème. Soit f(x) £ akxk, les ak appartenant à un corps
k^O

ty-adique Ksp, une série qui converge sur l'anneau Osp, et qui n'est

pas identiquement nulle. Alors le nombre de zéros de f dans l'ensemble

0<p est majoré par la quantité max {k ^ 0; | ak |

<p est maximal}.

On trouvera une démonstration dans l'article de Lewis [32].

2. Un exemple

Avec de la chance, on peut quelquefois déterminer l'ensemble des zéros

d'une suite récurrente linéaire en n'utilisant que l'analyse p-adique.
Considérons l'exemple suivant, dû à J. Berstel, de la suite définie par

Si 0, 1, ^+3 2^3-4^^+4^
pour n ^ 0

On constate que l'on a

^0 ~ ^1 ^4 — ^6 — £l3 ^52 0

Nous allons montrer que les zéros trouvés ci-dessus sont les seuls.

Choisissons p 53. Modulo p, le polynôme G X3 — 2 X2 A 4 X — 4

se décompose en facteurs linéaires distincts. Soient col9 co2 et (d3 les racines
de G dans le corps Qp, ce sont des p-unités. Comme p divise les

œj_1 — 1, les 52 fonctions

"^52n + m> 0, 1, 51

se prolongent en des fonctions analytiques fm de Zp dans lui-même. Posons

/mW E ak,mXk;
0

on vérifie facilement que l'on a

(*) V{ I ak,m si k^i, pour i 1,2,3

(où le symbole | signifie divise).

On constate que

P Xfm(0)si m$ {0,1,4, 6,13} et 0 < 51,

et dans ce cas une égalité

fm(x)a0,m + Œ ak,mXk) 0
k> 1
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est impossible pour x dans Zp [puisque p divise la somme entre parenthèses

mais pas Uo,m

Pour m 1, 4, 6, 13, on a

fm(0)0, 53 | /m(l) mais fjl) # 0 (mod 532)

et, en utilisant la propriété (*) pour i2, on voit que

fjx) x(alim + £ fl4>m X4-1) #0 si X 6 Z*
k^2

Enfin, pour m 0, on a (en oubliant l'indice zéro)

/(0) /( 1) 0, /(2) 0 (mod et /(2) # 0 (mod p3),

/(x) x(fll + £ ^x'"1) avec p2 | ai mais ai^0(modp3);
fe^2

mais ici la méthode précédente ne s'applique plus, nous avons besoin d'un

outil plus puissant.
Pour k entier positif, posons

(X)k X(X-l)... (X — k+1), et en particulier (X)0 1

Du fait que Xn est une combinaison linéaire à coefficients entiers des

(X)i pour 0 ^ i ^ n, on voit qu'une série Z an Xn peut se mettre sous forme

£ bn. (X)„ avec pj \ bn si pj \ am pour tout m ^ n. Si on applique ceci à

l'exemple de /0, on trouve

/M fo(x) b2 (x)2 + X bk - M* >

où p2 | b2> b2 # 0 (mod p3) et p3 | bk si k ^ 3 (utiliser (*) avec i 3). Donc /
s'écrit

/(x) h2 — 1) (1 + ö'(x)) avec p | g(x) si xeZp.
Ceci montre que, pour z parcourant Zp, les seuls zéros de f0 sont 0 et 1.

D'où le résultat annoncé.

Pour d'autres détails sur cet exemple voir [37] et [44].

3. Multiplicités de suites récurrentes linéaires

Ce sujet a été traité très en détail par R. Tijdeman dans son exposé [60],
ce qui nous permet d'être relativement brefs.

Nous ne considérerons ici que des suites à valeurs dans un anneau sé
contenu dans le corps des complexes. Pour un élément a de cet anneau, la
a-multiplicité de la suite (^„) est le nombre d'indices n pour lesquels
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S„ a; la multiplicité est la borne supérieure de ses a-multiplicités lorsque
a parcourt sä. Lorsque (SJ est une s.r.l. de rang m, sa multiplicité est égale
à la O-multiplicité d'une s.r.l. de rang au plus m + 1 [ceci résulte de l'exemple
de A.II]. Inversement, si sä est un corps et si le polynôme caractéristique
d'une s.r.l. (SJ a une racine simple alors la O-multiplicité de (S) est

majorée par la multiplicité d'une s.r.l. (qn) de rang m — 1, m étant le rang
de (S„); en effet on a alors

S„ Pi(n)©" + + Pk_!(«)©?_! + Pk(ùnk,Pk constant,

et il suffit de poser

fim PMiPl/WlcY + - + Pk-iWCöi/ök-i)",

et la O-multiplicité de (£„) est égale à la — Pm — multiplicité de (qn).
On dira que (SJ est dégénérée lorsqu'il existe a tel que son a-multiplicité

soit infinie. Cette définition diffère de celle de [60] où la suite est dite

dégénérée ssi sa O-multiplicité est infinie. D'après le paragraphe précédent,

on sait tester si une s.r.l. est dégénérée ou non.
Le problème de la multiplicité a surtout été étudié pour le premier

cas non trivial, celui des s.r.l. binaires non dégénérées et à valeurs entières.

M. Ward, qui a écrit plusieurs dizaines d'articles sur les suites récurrentes

linéaires, avait conjecturé dans les années trente que la multiplicité d'une

telle suite ne dépasse pas 5.

Après des travaux de Skolem, Chowla, Dunton, Lewis, Laxton... Kubota
a prouvé cette conjecture, et même montré que la multiplicité d'une telle

suite n'excède jamais 4, voir [31]. Nous avons placé l'étude de la multiplicité

d'une s.r.l. dans le chapitre relatif aux méthodes p-adiques, en effet

la preuve de Kubota utilise de manière essentielle la méthode de Skolem,
mais elle est trop compliquée pour que nous puissions en donner une idée ici.

Les résultats de Kubota ont ensuite été améliorés par Beukers [8] qui a

montré que la somme de la a-multiplicité et de la — a)-multiplicité d'une
suite récurrente binaire entière non dégénérée est au plus 3 sauf dans le cas

de la suite

Ê„ + 2 Sn+1 -2?U, So Si 1

où cette somme vaut 5 (S0 Si 1 et S2 ^4 S12 ~~ 1)

et dans quatre autres cas (explicites) où cette somme vaut 4. L'exemple
de la suite (£„) définie par

So Si 1
» + 2 ~ + N^n (donc S3 1)
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avec N entier quelconque montre qu'il existe une infinité de suites récurrentes

linéaires entières et non dégénérées dont la multiplicité est égale à trois.

Notons une conjecture énoncée en [60] par R. Tijdeman.

Conjecture. Si (^„) est une s.r.l. binaire entière non dégénérée et si

£s ^ avec r < s < t alors la différence t - r est bornée par une constante

absolue.

Récemment Beukers et Tijdeman ont démontré des résultats généraux sur

la multiplicité des s.r.l. binaires à valeurs complexes, voir [9], leur article

contient en particulier le très joli résultat suivant.

Théorème. Soit a un nombre complexe de module ^2 et soit L
une droite du plan complexe qui ne passe pas par l'origine. Alors, au plus

sept puissances entières de a sont sur L.

Ce travail n'utilise pas l'analyse p-adique mais les polynômes hyper-

géométriques, méthode qui remonte à Thue et Siegel.

4. Critères de rationalité

La partie A conduit au critère de rationalité suivant: Une série formelle

m
n^O

à coefficients dans un corps représente une fraction rationnelle si, et

seulement si, il existe k tel que, pour N assez grand, le déterminant de

Hankel d'ordre N associé à la suite {fin+k)n^0 est nul-
Grâce à cette caractérisation, Dwork a considérablement généralisé un

résultat de Borel et obtenu un théorème qui, dans le cas rationnel,
s'énonce ainsi.

Théorème. Soit une série formelle à coefficients rationnels

m i f.
n^O

S'il existe un ensemble fini S de nombres premiers tels que

(i) pour p £ S, chaque £,n admet un dénominateur non divisible par p,

(ii) S définit une fonction méromorphe dans un disque de C de rayon R0,

(iii) pour p e S, f définit dans Cp une fonction méromorphe dans un
disque ouvert du centre 0 et de rayon Rp,

(iv) on a R0 f] Rp ^ 1,
peS
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alors f est une fonction rationnelle. (Le corps Cp est le complété de la
clôture algébrique de Qp).

Le théorème de Borel correspond au cas où S est vide. Le principe de la
démonstration du théorème ci-dessous est le suivant. On considère, pour k

assez grand, le déterminant du Hankel HN d'ordre N de la suite (£n+fc)

et on majore \ HN\V pour toutes les places v du corps Q:

— Si v est ultramétrique et n'appartient pas à S, alors trivialement

\HN\V^1.
— Si v g S on utilise les inégalités de Cauchy dans Cp.

— Si v est la valeur absolue ordinaire, on utilise les inégalités de Cauchy
dans C.

Pour k et N assez grands, on aboutit à l'estimation

m*wi.<i,
V

qui implique HN 0. D'où la conclusion.
Une démonstration détaillée figure en [2], ainsi que celle du théorème

de Polya-Bertrandias, qui généralise le théorème précédent.

III. Méthodes transcendantes

1. Minoration de | £„ |

Grâce au théorème de Roth-Ridout, K. Mahler [35] avait obtenu une
minoration non effective de | \n | pour une s.r.l. binaire. Les méthodes

transcendantes conduisent à des résultats effectifs.

Soit (£„) une s.r.l. donnée par

\n Pi(n) co" + + Pk(n) cOfe pour n ^ 0 aq,..., cok s C distincts

On peut supposer | ccq | ^ | co2 I ^ ^ I I
• Lorsque | cox | > | co2 I on a

trivialement

\U - \Pi(n)\ I ©i r
donc | \n | ^ ^ Pi(n) | (ù1 \

n
pour n ^ n0 (effectif).

Minorer | %n | n'est plus aussi facile lorsque (ûx et co2 sont même module.

Considérons en effet le cas le plus simple où (ÇJ est réelle et donnée par
CO" + ©2-
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Si oc*! et a>2 sont réels alors co2 — ccq, et on a 2 cû" si n est

pair et 0 sinon. Par contre si (o1 n'est pas réel, co2 öq et on peut

écrire ccq p eiQ, co2 p e~iB avec p réel > 0; alors

2 p" cos(w 0), avec 0 < 0 < n

Pour minorer E,„ dans ce cas il faut minorer la quantité

Min | n0 — k + - 7C |.
fcez V 2/

7C

Le cas 0 — correspond à une suite dégénérée, nous l'excluons. Ainsi,

dans le cas non dégénéré, on aboutit à un problème d'approximation
diophantienne.

Si / est une fonction de N dans lui-même qui croît arbitrairement vite,

on peut trouver 0 tel que, pour une infinité de valeurs de n, il existe k

entier avec | n0 — ^ n \ < 1/f(n). Pour obtenir une minoration non

triviale de \t,n\ il est donc nécessaire de faire des hypothèses sur l'approximation

du quotient 0/tt par des rationnels.

Depuis les travaux de Gel'fond, on sait que de telles hypothèses sont
vérifiées lorsque cos0 est un nombre algébrique, donc en particulier lorsque

% et co2 sont algébriques. Nous nous limiterons donc à l'étude des s.r.l.

à valeurs algébriques.
Définissons s par

I®! I |(ûs| > |C0S+1 I,

et posons rj 1 + deg(PJ) pour j 1,..., k.
La première minoration effective a été obtenue — pour les s.r.l. binaires —

par A. Schinzel [55]. Un théorème plus général a été ensuite publié en [38],
où on montre que sous les hypothèses s < 3 et r1 rs 1, il existe
des constantes effectives c et n0 telles que, pour n ^ n0,

I I > I ©i I "n~c,pourvuque £ Pj # 0
i= i

La démonstration est une application directe des estimations de A. Baker
sur les formes linéaires de logarithmes de nombres algébriques [4].

Depuis ces résultats ont été étendus en [45], où le résultat suivant est
démontré.
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Théorème. Supposons s ^ 3 et qu'au moins un des nombres cd£/cdj9

1 ^ i < j ^ s ne soit pas une racine de l'unité. Alors il existe des constantes

effectivement calculables Cx > 0 et C2 > 0 qui ne dépendent que de (^„)
telles que l'on ait

| | ^ | ©t I"exp(-C!(Log

pour n ^ C2.

La preuve repose aussi sur les minorations de Baker. Pour s ^ 3, on

peut donc déterminer effectivement toutes les solutions de l'équation a

pour a fixé.

Si on se limite à l'équation 0, on montre dans le même article

que les indices n peuvent être déterminés effectivement sous les hypothèses:
s 4, | cOjl | > 1 et aucun des co£/co7, 1 ^ i < j < 4, n'est une racine de

l'unité.
Dans le cas général, la question suivante est ouverte.

Problème. Etant donné une s.r.l. entière (ÇJ, existe-t-il un algorithme

permettant de trouver tous les indices n tels que 0

Nous énonçons la conjecture suivante.

Conjecture. Il existe un entier positif k tel que, si Ç(1),..., Qk) sont k

suites récurrentes linéaires entières quelconques, la propriété

3(n1n2,nk),+ + 0

soit indécidable.
Sous certaines hypothèses (voir [45] th. 3), on peut aussi minorer

I — I de manière effective et donc alors — en principe — déterminer
les répétitions de la suite (voir [44] pour un exemple).

2. L'équation r\n

En utilisant encore une estimation sur les formes linéaires de logarithmes,

on peut montrer (cf. [41]) le résultat suivant.

Théorème. Soient (ÇOT) et (rj„) deux suites récurrentes linéaires à

valeurs algébriques données par

PM cd? + + Ph(m) ©f, ^i^O,
et

T|n Qi(")Pï + - + Qk(n) P ôi # 0 •
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On suppose

| ©1 I > I co2 | ^ I Pi I > I P2 I > - >
I I > 1

>
I Pi I > 1

•

Alors,

(i) il existe un entier N1, effectivement calculable, tel que pour m An ^ N1

la relation £m rj„ implique

(*) PiNœ? ôi(n) pi ;

(ii) il existe un entier N2, effectivement calculable, tel que si l'équation (*)

admet une solution vérifiant m An ^ N1, alors aq et px sont

multiplicativement dépendants ;

(iii) soit Z l'ensemble des couples (m,n) tels que fin, alors:

(a) si Px et ßi sont de même degré, Z est égal à l'union d'un

ensemble fini et d'une union finie de progressions arithmétiques,

(b) si les degrés de P1 et Q± sont distincts et si Z est infini,

cet ensemble n'est pas du type précédent et on a même

lim Log(mk+Jmk) > 0 si (;mk, nk)

désigne la suite des points de Z, ordonnée par valeurs croissantes de m.

On peut noter que la preuve de (ii) est élémentaire et que le cas (b)

peut se produire : exemple, 2m et r|„ n 2". De plus, on sait décider
si deux nombres algébriques sont multiplicativement indépendants ou non,
donc — sous les hypothèses du théorème — on sait décider si Z est fini
ou non. En supposant en outre que les | \ d'une part, et les | pj |

d'autre part, sont distincts on peut même déterminer effectivement Z.
Le cas de l'équation pour une s.r.l. binaire, a été traité grâce

à une méthode analogue par J. C. Parmani et T. N. Shorey [49].

3. Sur le plus grand diviseur premier de

Cette question fait l'objet du long article de C. L. Stewart [58], le lecteur
désirant plus de détails pourra consulter ce travail. Bien entendu, nous
supposons que (%„) est une s.r.l. à valeurs entières. Dans l'écriture

£,n A(n)ô>ï + ••• +

nous supposons de plus qu'aucun des quotients coJcoj, ^ n'est une racine
de l'unité. Enfin le plus grand diviseur d'un entier a sera noté P(à) (avec
la convention P(0) P(±l) 1).
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En 1921, Polya a montré que lim sup P(^n) oo. Grâce à une
généralisation p-adique du théorème de Thue-Siegel-Roth-Schmidt (généralisation
due à Schlickewei), récemment R. van der Poorten et Schlickewei ont montré

[53] qu'en fait P(y tend vers l'infini, une preuve indépendante mais voisine
a été donné par Evertse [24]. A ce jour, ces preuves sont ineffectives.

Grâce à la théorie des formes linéaires de logarithmes, Stewart a démontré
le résultat suivant (cf. [57]).

Théorème. Si on a | oeq | > | co2 I ^ ••• I ©k I alors, pour tout s > 0,

il existe une constante effective N N(e, g^,..., œk, P1,..., Pk) telle que,

pour n ^ N, on ait

P(y >(1-8) Log n

lorsque ^ Pi(n) co]

Des résultats plus forts ont été démontrés pour les s.r.l. binaires, en

particulier par C. L. Stewart et T. Shorey; voir [58] pour plus d'information.

BIBLIOGRAPHIE

[1] Abe, E. Hopf algebras. Cambridge Univ. Press, 1980.

[2] Amice, Y. Les nombres p-adiques. Paris, P.U.F., 1975.

[3] Bachmann, P. Niedere Zahlentheorie. Zweiter teil, Leipzig, Teubner, 1910.

[4] Baker, A. A sharpening of the bounds for linear forms in logarithms, II.
Acta Arithm. 24 (1973), 33-36.

[5] Berstel, J. Transductions and context-free languages. Stuttgart, Teubner, 1979.

[6] Berstel, J. et M. Mignotte. Deux propriétés décidables des suites récurrentes
linéaires. Bull. Soc. Math. France 104 (1976), 175-184.

[7] Berstel, J. et Reutenauer. Les séries rationnelles et leurs langages. Paris,
Masson, 1984.

[8] Beukers, F. The multiplicity of binary recurrences. Compositio Math. 40 (1980),
251-267.

[9] Beukers, F. and R. Tijdeman. On the multiplicity of binary complex recurrences.
Compositio Math. 51 (1984), 193-213.

[10] Borevitch, S. I. et I. R. Schafarevitch. Théorie des nombres. Paris, Gauthier-
Villars, 1967.

[11] Bourbaki, N. Eléments de mathématiques. Algèbre, chap. 5. Paris, Herman, 1959.

[12] Cerlienco, L. e F. Piras. Risultante, m.c.m. e M.C.D. di due polinomi col
metodo delle s.r.l. Rend. Sem. Fac. Sei., Univ. Cagliari 50 (1980), 711-717.


	B. ÉTUDE ARITHMÉTIQUE
	I. MÉTHODES ÉLÉMENTAIRES
	II. MÉTHODES p-ADIQUES
	III. MÉTHODES TRANSCENDANTES


