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raménent le probléme de la recherche de conditions nécessaires et suffisantes
pour lexistence du Q.D.-schéma a celui de la distribution des zéros dans les
srl H,,. (Ce probléme — relativement a une s.rl. arbitraire — a €té
étudié en [6].)

B. ETUDE ARITHMETIQUE

La théorie des suites récurrentes est une mine inépuisable
qui renferme toutes les propriétés des nombres; en calculant
les termes consécutifs de telles suites, en décomposant
ceux-ci en facteurs, en recherchant par 'expérimentation les
lois de lapparition et de la reproduction des nombres
premiers, on fera progresser d’une maniere systématique
Pétude des propriétés des nombres et de leurs applications
dans toutes les branches des Mathématiques.

Edouard Lucas ( Théorie des Nombres)

I. METHODES ELEMENTAIRES

1. Propriétés de périodicité

Le premier résultat de ce type est dii a Lagrange, la proposition
suivante est essentiellement due & Carmichael.

PROPOSITION. Soit & une suite a valeurs dans un anneau < et
vérifiant la relation de récurrence linéaire (a coefficients dans <)

Enik = Op—1 Epap—1 + QG2 Epik—2 + - + ag E,,n=0.

On suppose que & ne prend quun nombre fini de valeurs; alors & est
ultimement périodique. De plus, lorsque a, wnest pas un diviseur de zéro,
la suite & est purement périodique.

Considérons la suite (§,, &,4 15 - Entk—1)n=0 des k-uples de valeurs suc-
cessives de . Si £ ne prend qu'un nombre fini de valeurs alors ces k-uples
ne prennent aussi quun nombre fini de valeurs, il existe donc ny = 0
et t > 0 tels que

(C> Cntts oo Gnik=1) = Ens141s o Enrer—1) DOUr 1 = ng.

Gréce a la relation de récurrence cette égalité reste vraie pour tout n > n,
etonadonc&,,., = &, pour n = n,. Cest la premiére assertion.

Supposons en outre a, non diviseur de zéro et que n, a été choisi
minimal. Si on a ny, > 1 alors la relation de récurrence montre que
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ao(Eno—1—Eno+1-1) = 0, ce qui implique &,,_; = &, 4,—1, formule qui
contredit la minimalité de n,. On a donc n, = 0, autrement dit la suite
& est bien purement périodique. []

On peut en déduire une démonstration du théoréme de Kronecker.

COROLLAIRE. Soit 0 un entier algébrique non nul dont tous les conjugués
sont de module au plus 1, alors © est une racine de l'unité.

Soient 8; = 6, 6,, ..., 0, les conjugués de 0 et X? — a,_, X471 — .. — a,
son polynome minimal sur Z. Pour n entier > 0 posons &, = 07 + 0%
+ ... + 07. Alors la suite (§,) vérifie

Cnta = Qg—1 Epig—y + . +aok,, n=0,

de plus les &, sont des entiers de lintervalle [—d, +d]. Enfin a, est
non nul, la proposition implique donc que (§,) est purement périodique.
Soit ¢t la période, on a &, = &; soit 0% + .. + 0, = d, et comme |0, | < 1
pouri =1,..,d,06 = 1. O

Le cas particulier de la proposition 1 le plus intéressant est celui ou
o/ = F,(=7Z/pZ), p étant (comme toujours!) un nombre premier. Considérons
donc une série s.rl. € a valeurs dans F, et vérifiant

Cnte = U1 Gper—1 + o + oG, 1 2=0(ag, .., 4 1€F,).

Soit L = F,« la plus petite extension de F, dans laquelle le polynome
G=X"—q_, X'~ . —a, se décompose en facteurs linéaires. Alors
€ est ultimement périodique (purement périodique si a, # 0) et sa période
est un diviseur de p(p?—1), ce qu'on voit en utilisant les formules (3) et
(4) de AI2 [dune part les p; appartiennent a L* et vérifient donc
pj?‘""1 = 1, d’autre part les coefficients du bindme modulo p admettent p
comme période]; en outre si G n’a que des racines simples alors la période
divise p? — 1. Le cas des suites récurrentes linéaires binaires est trés simple.
L’entier d ne peut alors prendre que les valeurs 1 ou 2. Plus précisément,
si & vérifie
an+2=a1&n+1+a0§n= nz0, ay,a,€F,, a #0,

posons A = a? + 4a, et supposons p impair. Le symbole de Legendre
permet de caractériser les casd = 1 ou2:o0n a

Me o
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) A
d = 2 sl et seulement si <;> = — ],

Ainsi, on a les trois possibilités suivantes:

(i) A est un résidu quadratique modulo p, alors la période ¢ divise
p— 1

(i) A n’est pas un résidu quadratique modulo p, alors ¢ divise p* — 1,

(i) A = 0, alors t divise p(p—1).

On peut raffiner l'assertion (ii) de la manieére suivante. Supposons
A : . 5
<—> = — 1. Soient p,; et p, les racines du polyndéme X? — a;X — a,

dans le corps F,. et soit ¢ l'automorphisme de Frobenius de ce corps
(o(a)=a?). On a d’une part

& = 1P + 0p%, oy, 0, €L,
et d’autre part
Pi =p2, PE=p1 e pip, = —a.
D’ou
peTl = p8tt =pyp, = — ag,

ce qui prouve ’assertion suivante.

(1) Soit e l'ordre de — a, dans le corps F,, alors si A n’est pas résidu
quadratique modulo p, la période divise e(p+ 1).

Exemple 1: Reprenons la suite de Fibonacci. On a alors,

Fn+2:Fn+1+Fn, A=5, e:2

et les trois cas précédents sont

(1) p = 5k + 1, la période divise p — 1,
() p = Sk + 2, la période divise 2(p+1) (cest encore vrai pour p = 2)
(i) p =5 , la période est égale a 20.

On en déduit aussitot les propriétés de divisibilité suivantes:
sip = 5k + 1 alors p divise F, lorsque p — 1 divise n,
si p = Sk + 2 alors p divise F, lorsque p + 1 divise n,
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P1 — P2 donc F,.i = P1P2 — P1P2
P1 — P2 P1 — P2

enfin si p = 5 on vérifie directement que 5 divise F, si et seulement si 5
divise n.

[en effet, F, =

= 0],

Exemple 2: Le critére de Lucas peut €tre obtenu comme corollaire de ’étude

1+ /5
2

Fm = @7 + 0 2", m=1,2,3,.., ainsi r,, = 3,7, 47, ..., et on peut calculer
aisément les r, grice a la relation évidente r,.; = r2 — 2. En fait si
(L,) est la s.rl. — dite de Lucas — définie par Ly = 2, L, = 1, L,,,
=L,,, + L,pourn>0,onar, = L,n». On a alors le critére de primalité
suivant.

précédente. Soit ® = le nombre d’or. On considere la suite d’entiers

PROPOSITION 2. Soit p un nombre premier de la forme 4n + 3 et soit
M =M, =2"—1, le p*" nombre de Mersenne. Alors M est premier
si, et seulement si, r,_; = 0 (mod M).

Supposons d’abord M premier, M = 8.16" — 1 = 2 (mod 5), donc
oM*l = —1 (mod M), ce qui implique bien
rpe1 = (@™ 14+ 1) 072" = 0 (mod M).
Inversement, supposons r,_; = 0 (mod M). On a alors

2P

(*) ®“ = — 1 (mod M) [comme deux lignes plus haut]

donc
(%) 0t =1 (mod M).

Supposons que M se décompose sous la forme
M = 1IIp;.11g;

ou les p; sont des nombres premiers de la forme 5a + 1 et les g; sont
des nombres premiers de la forme Sa + 2, et on a

@’ !'=1(modp), o*%¥"V) =1(modyg;).

Comme les congruences (*) et (**) sont valables pour tout diviseur de
M, on voit que l'ordre de ® modulo chaque diviseur premier de M est
exactement 27! Donc les p; et les g; sont respectivement de la forme

pi=2p+1hi+1 et qj=2pkj—1.
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Le premier cas est impossible puisqu’on aurait p; > M; le second cas n’est
possible que pour k; = 1 et on a donc M = g;, M est bien premier! ]

Ce test s’applique par exemple pour p = 7 et montre que 127 est
premier, de la méme maniére (mais aprés plus de calculs!) on peut montrer
que M ,,, est aussi premier.

D’autres tests de primalité sur les nombres de Mersenne et de Fermat
figurent dans I'ouvrage de Sierpinski [56], chap. X.

2. L’équation de Pell-Fermat

Soit I une «conique » définie sur Z, elle peut alors étre caractérisee
par une équation a coefficients entiers de la forme

ax? + 2bxy + cy* + 2dx + 2ey + f = 0.
En multipliant cette équation par a, on a la forme équivalente (si a#0)
(ax+by+d)? + (ac—b?)y? + 2(ac—bd)y + of — d* = 0.

Sia = 0 et c # 0 on obtient une écriture analogue.
Sia =c = 0 alors b est non nul (sinon I'" est une droite) et en posant
X =x+y )y =x—y on peut mettre I'’équation de I' sous la forme

2bx'? — 2by'? + 2d+e)x' + 2d—e)y + f =0,

ce qui nous ramene au cas précédent.
Ainsi, par un changement convenable de coordonnées, on peut se limiter

a I’étude de I’équation
x/2 + C/yIZ + 2d/y/ + fl — O;
— pour ¢ > 0, I" est une ellipse qui, bien entendu, n’a qu’'un nombre
fini de coordonnées entieres (que 'on peut calculer facilement),

— pour ¢’ = 0, I' est une parabole, nous n’étudierons pas ce cas (on peut
encore déterminer facilement les points entiers de I'),

— pour ¢’ < 0, I' est une hyperbole et par un nouveau changement de
coordonnées on peut mettre ’équation sous la forme

(E) X*—-DY?>? =k, avec D>0.

Nous excluons encore le cas trivial ou k est nul. Nous sommes donc ramenés
a I'étude de cette équation, dite de Pell-Fermat. Si D = u? est le carré
d’un entier on a la décomposition
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(X —uY) (X +uY) = k

et I' n’a qu’'un nombre fini de points que I'on trouve de maniére évidente.
On supposera donc désormais que D n’est pas un carreé.

La théorie de I'’¢quation de Pell-Fermat est bien connue. On montre
(cf. par exemple Borevitch et Schafarevitch [10], chap. II, § 5, Th. 1) qu’il
existe un nombre fini de solutions (xV), y), ..., (x®, y®) qui peuvent étre
calculées effectivement, telles que toute solution (x, y) vérifie

x + \/Dy s (x(i)+\/D D) g5,

ou 1 <i<k seZ, et ¢ est 'unité fondamentale de I'anneau Z[\/D]
dont la norme est égale a 1.
On a donc les formules

. 1 . : . .
x = %9 = 5((x(‘)+\/D ) e+ (xP— /D y?) e79)
et
: 1, . : . :
y = yg‘) = 5((x(‘)+\/D y(t)) SS_(x(t)_\/D y(t)) S_S).

Ceci montre qu’il existe un nombre fini de suites récurrentes binaires
ED L EW M) n® admettant toutes X? — (e+¢e~ )X — 1 comme échelle
telles que les solutions de I’équation (E) soient exactement les couples
EOD M1 <i<ketn=0.

Exemple 1: Considérons ’équation
X? -5Y*=1, avec X et Y positifs.

On sait que l'unité fondamentale du corps Q(\/S) est le nombre d’or

1 5 1 —./5
® = —g—\/—, de conjugué —2\/— = —o . Dautre part Panneau des

entiers de ce corps est principal, donc si x, y est une solution avec x > 0

et y = 0, il existe n > 0 tel que

1i\/52n

x+\/5y=i<T>

On voit aussitot que les deux signes doivent €tre +, donc

o= ()" ()
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Ensuite, on constate que n doit étre multiple de trois, soit

x+ 5y =09+4/5°, s5=0.

Les solutions sont donc (x,, y,) = (1, 0), (9, 4), (161, 72), ... et elles vérifient
Xs+2 = 18xs+1 — Xs» Ys+2 = 18ys+1 — Vs pour s=0.

On peut exprimer ces nombres en fonction des nombres de Fibonacci et
de Lucas,

[On a plus généralement L2 — 5 F2 = (—1)" 4 pour tout n > 0].

x(x+1)

Exemple 2: Considérons I’équation =3.2—-5 ou x et k sont
inconnus (et entiers!). Posons X = 2x + 1; I’équation devient
X?—-3.2"= -39, ou n=k+3.

Sin = 2m + 1 est impair, posons y = 2™, alors

X? — 6y* = -39,

13
disons n = 2m. Posons encore y = 2™ alors

. 6 , . : .
mais comme <—> = —1, I’équation n’a pas de solution. Donc n est pair,

X2 — 3y = —39.
Donc X = 3z et
y? — 322 = 13.

On peut montrer (cf. [42]) que les solutions y > 0 sont les valeurs de la
suite (y,) définie par

y0=4’ yl:ll’ ys=4ys—1_ys—2> sel.

Donc ..y_, =16, y_; =5, yo =4, y;, = 11, y, = 40 .. et on constate
que pour les petites valeurs de | s| seuls y, et y_, sont des puissances de 2
qui correspondent aux deux solutions de I'équation initiale

x=1, k= 1:1(1+1)

=3.2_5,
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et

13(13+ 1)
2

x =13, k=5 =3.2°-5.

Nous allons montrer que ce sont les seules. D’abord ce sont les seules
pour k < 6. Supposons que I’équation ait une solution avec k > 7 (i.e. m=35)
alors y = y, = 2™ On vérifie sans peine que ceci impose t = 6 mod 16
(regarder y, modulo 32). On considére enfin (y,) modulo 31, cette suite est

. 3
de période 32 (on a (§> = —1)et

t =6mod 16 =y, = + 7mod 31.

Mais, modulo 31, les puissances de 2 sont 1, 2, 4, 8 et 16. Donc
I’équation considérée n’a que les deux solutions notées précédemment.

La méthode appliquée ici est un cas particulier d’un algorithme général
présenté en [42] et qui sapplique a toutes les équations diophantiennes
de la forme f(x) = c.a", ou f est un polyndme du second degré; c’est
ainsi que I'on peut obtenir une nouvelle démonstration du fait que ’équation
de Ramanujan-Nagell x*> + 7 = 2" sont obtenues pour n = 3, 4, 5, 7, 15
(on considere des congruences modulo 7681, voir [43]).

Exemple 3: Nous allons montrer que les seuls carrés de la suite de
Lucas 2, 1, 3, 4, 7 ... sont 1 et 4 et que les seuls carrés de la suite de Fibo-
nacci 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 .. sont 0, 1 et 144. Ce
résultat est di a Cohn [20] (voir aussi le chapitre 8 du livre de Mordell [48]).

1+ 5 , 1-=5
2

et o

, on sait déja que

F,=——77— ¢ L,=0"+ ",

ce qui permet d’étendre la définition de ces suites a n < 0. Modulo 4,
les deux suites sont de période 6

F, mod 4 0 1 1 2 3 1 0 1

L, mod 4 2 1 3 0 3 3 2 1
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comme on le voit sur cette table.
De la relation L2 — 5 F2 = 4(—1)" et de la table on déduit que
(F,,L,)=1 s n=#0(mod3),
(F,,L,)=2 s n=0(mod3).
Démontrons d’abord I’assertion sur L, .

Sin = 2m est pair la formule L,,, = L2 — 2 montre que L, ne peut &tre
un carre.

Supposons donc n impair. Il suffit de considérer le cas n > 0, et méme
n=5(L, =1et Ly =4 sont des carrés). On peut écrire n = c + 2.tk
avect = 3, k> 0,k = + 2(mod 6) et ¢ = 1 ou 3. Et les formules
2Lpiok = SFy Ly + Ly Ly

= 5 Fm Fk Lk + Lm(Lk_Z)
— 2 v, (mod L)

I

jointes au fait que L, est impair montrent que

L, =Ly = — Le= —1, —4(mod L) .

1 :
Si L, est un carré <L_> = + 1 mais comme L, = 3 (mod 4) c’est impossible.
k

Passons maintenant aux nombres de Fibonacci F,,.
Si n = 1(mod 4), supposons n # 1 (sinon F, = 1 est un carré). Comme

plus haut écrivons n = 1 + 2tk avec t = 3", k= + 2 modulo 6. Les
formules

2F, o= F, Ly + F, L,
= F(L¢-2)+ F, L, L,
= — 2F,(mod L,)
et le fait que L, est impair, impliquent
L,= —1(mod L,),

€t comme nous l'avons déja vu cette congruence est impossible. Donc
n=1etF, =1

Si n = 3(mod4), le changement de n en —n nous raméne au cas
précédent.

Sin = 2n est pair alors F,,, = F,, L, = x* et on peut supposer m > 0.
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— Si m# 0(mod3) on a (F,,L,) =1 donc F, = y? et L, = z>. Par
conséquent m = 1 ou 3, F, = 1 ou 8; le seul carré est encore 1.

— Si m = 0 (mod 3) alors (F,,,L,) = 2 et donc F,, = 2y* et L, = 2z
Si m est impair on a z* — 5y* = —1, ce qui est impossible modulo 8.
Si m =2m' alors F,, L, = 2y% Si m' est impair on a F, = 2t
et L,, = w®* doncm’ = 1ou3etF, =1ou 144. Si m’ est pair alors
F,. = t*; dans ce cas, tout ce qui précéde montre que n = 3.25s > 3
et que les nombres de Fibonacci d’indices n/4, n/16 .. sont tous des
carrés mais, comme F, = 8 et F,g ne sont pas des carrés, ce dernier cas
est impossible. [Il n’est pas nécessaire de calculer F,g: si F,q = x?
alors F,, = 2 y* puis L,, = 2 z* mais L,, = 322.]

II. METHODES p-ADIQUES

Pour une introduction aux nombres p-adiques, le lecteur pourra consulter
Borevitch et Schafarevitch [10] ou J. P. Serre [54], et pour une étude plus
détaillée de 'analyse p-adique Y. Amice [2] ou K. Mahler [36].

1. Le théoréme de Skolem-Mahler

THEOREME. Soit (§,) wune suite récurrente linéaire a valeurs entiéres.
Alors lensemble des indices n tels que &, soit nul est égal a une union
finie de progressions arithmétiques (certaines de ces progressions peuvent étre
de raison nulle et l'union peut méme étre vide! ).

Comme en A.L3, écrivons &, sous la forme
&, = Pinot + ..+ Pmo; pour n=0,

les P; étant des polynomes a coefficients dans le corps de nombres L
= Q(®y, ..., ), et soit P un idéal premier de L tel que les m; soient
tous des ‘B-unités. Il est facile de voir que, pour tout € > 0, il existe un
entier T tel que

lof —1|p<e, j=1.k

En particulier, il existe un entier T tel que chacune des T fonctions
(2 valeurs dans le complété Legg de L)

fw:x = P;(xT+moT exp(Logw])x), m=201,.,T—-1,

ou exp et Log sont l'exponentielle et le logarithme *B-adiques, soient
définies et analytiques pour x parcourant Panneau Z, des entiers p-adiques
(p étant le nombre premier au-dessous de ).

i
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Bien sdr, pour n entier, on a fu(n) = &ur4m- Donc, s la suite (§,)
posséde une infinité de zéros, il en est de méme pour certaines des fonctions
f... Or, chaque f, est une fonction analytique sur 'ensemble compact Z{,
et, 2 moins d’étre identiquement nulle, elle ne possede qu'un nombre fini
de zéros. D’ou la conclusion. ]

COROLLAIRE. Si (&,) admet une infinité de zéros, alors, si §, sécrit
comme plus haut

En = Pi(n) 07 + .. + Pi(n) o,

ou les P; sont des polynémes non nuls et les ®; des nombres algébriques
non nuls; pour tout i il existe un indice j # i tel que ®;/®; soit une
racine de l'unité.

Soit en effet m tel que l'on ait §,7,,, = 0 pour tout n. La conclusion
résulte de la formule

P.(nT+mo?. o+ . + PuT+mor.of =0, n=0,

et du fait qu'un polyndme exponentiel  R,(n) p}, relatifs a des p, deux a deux
distincts, ne peut s’annuler que si les polyndmes R, sont tous nuls (ce qu'on
a déja vu en A.IIL.3.c)). O

On peut se poser le probléeme de savoir décider si (§,) comporte ou
non une infinité de zéros. Pour cela, remarquons d’abord que lidéal
et le nombre T qui apparaissent dans la démonstration ci-dessus peuvent étre
déterminés effectivement; il suffit, par exemple, de choisir B au-dessus d’'un
nombre premier qui ne divise pas le produit o, .. ®;. Discr (o, ..., 0),
on peut alors prendre T = p/ — 1 avec f = [L:Q] (donc f<k!). On
considére alors les T suites (§,7+mhnz0, m = 0,1,.., T — 1 et on a vu que
(£,) a une infinit¢é de zéros si, et seulement si, une de ces suites est
(identiquement) nulle. Enfin comme chacune de ces T suites est une s.r.l
d’ordre k, elle est identiquement nulle si, et seulement si, ses k premiéres
valeurs sont nulles. Pour répondre a la question il suffit donc de calculer
les Tk premiéres valeurs &,. (A ce sujet, voir aussi Berstel-Mignotte [6].)

Par contre la preuve du théoreme de Skolem-Mahler ne permet pas de
déterminer effectivement tous les zéros de (§,), mais seulement — comme
nous venons de voir — tous les zéros sauf peut-étre un nombre fini d’entre
eux. Cependant, le théoréme suivant — dii & Strassman — permet de majorer
le nombre de zéros de (£,), lorsque ce nombre est fini.




98 L. CERLIENCO, M. MIGNOTTE ET F. PIRAS

THEOREME. Soit f(x) = Y, a,x*, les a, appartenant d un corps
k>0

PB-adiqgue Kz, une série qui converge sur Panneau O3, et qui nest
pas identiquement nulle. Alors le nombre de zéros de f dans lensemble
O est majoré par la quantité max {k > 0;|a, | est maximal}.

On trouvera une démonstration dans I’article de Lewis [32]. O

2. Un exemple

Avec de la chance, on peut quelquefois déterminer I’ensemble des zéros
d’une suite récurrente linéaire en n’utilisant que ’analyse p-adique.
Considérons l'exemple suivant, di a J. Berstel, de la suite définie par

630:&1:0’ &,2:1, E.m+3=2£n+3_4§n+1+4&m
pour n=0.

On constate que 'on a
Co =8 =8 =8C =8&3 =85, =0.

Nous allons montrer que les zéros trouvés ci-dessus sont les seuls.
Choisissons p = 53. Modulo p, le polyndbme G = X3 —2X2 +4X — 4
se décompose en facteurs linéaires distincts. Soient ®;, ®, et w5 les racines
de G dans le corps Q,, ce sont des p-unités. Comme p divise les
w?~t — 1, les 52 fonctions

n= &52n+m ’ m = O) 17 ) 51 H

se prolongent en des fonctions analytiques f,, de Z, dans lui-méme. Posons

fa¥) = 2, e mx";
k=0

on vérifie facilement que I'on a
(*) Plag,., si k=i, pour i=123

(ou le symbole | signifie divise).
On constate que

PA S0 =&, si m¢{0,1,4613} et O0<m<S5l,
et dans ce cas une égalité

JuX) = ao,m + (k; m X*) = 0
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est impossible pour x dans Z, [puisque p divise la somme entre parentheses
mais pas aO,m = ém]
Pourm = 1,4,6,13, ona

£.0) =0, 53| f (1) mais f,(1) # 0(mod 53%)
et, en utilisant la propriété (x) pour i = 2, on voit que

flX) = X(@ym+ Y GuXH#0 si xeZjp.
k=2

Enfin, pour m = 0, on a (en oubliant I'indice zéro)

f0) = f(1) =0, f(@=0(modp’) et f(2)# 0(modp’,

f(x) = x(a; + Y ax*"') avec p?la; mais a; ¥ 0(mod p3);
k=2

mais ici la méthode précédente ne s’applique plus, nous avons besoin d’un
outil plus puissant.
Pour k entier positif, posons

(X), = X(X—1)..(X—k+1), eten particulier (X), = 1.

Du fait que X" est une combinaison linéaire a coefficients entiers des
(X); pour 0 < i < n, on voit qu’une série X a, X" peut se mettre sous forme
T b,.(X), avec p’|b, si p’'|a, pour tout m > n. Si on applique ceci a
I'exemple de f,, on trouve

f(x) = folx) = by.(x)2 + kZ% by . (X

ou p?| b,, b, # 0(mod p3) et p*>| by si k = 3 (utiliser (*) avec i=3). Donc f
s’écrit

f(x) = byx(x—1)(1+g(x)) avec plglx) si xeZ,.

Ceci montre que, pour z parcourant Z,, les seuls zéros de f; sont 0 et 1.
D’ou le résultat annonce.

Pour d’autres détails sur cet exemple voir [37] et [44].

3. Multiplicités de suites récurrentes linéaires

Ce sujet a été traité trés en détail par R. Tijdeman dans son exposé [60],
ce qui nous permet d’étre relativement brefs.

Nous ne considérerons ici que des suites a valeurs dans un anneau .o
contenu dans le corps des complexes. Pour un élément a de cet anneau, la
a-multiplicité de la suite (§,) est le nombre d’indices n pour lesquels
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&, = a; la multiplicité est la borne supérieure de ses a-multiplicités lorsque
a parcourt /. Lorsque (§,) est une s.r.l. de rang m, sa multiplicité est égale
a la O-multiplicité d’une s.r.l. de rang au plus m + 1 [ceci résulte de 'exemple
de A.II]. Inversement, si </ est un corps et si le polynoOme caractéristique
d’une s.rl (§,) a une racine simple ®, alors la O-multiplicit¢ de (&) est
majorée par la multiplicité d’une s.r.l. (n,) de rang m — 1, m étant le rang
de (§,); en effet on a alors

&, = Pin ot + ..+ P,_,(n)o;_, + P, o}, P, constant ,
et il suffit de poser

Nm = P1() (01/0)" + ... + Pi_1(n) (@1/0 )",

et la O-multiplicit¢ de (§,) est égale a la — P, — multiplicité de (n,).

On dira que (§,) est dégénérée lorsqu’il existe o tel que son a-multiplicité
soit infinie. Cette définition difféere de celle de [60] ou la suite est dite
dégénérée ssi sa O-multiplicité est infinie. D’apres le paragraphe précédent,
on sait tester si une s.r.l. est dégénérée ou non.

Le probleme de la multiplicité a surtout été ¢tudié pour le premier
cas non trivial, celui des s.r.l. binaires non dégénérées et a valeurs entieres.
M. Ward, qui a écrit plusieurs dizaines d’articles sur les suites récurrentes
linéaires, avait conjecturé dans les années trente que la multiplicit¢é d’une
telle suite ne dépasse pas 5.

Aprés des travaux de Skolem, Chowla, Dunton, Lewis, Laxton... Kubota
a prouvé cette conjecture, et méme montré que la multiplicité d’une telle
suite n’excéde jamais 4, voir [31]. Nous avons placé I'étude de la multi-
plicité d’une s.rl. dans le chapitre relatif aux méthodes p-adiques, en effet
la preuve de Kubota utilise de maniére essentielle la méthode de Skolem,
mais elle est trop compliquée pour que nous puissions en donner une idée ici.
Les résultats de Kubota ont ensuite €té ameéliorés par Beukers [8] qui a
montré que la somme de la ag-multiplicité et de la (—a)-multiplicité d’une
suite récurrente binaire entiére non dégénérée est au plus 3 sauf dans le cas
de la suite

§n+2=§n+1_2&m’ &0=&1=1

ou cette somme vaut S (§p=&;=1et&,=&,=8&;,=—1)

et dans quatre autres cas (explicites) ou cette somme vaut 4. L’exemple
de la suite (§,) définie par

Eo =& =1, &= —&11 +NE, (donc&; = 1),
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avec N entier quelconque montre qu’il existe une infinité de suites recurrentes
linéaires entiéres et non dégénérées dont la multiplicité est égale a tros.
Notons une conjecture énoncée en [60] par R. Tijdeman.

CONJECTURE. Si (£,) est une s.rl. binaire entiére non dégénérée et si
£, = £, avec r < s < t alors la différence t — r est bornée par une constante
absolue.

Récemment Beukers et Tijdeman ont démontré des résultats genéraux sur
la multiplicité des s.r.l. binaires a valeurs complexes, voir [9], leur article
contient en particulier le trés joli résultat suivant.

THEOREME. Soit o un nombre complexe de module > 2 et soit L
une droite du plan complexe qui ne passe pas par lorigine. Alors, au plus
sept puissances entiéres de o sont sur L.

Ce travail n’utilise pas l'analyse p-adique mais les polyndmes hyper-
géomeétriques, méthode qui remonte & Thue et Siegel.
4. Criteres de rationalité

La partie A conduit au critére de rationalité suivant: Une série formelle
Bt) = ), & t"

nz0

a coefficients dans un corps # représente une fraction rationnelle si, et
seulement si, il existe k tel que, pour N assez grand, le déterminant de
Hankel d’ordre N associ¢ a la suite (§,4,),>0 st nul.

Grace a cette caractérisation, Dwork a considérablement généralisé un
résultat de Borel et obtenu un théoréme qui, dans le cas rationnel,
s’énonce ainsi.

THEOREME. Soit une série formelle da coefficients rationnels

BE(it) = ) &, t".

n>0
S’il existe un ensemble fini S de nombres premiers tels que

(1) pour p¢S, chaque &, admet un dénominateur non divisible par p,
(1) E définit une fonction méromorphe dans un disque de C de rayon R,,

() pour peS, f définit dans C, une fonction méromorphe dans un
disque ouvert du centre 0 et de rayon R,,

(iv ona Ry.[[R, =1,

peS




102 L. CERLIENCO, M. MIGNOTTE ET F. PIRAS

alors f est une fonction rationnelle. (Le corps C, est le compléte de la
cloture algébrique de Q,).

Le théoreme de Borel correspond au cas ou S est vide. Le principe de la
démonstration du théoréme ci-dessous est le suivant. On considére, pour k
assez grand, le déterminant du Hankel Hy d’ordre N de la suite (§,.x)
et on majore | Hy |, pour toutes les places v du corps Q:

— Si v est ultramétrique et n’appartient pas a S, alors trivialement
I HN Iu < 1 .
— Sive S on utilise les inégalités de Cauchy dans C,.

— Si v est la valeur absolue ordinaire, on utilise les inégalités de Cauchy
dans C.

Pour k et N assez grands, on aboutit a ’estimation

HIHNIU< 1)

qui implique Hy = 0. D’ou la conclusion.
Une démonstration détaillée figure en [2], ainsi que celle du théoréme
de Polya-Bertrandias, qui généralise le théoréme précédent.

III. METHODES TRANSCENDANTES

1. Minoration de |E&, |

Grace au théoreme de Roth-Ridout, K. Mahler [35] avait obtenu une
minoration non effective de |§,| pour une s.r.l binaire. Les méthodes
transcendantes conduisent a des résultats effectifs.

Soit (§,) une s.r.l. donnée par

E, = P(no] + ..+ Pmo; pour n=0, of,.,0,€C distincts.

On peut supposer |®; | = |®,| = ... = | o, |. Lorsque |®;| > |®,| on a
trivialement

&l ~ [ Pi() | @y |”

1 :
donc | E,| = > P,(n)| o, |" pour n = n, (effectif).

Minorer | €, | n’est plus aussi facile lorsque ®; et @, sont de méme module.
Considérons en effet le cas le plus simple ou (&,) est réelle et donnée par

&, = o} + 0}, '
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Si @, et ®, sont réels alors ®, = — ®,, et on a §, = 2] si n est
pair et &, = O sinon. Par contre si @, n'est pas réel, ®, = ®; et on peut
écrire o, = p €, m, = p e avec p réel > 0; alors

E, = 2p"cos(nb), avec 0<6O<m.

Pour minorer &, dans ce cas il faut minorer la quantité

keZ 2

1
Min|n6—<k+—>n|.

Tc ) ol 14 14 ’ 14 . .
Le cas 6 = 5 correspond a une suite dégénérée, nous l'excluons. Ainsi,

dans le cas non dégénéré, on aboutit a un probléme d’approximation
diophantienne.

Si f est une fonction de N dans lui-méme qui croit arbitrairement vite,
on peut trouver 0 tel que, pour une infinité de valeurs de n, il existe k

1 . : :
entier avec | n@ — <k + 5) n| < 1/f(n). Pour obtenir une minoration non

triviale de | &, | il est donc nécessaire de faire des hypotheses sur 'approxi-
mation du quotient 8/n par des rationnels.

Depuis les travaux de Gelfond, on sait que de telles hypotheses sont
vérifiées lorsque cosO est un nombre algébrique, donc en particulier lorsque
0, et ®, sont algébriques. Nous nous limiterons donc a I'étude des s.r.l.
a valeurs algébriques.

Définissons s par

oy | = .. =|og| > |04 ],

et posons r; = 1 + deg(P;) pourj = 1,.., k.

La premiere minoration effective a été obtenue — pour les s.r.l. binaires —
par A. Schinzel [55]. Un théoréme plus général a été ensuite publié en [38],
ou on montre que sous les hypothéses s < 3 et r; = .. = r, = 1, il existe
des constantes effectives ¢ et ny telles que, pour n > n,,

S
&l =2 @, ["n™°,  pourvu que -21 P, 0" #0.
J=

La démonstration est une application directe des estimations de A. Baker
sur les formes linéaires de logarithmes de nombres algébriques [4].

Depuis ces résultats ont été étendus en [45], ou le résultat suivant est
démontré.
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THEOREME. Supposons s < 3 et quau moins un des nombres ®;/;,
1 <i<j<s nesoit pas une racine de l'unité. Alors il existe des constantes
effectivement calculables C, > 0 et C, > 0 qui ne dépendent que de (E,)
telles que lon ait

| €| = | o, |" exp(—Cy(Log n)’),
pour n = C,.

La preuve repose aussi sur les minorations de Baker. Pour s < 3, on
peut donc déterminer effectivement toutes les solutions de I’équation &, = o
pour o fixé.

Si on se limite a I'’équation &, = 0, on montre dans le méme article
que les indices n peuvent étre déterminés effectivement sous les hypotheses:
s =4, |o | >1 et aucun des o/m;, 1 <i<j <4, nest une racine de
P'unite.

Dans le cas général, la question suivante est ouverte.

ProBLEME. Etant donné une s.r.l. entiére (§,), existe-t-il un algorithme
permettant de trouver tous les indices n tels que &, = 07

Nous énongons la conjecture suivante.

CoNJECTURE. Il existe un entier positif k tel que, si £, .., E® sont k
suites récurrentes linéaires entiéres quelconques, la propriété

EI(nla n27 runy nk)) ggtll) + + &1(1’2 = 0

soit indécidable.

Sous certaines hypothéses (voir [45] th. 3), on peut aussi minorer
| €, — &,| de maniére effective et donc alors — en principe — déterminer
les répétitions de la suite (voir [44] pour un exemple).

2. Léquation &, = m,
En utilisant encore une estimation sur les formes linéaires de logarithmes,
on peut montrer (cf. [41]) le résultat suivant.

THEOREME. Soient (€,) et (m,) deux suites récurrentes linéaires a
valeurs algébriques données par

&n = Py(m ot + .. + Pm oy, P;#0,
et
MNe = QM) pt + .. + QW) pr, Q1 #0.
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On suppose
|y | > [0y = ey Pl >1p2l =y Tog[>1, [pf>1.
Alors,

(i) il existe un entier N, effectivement calculable, tel que pour m+n = N,
la relation &, = m, implique

(%) Pim)oT = Q:(n) pT;

(ii) il existe un entier N,, effectivement calculable, tel que si I'équation (%)
admet une solution vérifiant m+n > Ny, alors o, et p; sont
multiplicativement dépendants,

(i) soit Z Dlensemble des couples (m,n) tels que &, = m,, alors:
(a) si P, et Q, sont de méme degré, Z est égal a l'union d'un
ensemble fini et d’une union finie de progressions arithmétiques,

(b) si les degrés de P, et Q. sont distincts et si Z est infini,
cet ensemble nest pas du type précédent et on a méme

lim Log(my 4 (/my) >0, si (my, ny)
désigne la suite des points de Z, ordonnée par valeurs croissantes de m.

On peut noter que la preuve de (ii) est élémentaire et que le cas (b)
peut se produire: exemple, &, = 2" et n, = n2". De plus, on sait décider
si deux nombres algébriques sont multiplicativement indépendants ou non,
donc — sous les hypothéses du théoréme — on sait décider si Z est fini
ou non. En supposant en outre que les |w;| d’une part, et les |p;]|
d’autre part, sont distincts on peut méme déterminer effectivement Z.

Le cas de I'¢équation §,, = ,, pour une s.rl. binaire, a été traité grace
a une méthode analogue par J. C. Parmani et T. N. Shorey [49].

3. Sur le plus grand diviseur premier de &

Cette question fait Pobjet du long article de C. L. Stewart [58], le lecteur
désirant plus de détails pourra consulter ce travail. Bien entendu, nous
supposons que (§,) est une s.r.l. a valeurs entiéres. Dans ’écriture

& = Pi(n) o] + .. + Pi(n) o,

nous supposons de plus qu'aucun des quotients o;/®;, i # j, n’est une racine

de I'unite. Enfin le plus grand diviseur d’un entier a sera noté P(a) (avec
la convention P(0) = P(+1) = 1).
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En 1921, Polya a montré que lim sup P(§,) = oo. Griace a une généra-
lisation p-adique du théoréme de Thue-Siegel-Roth-Schmidt (généralisation
due a Schlickewei), récemment R. van der Poorten et Schlickewei ont montré
[53] qu’en fait P(§,) tend vers I'infini, une preuve indépendante mais voisine
a été donné par Evertse [24]. A ce jour, ces preuves sont ineffectives.

Gréce a la théorie des formes linéaires de logarithmes, Stewart a démontré
le résultat suivant (cf. [57]).

THEOREME. Si ona |w;|>|w,| > ..|w,| alors, pour tout &> 0,
il existe une constante effective N = N(g, ®y, .., ®;, P, ..., P,) telle que,
pour n = N, on ait

PE,) > (1—¢) Logn
lorsque &, # Pi(n) o] .

Des résultats plus forts ont été démontrés pour les s.rl. binaires, en
particulier par C. L. Stewart et T. Shorey; voir [58] pour plus d’information.
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