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0 i >
(J)q'(l —J )q'

0 si i<j,

ou(0), =104, =] G),et),=1+qg+ ..+ "
s=1

d) si X; =i alors H est la matrice des nombres de Stirling de seconde
espéce hy; = S(i,j) pour i > j, h;; = 0 pour i <}, définis par la formule

X = ZO G, /) X(X —1) .. (X —k+1)

J

(voir [15]).

13) Soit & = (§,) une s.rl déchelle G(X) = X™ — a,_; X" ' — .. — do;
on peut regarder son terme &, en tant que polynome en les variables
gy, ..., Ay 1. Alors la suite donnée par
0"E,
n = ke gt

am -1

est une s.r.l. d’échelle G** 1.

III. ESPACES DE s.r]. SUR A

Dans I nous avons étudié une suite particuliére § = (§,) a valeurs dans ¢~
et donné différentes conditions équivalentes pour que & soit une s.rl. Ici,
nous étudions des espaces de suites et nous utilisons la structure d’espace
vectoriel de 'ensemble des suites a valeurs dans 4.

1. Nous considérons I'ensemble £ [ X ] des polynomes a coefficients dans ¢
et Pensemble A [[X]] des séries formelles sur ., tous deux avec leur
structure de . -espace vectoriel. Nous identifierons implicitement H#[X] a
Iespace '™ des suites & valeurs dans 4 ultimement nulles et 2 [[X]]

a P’espace AN des suites quelconques a valeurs dans " (rappelons que AN
est le dual linéaire de ™),

2. Etant donné une s.r.l. £ I'ensemble de toutes les échelles de récurrence
quelle vérifie est un idéal de anneau #[X] il admet donc un générateur
unitaire unique que I'on appelle le polynéme minimal de & On appellera
rang de & le degré du polyndme précédent. Evidemment, une suite d’ordre m
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possede un rang au plus égal a m (contrairement au rang, ’ordre d’une s.r.l.
fixée n’est pas défini de maniére unique).

3. Soit G un polyndéme fixé a coefficients dans 2. On écrira encore
GX) =X"—a, 1 X" ' — .. —ay =[] X—0), m,€ L.

Nous considérons ’ensemble S; de toutes les s.r.l. d’échelle G. Un élément &
de S; est uniquement déterminé par ses m premiers termes &g, &1, vy S 13
chaque autre terme &, dépend lin€airement de ceux-ci. Il en résulte que S;
est un sous-espace vectoriel de dimension m de AN. Les m éléments
D = (£9),5,,1=0,.,m — 1, constituent une base de S; si et seulement
si le déterminant

det(E) 0 < i,j < m—1)

est non nul.
~ Suivant les cas, il est utile de prendre une base de S; de 'un des types
suivants:

a) la base constituée par les s.r.l. dites fondamentales
C(i) = (Cg))nZO:i = 05 vy M — 1

définies par les conditions initiales {{ = 8%,0 <j<m — 1 (8} est le
symbole de Kronecker, 8% = 1 si i = j et O sinon). Sur cette base, un
élément & de S s’écrit tout simplement

(8) E =800 + o+ &y LMY

b) la base formée par les suites

@Dz 05 (D) 0L s o (") O " s0si = 1k,
ce qui correspond aux formules (3) et (4);

c) enfin une base de la forme @, E@, ..., E™ ¢ ou ¢ est une s.r.l. quelconque
admettant G comme polyndme minimal (par exemple les suites (@ et
(™1 de la base a)).

4. Si a une suite & = (§,),>, quelconque, on associe la matrice de Hankel

&o &1 &2 O
&1 &2 &3 i i we
9) HE) = | e

.......................................................................
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alors on vérifie facilement que

(i) la suite & est une srl si et seulement si il existe un entier m tel
que tout mineur d’ordre plus grand que m extrait de H(E) soit nul;

(i) si & est une srl de rang m alors son polynome minimal est donné
" par le déterminant

1 X X X"
EJO él &2 E.»m
(10) G(X) = E.~1 &2 &3 §m+1

.............................................................

5. De (5) résulte, comme nous l'avons déja observé, que chaque ¢lément de
S, admet un multiple quelconque de G comme polynome caractéristique;
autrement dit, 'espace S; est lorthogonal de l'idéal (G) engendre par G
(regardé en tant que sous-espace de A [X]):

(11) Se = (G)*.

La dualité sous-entendue dans la formule précédente peut etre décrite
de maniére plus explicite. Identifions la variable X a l'application linéaire

« X »: A[X] - A[X]
AX)— X . A(X)

(tout simplement la multiplication par X); alors 'application duale est I'opé-
rateur de décalage E. Ainsi, a lapplication de multiplication par G(X):
A(X) — G(X) A(X) — dont I'image est (G) — correspond par dualité opé-
rateur G(E) — dont le noyau est S;. La relation (Imf)* = Ker f*, valable
pour une application linéaire quelconque f de duale f*, équivaut a la relation
(11) dans le cas considéré.

6. Le lien que nous avons indiqué entre le sous-espace S; et l'idéal (G)
peut étre étendu en un lien entre I'espace S de toutes les s.r.l. et ’espace
HA'[X], ceci en ayant recours a la notion de bialgebre.

Une étude détaillée de la structure usuelle de bialgébre sur H#[X]
et de sa bialgebre duale est contenue en [51]. Pour un développement
général sur la structure de bialgébre et de coalgeébre, nous renvoyons a

[59] et [1]. Pour la commodité du lecteur, nous indiquons ici les notions
utilisées dans le présent article.
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Nous noterons par V un espace vectoriel sur 4 et par (b?), ou plus
simplement (b%), une base de cet espace. On considére ici une structure
d’algebre comme un triplet .« = (V, m, n) avec la condition que I'application
linéaire

mVeeV -V
V'@ b)Y i
h
[autrement dit, m correspond & la multiplication et on a b’ = ) t}/ b"]
h

et le plongement

u:A -V
1 »Xe¢b

rendent commutatifs les diagrammes

I ®m
VeRVV - VRV
me I m
m
VeV - V

et

1 I &® u
Jf@)V'u\@—> VeV VA

(Le premier diagramme exprime tout simplement l’associativité de la multi-
plication; dans le second — qui ne fait que traduire que u est unité —
les fléches doubles représentent les isomorphismes canoniques). En termes des
constantes de structure, ces conditions s’expriment par les formules

Yt = 2t
h h
et

2. e 4 = Z e; t§' = &i(le symbole de Kronecker).
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La définition d’une coalgébre € = (V, A, €) s’obtient par dualisation de
la précédente ; maintenant les deux applications linéaires

A:V -V ® V (diagonalisation ou comultiplication)
b Y ol b @ b
i, J

et
e Vo (counite)
b" - &
doivent rendre commutatifs les diagrammes

V a -~V QV

A ARI (coassociativite)

et

ey <2 yer -2 yvex

(On renverse les fléches des diagrammes précédents.)

Une application f: ¥V — V est un morphisme d’algebre (resp. de coalgebre)
si elle est linéaire et vérifie f om = mo(f@f) et f ou = u (respectivement :
Aof =(f®f)cActeeo f = ¢)

A chaque coalgebre ¥ = (V,A,g) est associce son algebre duale
&* = (V*, A*, g*), ou V* est le dual linéaire de V et A*, &* les applications
linéaires respectivement duales de A et & Sur la (pseudo-)base (b;) duale
de (b)), i.e. b{b’) = &, les constantes de l’algébre ¥* coincident avec celles
de €.

Le passage de lalgebre o = (V,m,n) a sa coalgébre duale /°
= (V°, m°, u°) est deéfini d’'une maniere analogue en dimension finie (on a alors
Ve = V*m® = m* et u> = u*); par contre, si la dimension de V est
infinie, alors I'ensemble V° sous-jacent 4 /° est un sous-ensemble strict de
V* [car m*: V* > (VQV)* mais V* @ V* < (V®V)*¥]. 1l est bien connu

7‘:
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qu’on doit prendre pour V° I'espace des fonctions linéaires représentatives,
c’est-a-dire des formes linéaires f:V — A telles que Ker f contienne un
idéal J de V de codimension finie.

La structure 4 = (V,m, A, u,¢) est une bialgebre si (V,m, u) est une
algebre, (V, A, €) une coalgebre et si A et € sont des morphismes d’algebre
(ou, ce qui est équivalent, si m et u sont des morphismes de coalgébre).
Ceci se traduit évidemment en termes de constantes de structures (voir [16],
formule (5) a (8)).

Le passage a la bialgebre duale #° = (V°, A°, m°, €°, u°) ne représente
pas de probleme puisque A¥V°®V°) < V° (A° et €° sont définies respec-
tivement comme les restrictions a V° de A* et &*).

En ce qui nous concerne, les deux exemples suivants sont fondamentaux.

1) L’espace vectoriel [ X] des polyndémes posséde une structure naturelle
de bialgebre £ = A [X], m, A, u, &) dont les applications linéaires sont
définies par

mX@X) = X', AX)=XQ1+1Q®X,
ul) =1 et &X) = 8} (le symbole de Kronecker).

Plus simplement: m est la multiplication usuelle des polynomes, A associe
a P(X) le polyndbme P(X +Y) [ici on identifie X' ® X/ a X' Y/] et enfin
g associe 2 P(X) son terme constant P(0).

2) L’espace S de toutes les s.r.l. possede lui aussi une structure naturelle
de bialgébre & = (S, m, A, i, &)

A -8, 109,50
E:S-> A, (Cuuzor &0
m:S®S—->8, ER/nN—Ex*n
(c’est le produit défini en A II 5))

et

A:S->S®S, & HE)

(dans ce dernier cas on identifie AN ® AN avec l'espace des matrices
infinies de type @ x o et H(E) désigne la matrice de Hankel de &).

Le lien entre les structures ci-dessus est fourni par le résultat fonda-
mental suivant [51]:
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THEOREME (Peterson-Taft, 1980). La bialgébre & des s.r.l. est la bialgébre
duale de celle des polynomes.

IV.

Dans ce paragraphe nous montrons comment la théorie des s.r.l. permet
d’obtenir des algorithmes utiles pour la résolution de certains problémes
algébriques et numériques relatifs a 2# [ X]. Le contenu de la fin du paragraphe
précédent fournit une justification théorique générale a la méthode utilisée ici.

En général, nous utiliserons sans les rappeler les notations introduites
plus haut.
1. Quelques problemes d’élimination

Premier probleme. Soient donnés n + 2 polyndmes Gi(X;), i = 0, ..., n,
et Z = Z(X,, ..., X,,); déterminer — rationnellement en fonction des coeffi-
cients des G; et de Z — un polyndme G(X) dont les racines sont toutes
les valeurs Z(wg, j,, ®;,j,, - ©y ;,) OU les ®; ; parcourent les racines de G;.
Algorithme 1. Il comporte les pas suivants:
a) construire n + 1 sl €9, ou &Y admet G, comme polyndme minimal;

b) construire la s.r.l. 1 = (N,,)m>0o donné par

0 1
M= Y ZM (0) £ (1) ()

e My mo my mn
mQo, ..., Mp

ou on a posé

[Z(Xo, .. X)) " = Y ZW .. X3 . X
mo...mMp

c) le polyndme cherché est I'échelle de la suite 1 et on peut le calculer
grace a la formule (10).

Second probléeme. 1l s’agit d’une généralisation du précédent. Soient
n+ 1 polyndmes Gi(X;), i = 1,.,n et Z(X,,.. X,), déterminer ration-
nellement un polynéme H(Y) ayant pour racines toutes les valeurs ®;
satisfaisant a une équation du type

Z((DJ; (401!‘]'1 5 cers CDn,jn) = O
les w; ;, parcourant encore 'ensemble des racines de G.

Algorithme 2.

a) Posons Go(X,) = X, — Y; on utilise I'algorithme 1 pour déterminer le
polyndme G(X) (Y étant considéré momentanément comme une constante);
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