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Fq — la méthode banale consistant à calculer les valeurs de P(x) pour x
parcourant Fq nécessite en moyenne près de q évaluations, en calculant
l'ordre de la matrice compagnon de P on peut répondre à la question en

0(Log q) opérations.
Quelques ouvrages contiennent une présentation générale des suites

récurrentes linéaires, d'abord le livre de E. Lucas [33], ainsi que Bachman [3],
Henrici [30] chap. 7 et [29], Montel [47], Pisot [52]. Signalons aussi le

livre de Dickson [22] sur l'histoire de la théorie des nombres, le chapitre XVII
est consacré aux suites récurrentes linéaires.

A. PROPRIÉTÉS ALGÉBRIQUES

I. Séries rationnelles sur un corps jT

Soit une série formelle

3(X) L
n^O

à coefficients dans un corps (commutatif) X\ nous allons étudier différents
critères de rationnalité d'une telle série.

1. Supposons E rationnelle, c'est-à-dire qu'il existe deux polynômes A et B,
à coefficients dans Jf, tels que

W 3(X) Ä B{0) o.

Soient alors ûd'i,..., a'klesracines du polynôme dans une extension
algébrique convenable if du corps X et soit x; la multiplicité de
co; (ï 1,k).

La décomposition en éléments simples de la fraction est de la forme

(2) m Q{x)+£ i; 1 J=1 (X — ca'i)J

où Q(X) est un polynôme à coefficients dans X (c'est le quotient de la
division euclidienne de A par B) et où les a;j- appartiennent au corps if.

L'identité formelle, vraie pour tout entier positif;',

pc-rap' L (ppo:co-1)" (où(S) 1)
n^O '
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jointe à (1) et (2) conduit à la relation

S(X) Q(X) + X t ï'a; <» " JI " } i
' '

n^O i= 1 j= 1

où on a posé cof — (i 1,..., k).
(ù'i

Si Q a pour degré n0, on a donc

(3) Pfin) g>ï + + Pk(n) (ù% pour n > n0

avec

(4) Pin) J (-1
/= i

Remarque. Lorsque la caractéristique du corps JT est nulle, chaque
est un polynôme (à coefficients dans le corps $£) en n de degré plus petit
que ti9 et même égal à xrl lorsque la représentation (1) est irréductible.
'On dit alors que l'expression (3) est un polynôme-exponentiel. A ce sujet
voir aussi l'exemple 2) plus loin.

2. Réciproquement, supposons maintenant que les relations (3) et (4) aient

lieu pour n > n0.
Soit E l'opérateur de décalage (en anglais « shift operator »), qui à une

suite % (£>n)n^o associe la suite EE, (&n+i)«^o- Nous allons montrer que
la suite

(E-co^r (L-cMHU
est ultimement nulle, et plus précisément que £ satisfait à Yéquation

aux différences finies à coefficients constants

(5) £"°.G(£)(U 0

où

(5') G(X) — BiX-1) n (*-©«)* •

t>(D) i 1

Du fait que les opérateurs E — (oj commutent entre eux, il suffit, par
linéarité, de vérifier que les suites

(E-&iy(eyi'rv)
sont nulles pour tout triplet d'entiers naturels j, j" vérifiant f ^ 7 > 1
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et j" ^ j. Raisonnons par récurrence sur /. Ce résultat est clair pour

/ 1. Supposons / > 1 et l'assertion vraie jusqu'à l'ordre / — 1. La relation

(£-caj) (("+/':>") «c--{)-("/, ')K: ')

(eyr V+1) oi(n+^21^n)

permet d'appliquer l'hypothèse de récurrence, ce qui prouve le résultat
annoncé.

Si on pose en (5)

(6) G(X) Xm-am.1Xm~1- - a0, £ t,
i 1

on a donc démontré que la suite (£„) vérifie la condition

(7) Ç„+m am-1 ^+„-i + ». + a0 pour n

c'est donc — par définition — une suite récurrente linéaire (en abrégé:

s.rl); le polynôme XnoG(X) sera appelé échelle de récurrence x) ou polynôme

caractéristique et l'entier (n0 + m) ordre de la s.r.l. (£w) (il s'agit d'un abus de

langage car ces objets ne sont pas uniques ; voir plus avant).
Supposons enfin que la relation (7) ait lieu. On vérifie alors aisément

que l'expression

(L W (a0Xm+aiX"'-i + + am_1X-1)
n^O

est un polynôme en X de degré au plus n0 + m. La série S(X) t;nXn
n^O

est alors une fraction rationnelle de la forme (1), ce qui achève la preuve
de l'équivalence logique des trois objets considérés.

IL Quelques exemples

Ce paragraphe contient un certain nombre d'exemples variés qui illustrent
les résultats généraux que nous venons de présenter. De plus de nombreux
exemples figurent dans tout bon livre sur le calcul aux différences finies
ou sur la combinatoire (entre autres [21], [26], [29], [30], [46]).
1) L'exemple le plus populaire de s.r.l. et aussi le plus ancien (il date
de 1202) est la suite (Fn) de Fibonacci définie par les conditions

F0 0, Fx 1, Fn+2 Fn+1 + Fn pour n ^ 0

l) C'est la terminologie de E. Lucas [33].
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