Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 33 (1987)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUITES RÉCURRENTES LINÉAIRES Propriétés algébriques et

arithmétiques

Autor: Cerlienco, L. / Mignotte, M. / Piras, F.

Kapitel: I. SÉRIES RATIONNELLES SUR UN CORPS K

DOI: https://doi.org/10.5169/seals-87887

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

 \mathbf{F}_q — la méthode banale consistant à calculer les valeurs de P(x) pour x parcourant \mathbf{F}_q nécessite en moyenne près de q évaluations, en calculant l'ordre de la matrice compagnon de P on peut répondre à la question en $O(\operatorname{Log} q)$ opérations.

Quelques ouvrages contiennent une présentation générale des suites récurrentes linéaires, d'abord le livre de E. Lucas [33], ainsi que Bachman [3], Henrici [30] chap. 7 et [29], Montel [47], Pisot [52]. Signalons aussi le livre de Dickson [22] sur l'histoire de la théorie des nombres, le chapitre XVII est consacré aux suites récurrentes linéaires.

A. PROPRIÉTÉS ALGÉBRIQUES

I. Séries rationnelles sur un corps ${\mathscr K}$

Soit une série formelle

$$\Xi(X) = \sum_{n \geq 0} \xi_n X^n$$

à coefficients dans un corps (commutatif) \mathcal{K} ; nous allons étudier différents critères de rationnalité d'une telle série.

1. Supposons Ξ rationnelle, c'est-à-dire qu'il existe deux polynômes A et B, à coefficients dans \mathcal{K} , tels que

(1)
$$\Xi(X) = \frac{A(X)}{B(X)}, \qquad B(0) \neq 0.$$

Soient alors $\omega_1',...,\omega_k'$ les racines du polynôme B dans une extension algébrique convenable $\mathcal L$ du corps $\mathcal K$ et soit τ_i la multiplicité de ω_i' (i=1,...,k).

La décomposition en éléments simples de la fraction A/B est de la forme

(2)
$$\frac{A(X)}{B(X)} = Q(X) + \sum_{i=1}^{k} \sum_{j=1}^{\tau_i} \frac{\alpha_{ij}}{(X - \omega_i')^j},$$

où Q(X) est un polynôme à coefficients dans \mathscr{K} (c'est le quotient de la division euclidienne de A par B) et où les α_{ij} appartiennent au corps \mathscr{L} . L'identité formelle, vraie pour tout entier positif j,

$$(X - \omega)^{-j} = (-1)^{j} \omega^{-j} \sum_{n \ge 0} {n+j-1 \choose j-1} (X \omega^{-1})^{n} \quad (où {n \choose 0} = 1)$$

jointe à (1) et (2) conduit à la relation

$$\Xi(X) = Q(X) + \sum_{n \geq 0} \sum_{i=1}^{k} \sum_{j=1}^{\tau_i} (-1)^j \alpha_{ij} \, \omega_i^{n+j} \, \binom{n+j-1}{j-1} \, X^n$$

où on a posé $\omega_i = \frac{1}{\omega'_i} (i=1, ..., k)$.

Si Q a pour degré n_0 , on a donc

(3)
$$\xi_n = P_1(n) \omega_1^n + ... + P_k(n) \omega_k^n \quad \text{pour} \quad n > n_0$$

avec

(4)
$$P_{i}(n) = \sum_{j=1}^{\tau_{i}} (-1)^{j} \alpha_{ij} \omega_{i}^{j} \binom{n+j-1}{j-1}.$$

Remarque. Lorsque la caractéristique du corps \mathscr{K} est nulle, chaque P_i est un polynôme (à coefficients dans le corps \mathscr{L}) en n de degré plus petit que τ_i , et même égal à τ_i-1 lorsque la représentation (1) est irréductible. On dit alors que l'expression (3) est un polynôme-exponentiel. A ce sujet voir aussi l'exemple 2) plus loin.

2. Réciproquement, supposons maintenant que les relations (3) et (4) aient lieu pour $n > n_0$.

Soit E l'opérateur de décalage (en anglais « shift operator »), qui à une suite $\xi = (\xi_n)_{n \ge 0}$ associe la suite $E\xi = (\xi_{n+1})_{n \ge 0}$. Nous allons montrer que la suite

$$(E-\omega_1 I)^{\tau_1} \dots (E-\omega_k I)^{\tau_k} (\xi_n)$$

est ultimement nulle, et plus précisément que $\xi = (\xi_n)_{n \ge 0}$ satisfait à l'équation aux différences finies à coefficients constants

(5)
$$E^{n_0} \cdot G(E)(\xi_n) = 0$$

où

(5')
$$G(X) = \frac{X^m}{B(0)} B(X^{-1}) = \prod_{i=1}^k (X - \omega_i)^{\tau_i}.$$

Du fait que les opérateurs $E-\omega_i I$ commutent entre eux, il suffit, par linéarité, de vérifier que les suites

$$(E-\omega I)^{j'}\left(\binom{n+j''-1}{j-1}\omega^n\right)$$

sont nulles pour tout triplet d'entiers naturels j, j', j'' vérifiant $j' \ge j \ge 1$

et $j'' \ge j$. Raisonnons par récurrence sur j'. Ce résultat est clair pour j' = 1. Supposons j' > 1 et l'assertion vraie jusqu'à l'ordre j' - 1. La relation

$$(E - \omega I) \left(\binom{n+j''-1}{j-1} \omega^n \right) = \left(\binom{n+j''}{j-1} - \binom{n+j''-1}{j-1} \right) \omega^{n+1}$$

= $\left(\binom{n+j''-1}{j-2} \omega^{n+1} \right) = \omega \left(\binom{n+j''-1}{j-2} \omega^n \right)$

permet d'appliquer l'hypothèse de récurrence, ce qui prouve le résultat annoncé.

Si on pose en (5)

(6)
$$G(X) = X^{m} - a_{m-1}X^{m-1} - \dots - a_{0}, \quad m = \sum_{i=1}^{k} \tau_{i},$$

on a donc démontré que la suite (ξ_n) vérifie la condition

(7)
$$\xi_{n+m} = a_{m-1} \xi_{n+m-1} + ... + a_0 \xi_n \quad \text{pour} \quad n > n_0,$$

c'est donc — par définition — une suite récurrente linéaire (en abrégé: s.r.l.); le polynôme $X^{n_0}G(X)$ sera appelé échelle de récurrence ¹) ou polynôme caractéristique et l'entier (n_0+m) ordre de la s.r.l. (ξ_n) (il s'agit d'un abus de langage car ces objets ne sont pas uniques; voir plus avant).

Supposons enfin que la relation (7) ait lieu. On vérifie alors aisément que l'expression

$$\left(\sum_{n\geq 0} \xi_n X^n\right) \left(a_0 X^m + a_1 X^{m-1} + \dots + a_{m-1} X - 1\right)$$

est un polynôme en X de degré au plus $n_0 + m$. La série $\Xi(X) = \sum_{n \ge 0} \xi_n X^n$ est alors une fraction rationnelle de la forme (1), ce qui achève la preuve de l'équivalence logique des trois objets considérés.

II. QUELQUES EXEMPLES

Ce paragraphe contient un certain nombre d'exemples variés qui illustrent les résultats généraux que nous venons de présenter. De plus de nombreux exemples figurent dans tout bon livre sur le calcul aux différences finies ou sur la combinatoire (entre autres [21], [26], [29], [30], [46]).

1) L'exemple le plus populaire de s.r.l. et aussi le plus ancien (il date de 1202) est la suite (F_n) de Fibonacci définie par les conditions

$$F_0 = 0$$
, $F_1 = 1$, $F_{n+2} = F_{n+1} + F_n$ pour $n \ge 0$

¹⁾ C'est la terminologie de E. Lucas [33].