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F, — la méthode banale consistant a calculer les valeurs de P(x) pour x
parcourant F, nécessite en moyenne prés de g évaluations, en calculant
lordre de la matrice compagnon de P on peut répondre a la question en
O(Log q) opérations.

Quelques ouvrages contiennent une présentation générale des suites
récurrentes linéaires, d’abord le livre de E. Lucas [33], ainsi que Bachman [3],
Henrici [30] chap. 7 et [29], Montel [47], Pisot [52]. Signalons aussi le
livre de Dickson [22] sur I'histoire de la théorie des nombres, le chapitre XVII
est consacré aux suites récurrentes linéaires.

A. PROPRIETES ALGEBRIQUES

I. SERIES RATIONNELLES SUR UN CORPS 4

Soit une série formelle

EX) = ¥ &X7

nz0

a coefficients dans un corps (commutatif) - ; nous allons étudier différents
critéres de rationnalité d’une telle série.

1. Supposons E rationnelle, c’est-a-dire qu’il existe deux polynomes 4 et B
a coefficients dans ¢, tels que

>

A(X)
1 X)) = ——, B0) # 0.
() ™ = 55 0 #
Soient alors @4, .., ) les racines du polynéme B dans une extension
algebrique convenable % du corps A et soit 7; la multiplicité de
o;(i=1, .., k).
La déecomposition en éléments simples de la fraction A/B est de la forme
A(X) k Ti oL
(2) = = 9X) + =,
B(X) i:zl jzl (X—CD:)J
ou Q(X) est un polyndme a coefficients dans # (C’est le quotient de la
division euclidienne de 4 par B) et ou les o;; appartiennent au corps &.
L’identité formelle, vraie pour tout entier positif i

X—0)7 = (=)o) ZO (X o™y (o) = 1)
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jointe a (1) et (2) conduit a la relation

EX) = 0X) + Y 33 (—1) oot (Y X7

n=0 i=1 j=1

\ r 1
ou on apose ; = — (i=1, .., k).
®

i

Si Q a pour degré n,, on a donc

(3) &, = Pi(n) o] + .. + P(n o} pour n > n,,
avece
@ Pi) = %, (=1 oy (321

Remarque. Lorsque la caractéristiqlie du corps A" est nulle, chaque P;
est un polyndéme (a coefficients dans le corps .#) en n de degré plus petit
que 1;, et méme égal & 1;,—1 lorsque la représentation (1) est irréductible.
‘On dit alors que Pexpression (3) est un polynéme-exponentiel. A ce sujet
voir aussi 'exemple 2) plus loin.

2. Réciproquement, supposons maintenant que les relations (3) et (4) aient
lieu pour n > ny.

Soit E T'opérateur de décalage (en anglais « shift operator »), qui a une
suite £ = (§,),=0 associe la suite E§ = (£, 1),>0- Nous allons montrer que
la suite

(E—o )" ... (E—o)™E,)

est ultimement nulle, et plus précisément que & = (§,),> o satisfait a P'équation
aux différences finies a coefficients constants

5 ™. G(E) &) = 0

ou

5) 60) = 22 BXY = [] (K-,
BO)

Du fait que les opérateurs E—;] commutent entre eux, il suffit, par
linéarité, de vérifier que les suites

(E—ol) ("7 Ho")

sont nulles pour tout triplet d’entiers naturels j, j,, j* vérifiant j’ > j > 1
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et j* > j. Raisonnons par récurrence sur j'. Ce résultat est clair pour
i = 1. Supposons j' > 1 et I'assertion vraie jusqu’a I'ordre j'—1. La relation

(E—ol) ("5 THe") = (X)) -5 YY)

((n+1 —l)wn—i-l) — 0\)((n+1 1)0))

permet d’appliquer I’hypothése de récurrence, ce qui prouve le résultat
annonce.
Si on pose en (5)

k
6) GX) = X"—ap_ X" ' — .. —ay, m= )Y T,
i=1

on a donc démontré que la suite (§,) vérifie la condition

(7) &n+m = Gy—1 §n+m—l + .. + Ao E.m pOllI' n > no

cest donc — par définition — une suite récurrente linéaire (en abrégé:
s.r.l); le polyndme X™G(X) sera appelé échelle de récurrence ') ou polynéme
caractéristique et lentier (n,+m) ordre de la s.r.l. (§,) (il s’agit d’'un abus de
langage car ces objets ne sont pas uniques; voir plus avant).
Supposons enfin que la relation (7) ait lieu. On vérifie alors aisément
que I'expression
(Y &XM(agX"+a;, X" '+ .. +a, X—1)

n=0

est un polynéme en X de degré au plus n, + m. La série E(X) = ) &,X"
n=0

est alors une fraction rationnelle de la forme (1), ce qui achéve la preuve
de I'équivalence logique des trois objets considérés.

II. QUELQUES EXEMPLES

Ce paragraphe contient un certain nombre d’exemples variés qui illustrent
les résultats généraux que nous venons de présenter. De plus de nombreux
exemples figurent dans tout bon livre sur le calcul aux différences finies
ou sur la combinatoire (entre autres [21], [26], [29], [30], [46]).

1) L’exemple le plus populaire de s.rl et aussi le plus ancien (il date
de 1202) est la suite (F,) de Fibonacci définie par les conditions

Fo=0, F, =1, F,,=F,,,+F, pour n=0

") Ceest la terminologie de E. Lucas [33].
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