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Fq — la méthode banale consistant à calculer les valeurs de P(x) pour x
parcourant Fq nécessite en moyenne près de q évaluations, en calculant
l'ordre de la matrice compagnon de P on peut répondre à la question en

0(Log q) opérations.
Quelques ouvrages contiennent une présentation générale des suites

récurrentes linéaires, d'abord le livre de E. Lucas [33], ainsi que Bachman [3],
Henrici [30] chap. 7 et [29], Montel [47], Pisot [52]. Signalons aussi le

livre de Dickson [22] sur l'histoire de la théorie des nombres, le chapitre XVII
est consacré aux suites récurrentes linéaires.

A. PROPRIÉTÉS ALGÉBRIQUES

I. Séries rationnelles sur un corps jT

Soit une série formelle

3(X) L
n^O

à coefficients dans un corps (commutatif) X\ nous allons étudier différents
critères de rationnalité d'une telle série.

1. Supposons E rationnelle, c'est-à-dire qu'il existe deux polynômes A et B,
à coefficients dans Jf, tels que

W 3(X) Ä B{0) o.

Soient alors ûd'i,..., a'klesracines du polynôme dans une extension
algébrique convenable if du corps X et soit x; la multiplicité de
co; (ï 1,k).

La décomposition en éléments simples de la fraction est de la forme

(2) m Q{x)+£ i; 1 J=1 (X — ca'i)J

où Q(X) est un polynôme à coefficients dans X (c'est le quotient de la
division euclidienne de A par B) et où les a;j- appartiennent au corps if.

L'identité formelle, vraie pour tout entier positif;',

pc-rap' L (ppo:co-1)" (où(S) 1)
n^O '
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jointe à (1) et (2) conduit à la relation

S(X) Q(X) + X t ï'a; <» " JI " } i
' '

n^O i= 1 j= 1

où on a posé cof — (i 1,..., k).
(ù'i

Si Q a pour degré n0, on a donc

(3) Pfin) g>ï + + Pk(n) (ù% pour n > n0

avec

(4) Pin) J (-1
/= i

Remarque. Lorsque la caractéristique du corps JT est nulle, chaque
est un polynôme (à coefficients dans le corps $£) en n de degré plus petit
que ti9 et même égal à xrl lorsque la représentation (1) est irréductible.
'On dit alors que l'expression (3) est un polynôme-exponentiel. A ce sujet
voir aussi l'exemple 2) plus loin.

2. Réciproquement, supposons maintenant que les relations (3) et (4) aient

lieu pour n > n0.
Soit E l'opérateur de décalage (en anglais « shift operator »), qui à une

suite % (£>n)n^o associe la suite EE, (&n+i)«^o- Nous allons montrer que
la suite

(E-co^r (L-cMHU
est ultimement nulle, et plus précisément que £ satisfait à Yéquation

aux différences finies à coefficients constants

(5) £"°.G(£)(U 0

où

(5') G(X) — BiX-1) n (*-©«)* •

t>(D) i 1

Du fait que les opérateurs E — (oj commutent entre eux, il suffit, par
linéarité, de vérifier que les suites

(E-&iy(eyi'rv)
sont nulles pour tout triplet d'entiers naturels j, j" vérifiant f ^ 7 > 1
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et j" ^ j. Raisonnons par récurrence sur /. Ce résultat est clair pour

/ 1. Supposons / > 1 et l'assertion vraie jusqu'à l'ordre / — 1. La relation

(£-caj) (("+/':>") «c--{)-("/, ')K: ')

(eyr V+1) oi(n+^21^n)

permet d'appliquer l'hypothèse de récurrence, ce qui prouve le résultat
annoncé.

Si on pose en (5)

(6) G(X) Xm-am.1Xm~1- - a0, £ t,
i 1

on a donc démontré que la suite (£„) vérifie la condition

(7) Ç„+m am-1 ^+„-i + ». + a0 pour n

c'est donc — par définition — une suite récurrente linéaire (en abrégé:

s.rl); le polynôme XnoG(X) sera appelé échelle de récurrence x) ou polynôme

caractéristique et l'entier (n0 + m) ordre de la s.r.l. (£w) (il s'agit d'un abus de

langage car ces objets ne sont pas uniques ; voir plus avant).
Supposons enfin que la relation (7) ait lieu. On vérifie alors aisément

que l'expression

(L W (a0Xm+aiX"'-i + + am_1X-1)
n^O

est un polynôme en X de degré au plus n0 + m. La série S(X) t;nXn
n^O

est alors une fraction rationnelle de la forme (1), ce qui achève la preuve
de l'équivalence logique des trois objets considérés.

IL Quelques exemples

Ce paragraphe contient un certain nombre d'exemples variés qui illustrent
les résultats généraux que nous venons de présenter. De plus de nombreux
exemples figurent dans tout bon livre sur le calcul aux différences finies
ou sur la combinatoire (entre autres [21], [26], [29], [30], [46]).
1) L'exemple le plus populaire de s.r.l. et aussi le plus ancien (il date
de 1202) est la suite (Fn) de Fibonacci définie par les conditions

F0 0, Fx 1, Fn+2 Fn+1 + Fn pour n ^ 0

l) C'est la terminologie de E. Lucas [33].



72 L. CERLIENCO, M. MIGNOTTE ET F. PIRAS

de sorte que ses valeurs successives sont

05 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,

Dans ce cas la formule (3) s'écrit

* ©ï - ©S 1 + 75 t 1-^/5
Fn ou or —^— et cû 9 —

cox — co2 2 2

en effet pour n 0 et 1 le membre de droite vaut 0 et 1 et comme
co f cof + 1, i 1,2, le membre de droite vérifie la même relation de

récurrence que Fn.

2) Si £, est une s-r-l- alors toute section de c'est-à-dire toute
suite q + où a et b sont deux entiers ^ 0 fixés, est une s.r.l.;

k

de plus si G(X) (X — col)ri est le polynôme caractéristique de E, alors le
î i

k

polynôme Yl {X — cù^)n est un polynôme caractéristique de la suite q.
i 1

[En caractéristique zéro, ceci résulte du fait que nh^t)an+b est un polynôme
exponentiel; en particulier, lorsque les cof sont rationnels on a pour tout n

n (E-®°i)&an+b) o,

an + b étant exprimé comme combinaison des co. Il en résulte que cette
formule est vraie pour des cûj appartenant à un anneau unitaire quelconque.
C'est le «principe de prolongement des identités algébriques», voir [11],
chap. V, § 2, scholie au théorème 3.]

3) Soient E, (£„) et q (q„) deux s.r.l. de polynômes caractéristiques
respectifs G et H. Alors leur somme Ç + q fén + qn) est une s.r.l. admettant
GH comme polynôme caractéristique.

[Preuve: (GH) (E) fê + q) H(E) [G(E)Ç] + G(E) \_H(E)q] 0]

Par exemple, la suite (^„ + oc)„^0, a fixe, est une s.r.l. admettant (X — 1) G(X)
comme échelle. On peut noter aussi que (0J (^n + 1 — a^n) a la même échelle

G(X) que (£w) si G(a) # 0 mais l'échelle G(X)/(X — a) dans le cas contraire.
Plus généralement, si G(X) P(X) Q(X) et si E, (£,„) est une s.r.l. d'échelle G,

la suite P(E). Ç est une s.r.l. qui admet Q comme échelle.

4) Soit a un entier ^ 2 et ^(0),..., ^{a~1} des s.r.l.; alors la suite £, (£,„)

définie par ^r) où n aq + r, 0 ^ r < a, est une s.r.l.; de plus,
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si Gt est le polynôme caractéristique de ^(I), 0 ^ i < a, alors E, admet le

polynôme G(X) G0(Xa)... G^^X*) comme polynôme caractéristique.

[D'après l'exemple précédent, il suffit de considérer le cas où une seule

à la fois des E,{i) n'est pas nulle ; le résultat est alors évident.]

k

5) Soient £, fë„) et r\(r|J deux s.r.l. et et
i 1

H Yl (x-GjYj leurs polynômes caractéristiques; alors le produit de

j= i
Hadamard 0 (Lr|„)„ï0 de \ et r| est une s.r.l. dont le polynôme

caractéristique est P (X-cûicrJ-)ri+Sj~1. [En caractéristique zéro, i-> est un
î* î

polynôme exponentiel donc 9 est une s.r.l.; le cas général s'en déduit par
le principe énoncé plus haut.] Par contre, si on considère le produit

n

^*r| Ç où Çn Y on trouve que Ç est une s.r.l. dont le polynôme
i 0

caractéristique est (X-(coi + crJ))ri+Sj'"1 [voir plus loin A IV 1].
hj

6) Avec les notations de l'exemple précédent, le produit de Cauchy
n

0n Y de % et p est aussi une s.r.l. dont le polynôme caracté-
i 0

ristique est GH [C'est le développement du produit de deux fractions

rationnelles]. Ainsi, si 1 pour tout n, on voit que n i— ^
est une s.r.l. admettant (X — 1). G(X) comme échelle de récurrence.

7) Si A(X) est un polynôme sur Jf, non nul et de degré h et si

£ (A(n))„zo, alors Ç est une s.r.l. admettant (X—l)h+1 comme polynôme
caractéristique.

8) Soit A comme dans l'exemple précédent et soit £ une s.r.l. de polynôme
caractéristique G ; toute suite r\ solution de l'équation A(E)r\ E, est une s.r.l.

admettant A(X). G{X) comme polynôme caractéristique. [Preuve : (AG) (E)r|

- G(E) [A(£)p] - G(E)t) 0].

9) Soit A (atj) une matrice carrée à coefficients dans X\ posons
An (a^ri)), alors, pour tout couple (i,j) fixé, la suite n i— \n ai7(n)
est une s.r.l. admettant le polynôme minimal G de A comme polynôme
caractéristique. [En développant la relation G(A). A" 0 on obtient
G(E)^ 0]. (A ce sujet, voir aussi [14].)

10) Inversement toute s.r.l. £, est obtenue à partir des puissances successives
d'une matrice. Soit
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0 1 0 0

0 0 1 0

A
0 0 0 1

a0 a1 a2 um-i

la matrice-compagnon du polynôme caractéristique G(X) Xm — flm_i
— — a0 ; alors si on pose

on a la relation

Un+1 A Un pour n ^ 0,

donc Un An U0. Il en résulte que, pour n fixé, on peut calculer Un

— donc en particulier — en 0(Log n) opérations. [C'est un truc bien

connu : on écrit n en binaire, n S e{l\ et An Yl A21...].

11) Soit T (tij)itjzo5 où ttj (}), la matrice de Pascal infinie; alors,

pour chaque j fixé, la j-ième colonne de T est la (J -h l)-ième s.r.l.
fondamentale (voir plus avant) d'échelle (X—l)j+1.

12) L'exemple précédent est un cas particulier de celui-ci. Soit H (/z0) où

£ Xl§... X^ si n^k

est le polynôme homogène élémentaire de degré n — k en les variables

X0,..., Xk. Alors vaut pour H un résultat analogue au précédent avec cette

fois le polynôme Gfe+1 ]~] (X — Xt) comme échelle de récurrence. En

particulier :

a) si Xt 1 pour tout i, H T.

b) si Xt n, n entier fixé, alors H Tn.

c) si Xt ql alors H est le triangle des coefficients q-nomiaux (ou
coefficients de Gauss)

0 sinon

k
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[ ov

htj G),
1 0

où (oy i,oy IÎ (S), et (s), 1 + + <t~\
s= 1

d) si Xt ialors H est la matrice des nombres de Stirling de seconde

espèce hy S(i,j) pour i> j,htj 0 pour < définis par la formule

Xf É S{i,j)X(X-l)...(X
j=o

(voir [15]).

13) Soit % y„) une s.r.l. d'échelle G{X) am_1ATm_1 — — a0;

on peut regarder son terme en tant que polynôme en les variables

a0,..., am _ Alors la suite donnée par

8jk
rlho

ao "• v am- i

est une s.r.l. d'échelle Gh + 1.

III. Espaces de s.r.l. sur Jf

Dans I nous avons étudié une suite particulière £ (^B) à valeurs dans Jf
et donné différentes conditions équivalentes pour que £ soit une s.r.l. Ici,
nous étudions des espaces de suites et nous utilisons la structure d'espace
vectoriel de l'ensemble des suites à valeurs dans Jf.

1. Nous considérons l'ensemble Jf[X] des polynômes à coefficients dans Jf
et l'ensemble X[[X]] des séries formelles sur Jf, tous deux avec leur
structure de Jf-espace vectoriel. Nous identifierons implicitement Jf[X] à

l'espace Jf(N) des suites à valeurs dans Jf ultimement nulles et JT[[X]]
à l'espace JfN des suites quelconques à valeurs dans (rappelons que JTN

est le dual linéaire de Jf(N)).

2. Etant donné une s.r.l. Ç, l'ensemble de toutes les échelles de récurrence
qu'elle vérifie est un idéal de l'anneau JT[X] il admet donc un générateur
unitaire unique que l'on appelle le polynôme minimal de On appellera
rang de le degré du polynôme précédent. Evidemment, une suite d'ordre m

si i ^ j

si i <j,
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possède un rang au plus égal à m (contrairement au rang, l'ordre d'une s.r.l.

fixée n'est pas défini de manière unique).

3. Soit G un polynôme fixé à coefficients dans On écrira encore

k

G(X) Xm - am_1 Xm~1 - - a0 [] e &
i i

Nous considérons l'ensemble SG de toutes les s.r.l. d'échelle G. Un élément \
de SG est uniquement déterminé par ses m premiers termes Ç0, £i > •••> ^m-il
chaque autre terme \n dépend linéairement de ceux-ci. Il en résulte que SG

est un sous-espace vectoriel de dimension m de JfN. Les m éléments

Qi) _ (^l'))w^0? i 0,..., m — 1, constituent une base de SG si et seulement
si le déterminant

det((^°) 0 ^ ij ^ m—1)

est non nul.
Suivant les cas, il est utile de prendre une base de SG de l'un des types

suivants :

a) la base constituée par les s.r.l. dites fondamentales

C(0 (Ç^Uo J0,

définies par les conditions initiales Ô},0 < y < m — 1 (ÔJ est le

symbole de Kronecker, 0} 1 si i j et 0 sinon). Sur cette base, un
élément E, de SG s'écrit tout simplement

(8) s à, c(0)+ »• + £»-iC0"-11;

b) la base formée par les suites

k,
ce qui correspond aux formules (3) et (4) ;

c) enfin une base de la forme cp, 2s cp,..., Em~1 cp où cp est une s.r.l. quelconque
admettant G comme polynôme minimal (par exemple les suites Ç(0) et

Ç(m— 1) |a base

4. Si à une suite E, (Ç„)„>0 quelconque, on associe la matrice de Hankel

^2

^2

^3

(9) Hfë) -
"3P+ 1 np + 2

S„+1

+ p
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alors on vérifie facilement que

(i) la suite £ est une s.r.l. si et seulement si il existe un entier m tel

que tout mineur d'ordre plus grand que m extrait de H(Q soit nul,

(ii) si £, est une s.r.l. de rang m alors son polynôme minimal est donné

par le déterminant

1 z2 xm

^0

(10) G(X) ^2 ^3 •-

Sm-1 1
^>2

m — 1

5. De (5) résulte, comme nous l'avons déjà observé, que chaque élément de

SG admet un multiple quelconque de G comme polynôme caractéristique;

autrement dit, l'espace SG est l'orthogonal de l'idéal (G) engendre par G

(regardé en tant que sous-espace de JT[X]):

(11) SG (G)1.

La dualité sous-entendue dans la formule précédente peut être décrite

de manière plus explicite. Identifions la variable X à l'application linéaire

«X»: jf[X] - Jf[X]
A(X) X A(X)

(tout simplement la multiplication par X) ; alors l'application duale est

l'opérateur de décalage E. Ainsi, à l'application de multiplication par G(X):

A(X) \-+ G(X) A{X) — dont l'image est (G) — correspond par dualité
l'opérateur G{E) — dont le noyau est SG. La relation (Im/)1 Ker/*, valable

pour une application linéaire quelconque / de duale /*, équivaut à la relation

(11) dans le cas considéré.

6. Le lien que nous avons indiqué entre le sous-espace SG et l'idéal (G)

peut être étendu en un lien entre l'espace S de toutes les s.r.l. et l'espace

[X], ceci en ayant recours à la notion de bialgèbre.

Une étude détaillée de la structure usuelle de bialgèbre sur JT[X]
et de sa bialgèbre duale est contenue en [51]. Pour un développement
général sur la structure de bialgèbre et de coalgèbre, nous renvoyons à

[59] et [1]. Pour la commodité du lecteur, nous indiquons ici les notions
utilisées dans le présent article.
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Nous noterons par F un espace vectoriel sur et par (h(l)), ou plus
simplement (b% une base de cet espace. On considère ici une structure
d'algèbre comme un triplet sé (F, m, n) avec la condition que l'application
linéaire

m: F (g) F - F

bl tij bh
h

[autrement dit, m correspond à la multiplication et on a blbj X bh~\

et le plongement

u: X* -» F

1

rendent commutatifs les diagrammes

/ (g) m
F ® F (g) F F (2) F

m (g) /

F 0 F

et

(Le premier diagramme exprime tout simplement l'associativité de la

multiplication; dans le second — qui ne fait que traduire que u est unité —
les flèches doubles représentent les isomorphismes canoniques). En termes des

constantes de structure, ces conditions s'expriment par les formules

Ztf/t? zti't»
h h

et

X eî tJh (Ie symbole de Kronecker).
i i
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La définition d'une coalgèbre # (F, A, e) s'obtient par dualisation de

la précédente ; maintenant les deux applications linéaires

A : V -+ F g F (diagonalisation ou comultiplication)

bh i— ^ Tij h* g bj

et

e: F Jf

doivent rendre commutatifs les diagrammes

A
F

V <g) V Ig) A

F ® F

Agi
V g V g V

(counité)

(coassociativité)

et

Jf g

(On renverse les flèches des diagrammes précédents.)

Une application / : F -> F est un morphisme d'algèbre (resp. de coalgèbre)
si elle est linéaire et vérifie / ° m m ° (/® /) et / ° w w (respectivement :

A o / (fgf) o A et s o / s).

A chaque coalgèbre # (F, A, s) est associée son algèbre duale

(7*? A*, 8*), où F* est le dual linéaire de F et A*, 8* les applications
; linéaires respectivement duales de A et 8. Sur la (pseudo-)base (bt) duale

de (b% i.e. bt(bj) «= 8j, les constantes de l'algèbre coïncident avec celles
i de <.

Le passage de l'algèbre sä (F, m, n) à sa coalgèbre duale sä°

; (F°, m°, u°) est défini d'une manière analogue en dimension finie (on a alors
¥f F0 F*, m0 m* et u° m*) ; par contre, si la dimension de F est

| infinie, alors l'ensemble F° sous-jacent à est un sous-ensemble strict de
J F* [car m* : F* - (F® F)* mais F* ® F* cz (F® F)*]. Il est bien connu
L

F F ®
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qu'on doit prendre pour F° l'espace des fonctions linéaires représentatives,
c'est-à-dire des formes linéaires / : F -> Jf telles que Ker / contienne un
idéal J de F de codimension finie.

La structure & (F, m, À, u, s) est une bialgèbre si (F, m, u) est une
algèbre, (F, À, s) une coalgèbre et si À et e sont des morphismes d'algèbre
(ou, ce qui est équivalent, si m et u sont des morphismes de coalgèbre).
Ceci se traduit évidemment en termes de constantes de structures (voir [16],
formule (5) à (8)).

Le passage à la bialgèbre duale (F°, À0, m°, 8°, u°) ne représente

pas de problème puisque À*(F°(g)F0) ç F° (À° et s° sont définies
respectivement comme les restrictions à V° de À* et s*).

En ce qui nous concerne, les deux exemples suivants sont fondamentaux.

1) L'espace vectoriel JT[X] des polynômes possède une structure naturelle
de bialgèbre JC[X], m, À, u, s) dont les applications linéaires sont
définies par

m{Xi®Xj) Xi+j, A(X) X (8) 1 + 1 <g> X,
u(l) 1 et s(Xl) Sq (le symbole de Kronecker).

Plus simplement: m est la multiplication usuelle des polynômes, À associe

à P(X) le polynôme P(X + 7) [ici on identifie X1 (g) Xj à X* Yj] et enfin
s associe à P(X) son terme constant P(0).

2) L'espace S de toutes les s.r.l. possède lui aussi une structure naturelle
de bialgèbre y (S, m, S, ü, s)

ü: JtT —> S 1 h—>(S°)„^Q

s: S ^ JT (£>n)n>o ^
m: S ® S - S, ^ (g) r| Ç * r|

(c'est le produit défini en A II 5))

et

S: S -+S® S,

(dans ce dernier cas on identifie JfN (g) XN avec l'espace des matrices

infinies de type œ> x oo et H(ty désigne la matrice de Hankel de £).

Le lien entre les structures ci-dessus est fourni par le résultat
fondamental suivant [51] :
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Théorème (Peterson-Taft, 1980). La bialgèbre Sf des s.r.l est la bialgèbre

duale de celle des polynômes.

IV.

Dans ce paragraphe nous montrons comment la théorie des s.r.l. permet
d'obtenir des algorithmes utiles pour la résolution de certains problèmes

algébriques et numériques relatifs à Jf[X]. Le contenu de la fin du paragraphe

précédent fournit une justification théorique générale à la méthode utilisée ici.

En général, nous utiliserons sans les rappeler les notations introduites
plus haut.

1. Quelques problèmes d'élimination

Premier problème. Soient donnés n + 2 polynômes G^Xi), i 0,..., n,

et Z Z(X0,..., X„); déterminer — rationnellement en fonction des coefficients

des G{ et de Z — un polynôme G(X) dont les racines sont toutes
les valeurs Z(œ0 jo, ^conJJ où les (ùi}ji parcourent les racines de Gt.

Algorithme 1. Il comporte les pas suivants:

a) construire n + 1 s.r.l. ^(I), où ^(l) admet Gt comme polynôme minimal;
b) construire la s.r.l. p (pm)m^o donné par

n V 7(m) MQ)e(l) C(n)
11m ^ mo mn S mo S mi ••• S mn

ma, mn

où on a posé

[_z{x0,...,xn)YImo mn

c) le polynôme cherché est l'échelle de la suite p et on peut le calculer
grâce à la formule (10).

Second problème. Il s'agit d'une généralisation du précédent. Soient
n + 1 polynômes Gz(Aj), i 1,n et Z(X0,..., Xn), déterminer
rationnellement un polynôme H(Y) ayant pour racines toutes les valeurs op
satisfaisant à une équation du type

Ztœ^coi^,...,©BiJ 0

les coij. parcourant encore l'ensemble des racines de G.

Algorithme 2.

a) Posons G0(X0) X0 — Y ; on utilise l'algorithme 1 pour déterminer le
polynôme G(V) (Y étant considéré momentanément comme une constante) ;
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b) le polynôme H(Y) cherché est donné par le terme constant de G(X).

2. Résultant et p.p.c.m. des polynômes F(X) et G(X)

Soient r|a), i 1,..., /, et ^u\ j 1,m des bases pour les espaces SF

et SG et soit

Le déterminant de A est égal au résultant de F et G, à une constante

multiplicative non nulle près. [Preuve : SF n SG # {0} ssi det A 0.]
De plus, si s est le rang de la matrice A et si zl5..., zs_z sont des

indices tels que les s.r.l. rj(1),r|(0, Ç('l},Qis~l) soient linéairement indépendantes,

le p.p.c.m. de F et G est donné par le déterminant dont la première

ligne est 1, X,..., Xs et dont les autres sont les 5+1 premières valeurs

des suites précédentes. (Voir aussi [12].)

3. Division par un polynôme G(X) fixé
Les applications r et q de Jf[X] dans lui-même qui associent au polynôme

quelconque P(X) son reste r(P) et son quotient q(P) dans la division
euclidienne par G(X) : F G. q(P) + r(P), sont linéaires et donc
représentables par des matrices RG et QG de type (co, ©). Ces matrices peuvent
être facilement décrites en termes de s.r.l.; en effet, la première est la

matrice ayant pour ses m deg (G) premières lignes les s.r.l. fondamentales

Ç(0),..., Ç(m-1) d'échelle G et les autres nulles (par commodité on supprime
ces dernières), tandis que la seconde est formée par la seule Ç(m_1) (précédée,

dans la 5-ième ligne, par 5+1 termes nuls; 5 0, 1, 2,...)

(Cf. [19].)

A

o o... i, çir1', CLTi1',

1 o o r<°> r<°>I V O S m 5 Sm+1 5

o i o r(1) r(1)U i U S m Sm+1
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Qg

o o... o5 î, ç(mm-1)

0 0 0, 0, 1

0 0 0, 0, 0

r (m- 1)
Sm+1 :

r(m-l)
S m î

r(m~ 1)
Sm + 2

r{m- 1)
Sm+1
y {m — 1)
S m

La matrice du reste fournit diverses autres informations sur le

polynôme G(X). A titre d'exemple citons les suivantes :

a) la matrice formée avec les colonnes j-ième,...,(; +m—l)-ième de RG est

la puissance j-ième Mj de la matrice-compagnon M du polynôme G(X);

b) la suite des sommes diagonales des entrées de RG est la suite des sommes

des puissances des racines des G :

ç(°' + C»+i + - + Ç*m+m-1 r100ï + + rmank Trace de M"

(ceci équivaut à la formule de Newton) ;

c) si on donne encore un polynôme F(X), le déterminant de la matrice
F(M) — qui peut être calculé en utilisant a) — est la forme de

Kronecker pour le résultant des polynômes G et F (cf. [13]).

4. Recherche des diviseurs quadratiques d'un polynôme

Dans ce paragraphe on considère des polynômes à coefficients réels.

Notons par ®(w, v) et ^(u, v) deux fonctions réelles qui s'annulent au point
(m0, v0) et par (m, v) un point voisin de (u0, v0) et rappelons que la méthode
de Newton donne les expressions

(12) h(u, v)
ÔV

ÔW
o-

dO dW

du dv

dd> dW

dv du

k(u, v)

dW

du du

dO dW

du dv

d<S> d*¥

dv du

pour les corrections à apporter à u etu, respectivement, afin d'obtenir une
meilleure approximation.

La méthode de Bairstow pour la recherche des valeurs approchées des
coefficients d'un facteur quadratique G0(X) X2 - u0X - v0 d'un polynôme
donné P(X) bnXn + + b0 fait usage de (12) relativement aux fonctions
0(u, u) et *F(u, u) telles que

R(X) a(n, v) + ß(w, v)X 0(w, v)X + (¥(m, v)-u®(u, v))

soit le reste de la division de P(X) par un polynôme G(X) X2 — uX — v
proche de G0(X). Ce choix de O et ^ trouve sa justification dans le fait
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qu'on peut alors exprimer — grâce à l'algorithme connu sous le nom de

« division synthétique » — les valeurs en (w, v) de ces fonctions et de leurs

dérivées partielles premières et donc appliquer les formules (12).

Cependant — en calculant R(X) par la méthode exposée en 3) — il
est facile de vérifier que ces conditions sont satisfaites par des fonctions

plus générales O et ¥ obtenues comme combinaisons linéaires indépendantes
arbitraires des coefficients du reste

R(X)\ <D(u, v) v) + 02ß(w, v), x¥(u, v) xF1a(n, v) + xP2ß(u, v)

(où les coefficients et ^ peuvent dépendre ou non des paramètres

u, v et vérifient Oi*F2 — Q>2¥1 ^ 0)- De plus: grâce à la linéarité de notre
algorithme et à quelques propriétés élémentaires des s.r.l., on peut opérer

une transformation des formules (12) qui permet d'exprimer les corrections h

et k sous forme de quotients de formes quadratiques sur un espace de

dimension quatre évaluées au point R. P, reste de P modulo G2 (où on a

posé R Rqi):

(13) h(u, v)

(13') k(u, v)

(P R P)^ R P^ - ($ R P)(^~ R P

'(RP). H (RP)

HRP). L (RP)

(ê.R.P)^ s RP^j-p?. RP)^
HRP). L.(ÂP)

'{RP). K (RP)

HRP). L (ÂP)

où i> (^l502,03 v<Î)1+u®2>®4 uv$1 + (u2 + v)Q>2) et $ est un
vecteur avec une expression analogue et où H, K, L sont des matrices 4x4
données par

dv dv du ou

dê dp 8$ dp
L — * * —

du dv dv du
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ayant noté par x2, x3, ^4) * Où, y2 > y 3 ya) la matrice de coefficients

ztj ^(Xiyj + xtfi).

Nous soulignons que la complication des formules précédentes est

purement apparente. Ainsi, par exemple, si on choisit <D ß et ¥ a + wß

comme dans la méthode de Bairstow, (13) et (13') deviennent

w x
u(xi)2 - ux1x2 + X0x3 - XxX

h(u, v)

k(u, v)

(Xi)2 - X0X2

v(X\)2 + (Xl)2 - VX0X2 - X1X3
\2(Xi) ~ x0x2

OÙ Xi b0<Ji + b1Gi + 1 + + bnai+n9 (CTj) étant la quatrième des s.r.l.

fondamentales associées à G2.

On remarque encore que cette méthode peut être reprise presque telle

quelle dans la recherche des corrections h(t, p) et k(t, p) relatives au cosinus t
de l'argument et au module p des racines de G X2 — nX — v X2

— 2p tX + p2, enfin on peut facilement généraliser l'algorithme au cas des

diviseurs de degré supérieur à deux (cf. [18]).

5. Recherche approchée des racines d'un polynôme

L'algorithme qu'on réfère ici contient comme cas particulier celui de

Bernoulli et, dans le sens précisé à la fin de ce paragraphe, l'algorithme
de Aitken et le Q.D. algorithme (cf. [23], [29]).

Soit £ (£„) une s.r.l: ayant G(A) pour polynôme minimal (par exemple,
m

ç ^OU% On pose G(X) n (*~P«) avec
i 1

sans exclure le cas de racines multiples. On considère la matrice formée

par les m premières lignes de la matrice de Hankel H(Q et ses mineurs
d'ordre j

Hj.n

\m ^>n+1 ••• ^>n+j-1

^on+j-1 ^n + j ••• ^nH 2j~ 2

n ^ 0

On construit ensuite, pour chaque j ^ m, la suite 0; (B^J^q où
Qjf„ Hjfn + 1/Hjtn. On distingue les deux cas suivants:

Cas (Ij): La suite (0j,„)n^o converge et alors sa limite est égale au produit
des j premières racines de G et | p71 > | pj+1 |. Si ça arrive pour chaque j
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on obtient ainsi successivement les produits p1? pip2, -, P1P2 ••• P; e* donc
chacune des pj.

Cas (IIj): Si la suite 0y- ne converge pas alors | p^ | | pj+1 |. Si, plus
précisément, on a la suite d'éventualités: (Is), (/Js+1),... (Ils+t-J, (Is+t), alors

I Ps I ^ I Ps+1 I •••
I Ps + f

I ^> I Ps + f + 1
I

et

lim 0S+, n
00 _ PlP2 - Ps + t _ Ps+1 Ps + 2 Ps + f *

lim 0S „ PiP2-Ps
n~* 00

(Un cas particulier apparaît en [39]).
Cet algorithme doit être précisé (voir [17]) dans les deux cas suivants:

a) la suite (Hj>n)n^0 contient des termes nuls;

b) G(X) admet au moins un couple de racines réelles et opposées sans avoir
d'autres racines du même module que celles-ci.

Remarquons qu'on peut calculer les déterminants de Hankel Hj n
à l'aide

de la relation de récurrence bien connue

Hj,n Hj,n + 2. ~ Hj+ltn + 2 (Hj,n + l)2 •

Notons enfin que :

i) Si au lieu de G(X) on utilise G(X), le polynôme quadratfrei qui a les

mêmes racines que G, et la s.r.l. associée introduite en 3.b) (dont le

polynôme minimal est précisément G) alors notre algorithme se réduit à

celui de Aitken.

ii) Rappelons que le Q.D.-schéma utilise les suites e{nj\ q{nj\j, n ^ 0, cons¬

truites en utilisant les relations de récurrence

(14) e(nj) (qij)+1 - q(nJ)) + ,qiJ+l)q(nJ)+1 /e</>).

Notre algorithme donne la formule explicite suivante :

Hj+l,n Hj-l,n+l (j) _ Hj,n+1/1C\ pU) — ^x>n J x'"^x nU) _fi rj Tjr > Hn TT TT
I1j,nnj,n+ 1 nj,n ~ nj-l,n+l

Contrairement à ce qui peut se produire avec la formule (14), ces dernières

formules permettent dans tous les cas de poursuivre la construction du
schéma Q.D.; en effet, s'il se présente un zéro dans la suite (07-,„), cela

n'empêche pas de calculer les Qf>n pour / > j. De plus, les formules (15)
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ramènent le problème de la recherche de conditions nécessaires et suffisantes

pour l'existence du Q.D.-schéma à celui de la distribution des zéros dans les

s.r.L Hj n. (Ce problème — relativement à une s.r.l. arbitraire a été

étudié en [6].)

B. ÉTUDE ARITHMÉTIQUE

La théorie des suites récurrentes est une mine inépuisable

qui renferme toutes les propriétés des nombres ; en calculant
les termes consécutifs de telles suites, en décomposant
ceux-ci en facteurs, en recherchant par l'expérimentation les

lois de l'apparition et de la reproduction des nombres

premiers, on fera progresser d'une manière systématique
l'étude des propriétés des nombres et de leurs applications
dans toutes les branches des Mathématiques.

Edouard Lucas (Théorie des Nombres)

I. Méthodes élémentaires

1. Propriétés de périodicité

Le premier résultat de ce type est dû à Lagrange, la proposition
suivante est essentiellement due à Carmichael.

Proposition. Soit £, une suite à valeurs dans un anneau sé et

vérifiant la relation de récurrence linéaire (à coefficients dans sé)

^n + k &k— 1 ^n + k—1 tljç— 2 ^n + k—2 ~b ••• ^0 s n ^ 0

On suppose que £, ne prend qu'un nombre fini de valeurs; alors Ç est

ultimement périodique. De plus, lorsque a0 n'est pas un diviseur de zéro,

la suite £, est purement périodique.

Considérons la suite (£„, £n + 1,^n+k-i)n>o des tuples de valeurs
successives de Si I ne prend qu'un nombre fini de valeurs alors ces /c-uples

ne prennent aussi qu'un nombre fini de valeurs, il existe donc n0 ^ 0

et t > 0 tels que

^n + k-l) fén+l+O-. ï>n+t+k-l)POUr H U0

Grâce à la relation de récurrence cette égalité reste vraie pour tout n ^ n0
et on a donc t)n+t pour n ^ n0. C'est la première assertion.

Supposons en outre a0 non diviseur de zéro et que n0 a été choisi
minimal. Si on a n0 ^ 1 alors la relation de récurrence montre que
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