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F, — la méthode banale consistant a calculer les valeurs de P(x) pour x
parcourant F, nécessite en moyenne prés de g évaluations, en calculant
lordre de la matrice compagnon de P on peut répondre a la question en
O(Log q) opérations.

Quelques ouvrages contiennent une présentation générale des suites
récurrentes linéaires, d’abord le livre de E. Lucas [33], ainsi que Bachman [3],
Henrici [30] chap. 7 et [29], Montel [47], Pisot [52]. Signalons aussi le
livre de Dickson [22] sur I'histoire de la théorie des nombres, le chapitre XVII
est consacré aux suites récurrentes linéaires.

A. PROPRIETES ALGEBRIQUES

I. SERIES RATIONNELLES SUR UN CORPS 4

Soit une série formelle

EX) = ¥ &X7

nz0

a coefficients dans un corps (commutatif) - ; nous allons étudier différents
critéres de rationnalité d’une telle série.

1. Supposons E rationnelle, c’est-a-dire qu’il existe deux polynomes 4 et B
a coefficients dans ¢, tels que

>

A(X)
1 X)) = ——, B0) # 0.
() ™ = 55 0 #
Soient alors @4, .., ) les racines du polynéme B dans une extension
algebrique convenable % du corps A et soit 7; la multiplicité de
o;(i=1, .., k).
La déecomposition en éléments simples de la fraction A/B est de la forme
A(X) k Ti oL
(2) = = 9X) + =,
B(X) i:zl jzl (X—CD:)J
ou Q(X) est un polyndme a coefficients dans # (C’est le quotient de la
division euclidienne de 4 par B) et ou les o;; appartiennent au corps &.
L’identité formelle, vraie pour tout entier positif i

X—0)7 = (=)o) ZO (X o™y (o) = 1)
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jointe a (1) et (2) conduit a la relation

EX) = 0X) + Y 33 (—1) oot (Y X7

n=0 i=1 j=1

\ r 1
ou on apose ; = — (i=1, .., k).
®

i

Si Q a pour degré n,, on a donc

(3) &, = Pi(n) o] + .. + P(n o} pour n > n,,
avece
@ Pi) = %, (=1 oy (321

Remarque. Lorsque la caractéristiqlie du corps A" est nulle, chaque P;
est un polyndéme (a coefficients dans le corps .#) en n de degré plus petit
que 1;, et méme égal & 1;,—1 lorsque la représentation (1) est irréductible.
‘On dit alors que Pexpression (3) est un polynéme-exponentiel. A ce sujet
voir aussi 'exemple 2) plus loin.

2. Réciproquement, supposons maintenant que les relations (3) et (4) aient
lieu pour n > ny.

Soit E T'opérateur de décalage (en anglais « shift operator »), qui a une
suite £ = (§,),=0 associe la suite E§ = (£, 1),>0- Nous allons montrer que
la suite

(E—o )" ... (E—o)™E,)

est ultimement nulle, et plus précisément que & = (§,),> o satisfait a P'équation
aux différences finies a coefficients constants

5 ™. G(E) &) = 0

ou

5) 60) = 22 BXY = [] (K-,
BO)

Du fait que les opérateurs E—;] commutent entre eux, il suffit, par
linéarité, de vérifier que les suites

(E—ol) ("7 Ho")

sont nulles pour tout triplet d’entiers naturels j, j,, j* vérifiant j’ > j > 1
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et j* > j. Raisonnons par récurrence sur j'. Ce résultat est clair pour
i = 1. Supposons j' > 1 et I'assertion vraie jusqu’a I'ordre j'—1. La relation

(E—ol) ("5 THe") = (X)) -5 YY)

((n+1 —l)wn—i-l) — 0\)((n+1 1)0))

permet d’appliquer I’hypothése de récurrence, ce qui prouve le résultat
annonce.
Si on pose en (5)

k
6) GX) = X"—ap_ X" ' — .. —ay, m= )Y T,
i=1

on a donc démontré que la suite (§,) vérifie la condition

(7) &n+m = Gy—1 §n+m—l + .. + Ao E.m pOllI' n > no

cest donc — par définition — une suite récurrente linéaire (en abrégé:
s.r.l); le polyndme X™G(X) sera appelé échelle de récurrence ') ou polynéme
caractéristique et lentier (n,+m) ordre de la s.r.l. (§,) (il s’agit d’'un abus de
langage car ces objets ne sont pas uniques; voir plus avant).
Supposons enfin que la relation (7) ait lieu. On vérifie alors aisément
que I'expression
(Y &XM(agX"+a;, X" '+ .. +a, X—1)

n=0

est un polynéme en X de degré au plus n, + m. La série E(X) = ) &,X"
n=0

est alors une fraction rationnelle de la forme (1), ce qui achéve la preuve
de I'équivalence logique des trois objets considérés.

II. QUELQUES EXEMPLES

Ce paragraphe contient un certain nombre d’exemples variés qui illustrent
les résultats généraux que nous venons de présenter. De plus de nombreux
exemples figurent dans tout bon livre sur le calcul aux différences finies
ou sur la combinatoire (entre autres [21], [26], [29], [30], [46]).

1) L’exemple le plus populaire de s.rl et aussi le plus ancien (il date
de 1202) est la suite (F,) de Fibonacci définie par les conditions

Fo=0, F, =1, F,,=F,,,+F, pour n=0

") Ceest la terminologie de E. Lucas [33].
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de sorte que ses valeurs successives sont
0,1,1,2 3,5, 8, 13, 21, 34, 55, 89, 144, ...

Dans ce cas la formule (3) s’écrit

0] — 0} . 1 +./5 1 —./5
Fnz*l___z ou 0)1:——\[— et 0)22___1.'_

en effet pour n = 0 et 1 le membre de droite vaut 0 et 1 et comme
0w = o, + 1,i = 1,2, le membre de droite vérifie la méme relation de
récurrence que F,,.

2) S1& = (&)= est une s.rl. alors toute section de &, c’est-a-dire toute

suite N = (Eznsp)n=0, OU a et b sont deux entiers > 0 fixés, est une s.r.l.;
k
de plus si G(X) = [] (X —;)" est le polynéme caractéristique de & alors le
i=1
k

polynéme [] (X —w{)" est un polyndme caractéristique de la suite m.
i=1

[En caractéristique zéro, ceci résulte du fait que n+ &,,,, est un polyndme
exponentiel; en particulier, lorsque les ®; sont rationnels on a pour tout n

U (E (‘Oal (E.;an-}-b) = 0>

Eum+p Ctant exprimé comme combinaison des " Il en résulte que cette
formule est vraie pour des m; appartenant a un anneau unitaire quelconque.
Cest le « principe de prolongement des identités algébriques », voir [11],
chap. V, § 2, scholie au théoreme 3.]

3) Soient £ = (§,) et n = (n,) deux sr.l. de polyndmes caractéristiques
respectifs G et H. Alors leur somme & + n = (§,+n,) est une s.r.l. admettant
GH comme polynéme caractéristique.

[Preuve: (GH) (E) (€+n) = H(E) [G(E)Z] + G(E) [H(E)n] = 0].

Par exemple, la suite (§,+a),>o, @ fixe, est une s.r.l. admettant (X —1) G(X)
comme échelle. On peut noter aussi que (0,) = (§,+;—at,) a la méme échelle
G(X) que (§,) si G(a) # 0 mais I’échelle G(X)/(X —a) dans le cas contraire.
Plus généralement, si G(X) = P(X) Q(X)etsi & = (&,) est une s.r.l. d’échelle G,
la suite P(E). & est une s.r.l. qui admet Q comme échelle.

4) Soit a un entier > 2 et &9, .., £@™Y des s.rl.; alors la suite & = (£,)
définie par &, = EY ou n=agq +r, 0<r<a, est une srl; de plus,

N
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si G, est le polyndme caractéristique de £0 0 <i<a, alors & admet le
polyndme G(X) = Go(X?%) ... G,—(X?) comme polyndme caractéristique.
[D’aprés lexemple précédent, il suffit de considérer le cas ou une seule
a 1a fois des E® n’est pas nulle; le résultat est alors évident. ]

k
5) Soient & = (&,) et m =(n,) deux srl et G = ﬂ(X—coi)”' et

i
h

H = [] (X—o;)¥ leurs polynomes caractéristiques; alors le produit de
j=1 )
Hadamard 6 = (£,1,),50 de & et M est une s.rl dont le polynome carac-

téristique est [ (X —w,0;) "%~ 1. [En caractéristique z€ro, n— &,n, est un
polynome expl,ojnentiel donc 0 est une s.r.l.; le cas général s’en déduit par
le principe énoncé plus haut.] Par contre, si on considére le produit
Exn = Loul, = \Z (")&m,_;, on trouve que { est une s.r.l. dont le polynome
caractéristique est lﬁ) (X —(o;+o;)yi "~ [voir plus loin A IV 1].

LJ

6) Avec les notations de lexemple précédent, le produit de Cauchy

6, = > &mn,_; de & et m est aussi une srl dont le polyndome caracté-
i=0

ristique est GH [C’est le développement du produit de deux fractions

rationnelles]. Ainsi, si m, = 1 pour toutn,onvoitquenm—§&, + &, + ... + &,

est une s.rl. admettant (X —1). G(X) comme échelle de récurrence.

7) Si A(X) est un polyndme sur 4, non nul et de degré h et si

& = (A(n),>0, alors & est une s.rl. admettant (X —1)""! comme polyndme
caractéristique.

8) Soit A comme dans I'exemple précédent et soit & une s.rl. de polynome
caractéristique G ; toute suite n solution de I’équation A(E)n = & est une s.r.l.
admettant A(X). G(X) comme polyndme caractéristique. [Preuve: (4G) (E)n
= G(E) [A(E)n] = G(E)S = 0].

9) Soit A = (a;) une matrice carrée a coefficients dans J; posons
A" = (a;;(n)), alors, pour tout couple (i,j) fixé, la suite n &, = a;(n)
est une s.rl. admettant le polyndme minimal G de 4 comme polynome
caractéristique. [En développant la relation G(A4).A4" = 0 on obtient
G(E)E = 0]. (A ce sujet, voir aussi [14].)

10) Inversement toute s.r.l. £ est obtenue a partir des puissances successives
d’une matrice. Soit
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la matrice-compagnon du polyndme caractéristique G(X) = X™ — a,,_,
— ... — aq; alors si on pose

Cn

§n+m—1
on a la relation
U,. 1, =AU, pour n=0,

donc U, = A" U,. Il en résulte que, pour n fixé, on peut calculer U,
— donc en particulier £, — en O(Log n) opérations. [C’est un truc bien
connu: on écrit n en binaire, n = T2, et A" = [] 4% ..].

ei;O
11) Soit T = (t;); 50, OU t; = (), la matrice de Pascal infinie; alors,
pour chaque j fixé, la j-iéme colonne de T est la (j+ 1)-ieme s.rl. fonda-
mentale (voir plus avant) d’échelle (X —1)7*1,

12) L’exemple précédent est un cas particulier de celui-ci. Soit H = (h;;) ou

i i '
XP..X}F st n=k

io+..Tix=n—k

0 sinon

est le polyndme homogene ¢€lémentaire de degré n — k en les variables

Xo, ., X;. Alors vaut pour H un résultat analogue au précédent avec cette
k
fois le polynéme G,,; = [] (X—X;) comme échelle de récurrence. En

i=0
particulier :
a) st X; = 1pourtouti, H = T.
b) si X; = n, n entier fixé, alors H = T™

c) si X;=gq" alors H est le triangle des coefficients g-nomiaux (ou
coefficients de Gauss)
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) !
0 i >
(J)q'(l —J )q'

0 si i<j,

ou(0), =104, =] G),et),=1+qg+ ..+ "
s=1

d) si X; =i alors H est la matrice des nombres de Stirling de seconde
espéce hy; = S(i,j) pour i > j, h;; = 0 pour i <}, définis par la formule

X = ZO G, /) X(X —1) .. (X —k+1)

J

(voir [15]).

13) Soit & = (§,) une s.rl déchelle G(X) = X™ — a,_; X" ' — .. — do;
on peut regarder son terme &, en tant que polynome en les variables
gy, ..., Ay 1. Alors la suite donnée par
0"E,
n = ke gt

am -1

est une s.r.l. d’échelle G** 1.

III. ESPACES DE s.r]. SUR A

Dans I nous avons étudié une suite particuliére § = (§,) a valeurs dans ¢~
et donné différentes conditions équivalentes pour que & soit une s.rl. Ici,
nous étudions des espaces de suites et nous utilisons la structure d’espace
vectoriel de 'ensemble des suites a valeurs dans 4.

1. Nous considérons I'ensemble £ [ X ] des polynomes a coefficients dans ¢
et Pensemble A [[X]] des séries formelles sur ., tous deux avec leur
structure de . -espace vectoriel. Nous identifierons implicitement H#[X] a
Iespace '™ des suites & valeurs dans 4 ultimement nulles et 2 [[X]]

a P’espace AN des suites quelconques a valeurs dans " (rappelons que AN
est le dual linéaire de ™),

2. Etant donné une s.r.l. £ I'ensemble de toutes les échelles de récurrence
quelle vérifie est un idéal de anneau #[X] il admet donc un générateur
unitaire unique que I'on appelle le polynéme minimal de & On appellera
rang de & le degré du polyndme précédent. Evidemment, une suite d’ordre m
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possede un rang au plus égal a m (contrairement au rang, ’ordre d’une s.r.l.
fixée n’est pas défini de maniére unique).

3. Soit G un polyndéme fixé a coefficients dans 2. On écrira encore
GX) =X"—a, 1 X" ' — .. —ay =[] X—0), m,€ L.

Nous considérons ’ensemble S; de toutes les s.r.l. d’échelle G. Un élément &
de S; est uniquement déterminé par ses m premiers termes &g, &1, vy S 13
chaque autre terme &, dépend lin€airement de ceux-ci. Il en résulte que S;
est un sous-espace vectoriel de dimension m de AN. Les m éléments
D = (£9),5,,1=0,.,m — 1, constituent une base de S; si et seulement
si le déterminant

det(E) 0 < i,j < m—1)

est non nul.
~ Suivant les cas, il est utile de prendre une base de S; de 'un des types
suivants:

a) la base constituée par les s.r.l. dites fondamentales
C(i) = (Cg))nZO:i = 05 vy M — 1

définies par les conditions initiales {{ = 8%,0 <j<m — 1 (8} est le
symbole de Kronecker, 8% = 1 si i = j et O sinon). Sur cette base, un
élément & de S s’écrit tout simplement

(8) E =800 + o+ &y LMY

b) la base formée par les suites

@Dz 05 (D) 0L s o (") O " s0si = 1k,
ce qui correspond aux formules (3) et (4);

c) enfin une base de la forme @, E@, ..., E™ ¢ ou ¢ est une s.r.l. quelconque
admettant G comme polyndme minimal (par exemple les suites (@ et
(™1 de la base a)).

4. Si a une suite & = (§,),>, quelconque, on associe la matrice de Hankel

&o &1 &2 O
&1 &2 &3 i i we
9) HE) = | e

.......................................................................
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alors on vérifie facilement que

(i) la suite & est une srl si et seulement si il existe un entier m tel
que tout mineur d’ordre plus grand que m extrait de H(E) soit nul;

(i) si & est une srl de rang m alors son polynome minimal est donné
" par le déterminant

1 X X X"
EJO él &2 E.»m
(10) G(X) = E.~1 &2 &3 §m+1

.............................................................

5. De (5) résulte, comme nous l'avons déja observé, que chaque ¢lément de
S, admet un multiple quelconque de G comme polynome caractéristique;
autrement dit, 'espace S; est lorthogonal de l'idéal (G) engendre par G
(regardé en tant que sous-espace de A [X]):

(11) Se = (G)*.

La dualité sous-entendue dans la formule précédente peut etre décrite
de maniére plus explicite. Identifions la variable X a l'application linéaire

« X »: A[X] - A[X]
AX)— X . A(X)

(tout simplement la multiplication par X); alors 'application duale est I'opé-
rateur de décalage E. Ainsi, a lapplication de multiplication par G(X):
A(X) — G(X) A(X) — dont I'image est (G) — correspond par dualité opé-
rateur G(E) — dont le noyau est S;. La relation (Imf)* = Ker f*, valable
pour une application linéaire quelconque f de duale f*, équivaut a la relation
(11) dans le cas considéré.

6. Le lien que nous avons indiqué entre le sous-espace S; et l'idéal (G)
peut étre étendu en un lien entre I'espace S de toutes les s.r.l. et ’espace
HA'[X], ceci en ayant recours a la notion de bialgebre.

Une étude détaillée de la structure usuelle de bialgébre sur H#[X]
et de sa bialgebre duale est contenue en [51]. Pour un développement
général sur la structure de bialgébre et de coalgeébre, nous renvoyons a

[59] et [1]. Pour la commodité du lecteur, nous indiquons ici les notions
utilisées dans le présent article.
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Nous noterons par V un espace vectoriel sur 4 et par (b?), ou plus
simplement (b%), une base de cet espace. On considére ici une structure
d’algebre comme un triplet .« = (V, m, n) avec la condition que I'application
linéaire

mVeeV -V
V'@ b)Y i
h
[autrement dit, m correspond & la multiplication et on a b’ = ) t}/ b"]
h

et le plongement

u:A -V
1 »Xe¢b

rendent commutatifs les diagrammes

I ®m
VeRVV - VRV
me I m
m
VeV - V

et

1 I &® u
Jf@)V'u\@—> VeV VA

(Le premier diagramme exprime tout simplement l’associativité de la multi-
plication; dans le second — qui ne fait que traduire que u est unité —
les fléches doubles représentent les isomorphismes canoniques). En termes des
constantes de structure, ces conditions s’expriment par les formules

Yt = 2t
h h
et

2. e 4 = Z e; t§' = &i(le symbole de Kronecker).
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La définition d’une coalgébre € = (V, A, €) s’obtient par dualisation de
la précédente ; maintenant les deux applications linéaires

A:V -V ® V (diagonalisation ou comultiplication)
b Y ol b @ b
i, J

et
e Vo (counite)
b" - &
doivent rendre commutatifs les diagrammes

V a -~V QV

A ARI (coassociativite)

et

ey <2 yer -2 yvex

(On renverse les fléches des diagrammes précédents.)

Une application f: ¥V — V est un morphisme d’algebre (resp. de coalgebre)
si elle est linéaire et vérifie f om = mo(f@f) et f ou = u (respectivement :
Aof =(f®f)cActeeo f = ¢)

A chaque coalgebre ¥ = (V,A,g) est associce son algebre duale
&* = (V*, A*, g*), ou V* est le dual linéaire de V et A*, &* les applications
linéaires respectivement duales de A et & Sur la (pseudo-)base (b;) duale
de (b)), i.e. b{b’) = &, les constantes de l’algébre ¥* coincident avec celles
de €.

Le passage de lalgebre o = (V,m,n) a sa coalgébre duale /°
= (V°, m°, u°) est deéfini d’'une maniere analogue en dimension finie (on a alors
Ve = V*m® = m* et u> = u*); par contre, si la dimension de V est
infinie, alors I'ensemble V° sous-jacent 4 /° est un sous-ensemble strict de
V* [car m*: V* > (VQV)* mais V* @ V* < (V®V)*¥]. 1l est bien connu

7‘:
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qu’on doit prendre pour V° I'espace des fonctions linéaires représentatives,
c’est-a-dire des formes linéaires f:V — A telles que Ker f contienne un
idéal J de V de codimension finie.

La structure 4 = (V,m, A, u,¢) est une bialgebre si (V,m, u) est une
algebre, (V, A, €) une coalgebre et si A et € sont des morphismes d’algebre
(ou, ce qui est équivalent, si m et u sont des morphismes de coalgébre).
Ceci se traduit évidemment en termes de constantes de structures (voir [16],
formule (5) a (8)).

Le passage a la bialgebre duale #° = (V°, A°, m°, €°, u°) ne représente
pas de probleme puisque A¥V°®V°) < V° (A° et €° sont définies respec-
tivement comme les restrictions a V° de A* et &*).

En ce qui nous concerne, les deux exemples suivants sont fondamentaux.

1) L’espace vectoriel [ X] des polyndémes posséde une structure naturelle
de bialgebre £ = A [X], m, A, u, &) dont les applications linéaires sont
définies par

mX@X) = X', AX)=XQ1+1Q®X,
ul) =1 et &X) = 8} (le symbole de Kronecker).

Plus simplement: m est la multiplication usuelle des polynomes, A associe
a P(X) le polyndbme P(X +Y) [ici on identifie X' ® X/ a X' Y/] et enfin
g associe 2 P(X) son terme constant P(0).

2) L’espace S de toutes les s.r.l. possede lui aussi une structure naturelle
de bialgébre & = (S, m, A, i, &)

A -8, 109,50
E:S-> A, (Cuuzor &0
m:S®S—->8, ER/nN—Ex*n
(c’est le produit défini en A II 5))

et

A:S->S®S, & HE)

(dans ce dernier cas on identifie AN ® AN avec l'espace des matrices
infinies de type @ x o et H(E) désigne la matrice de Hankel de &).

Le lien entre les structures ci-dessus est fourni par le résultat fonda-
mental suivant [51]:
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THEOREME (Peterson-Taft, 1980). La bialgébre & des s.r.l. est la bialgébre
duale de celle des polynomes.

IV.

Dans ce paragraphe nous montrons comment la théorie des s.r.l. permet
d’obtenir des algorithmes utiles pour la résolution de certains problémes
algébriques et numériques relatifs a 2# [ X]. Le contenu de la fin du paragraphe
précédent fournit une justification théorique générale a la méthode utilisée ici.

En général, nous utiliserons sans les rappeler les notations introduites
plus haut.
1. Quelques problemes d’élimination

Premier probleme. Soient donnés n + 2 polyndmes Gi(X;), i = 0, ..., n,
et Z = Z(X,, ..., X,,); déterminer — rationnellement en fonction des coeffi-
cients des G; et de Z — un polyndme G(X) dont les racines sont toutes
les valeurs Z(wg, j,, ®;,j,, - ©y ;,) OU les ®; ; parcourent les racines de G;.
Algorithme 1. Il comporte les pas suivants:
a) construire n + 1 sl €9, ou &Y admet G, comme polyndme minimal;

b) construire la s.r.l. 1 = (N,,)m>0o donné par

0 1
M= Y ZM (0) £ (1) ()

e My mo my mn
mQo, ..., Mp

ou on a posé

[Z(Xo, .. X)) " = Y ZW .. X3 . X
mo...mMp

c) le polyndme cherché est I'échelle de la suite 1 et on peut le calculer
grace a la formule (10).

Second probléeme. 1l s’agit d’une généralisation du précédent. Soient
n+ 1 polyndmes Gi(X;), i = 1,.,n et Z(X,,.. X,), déterminer ration-
nellement un polynéme H(Y) ayant pour racines toutes les valeurs ®;
satisfaisant a une équation du type

Z((DJ; (401!‘]'1 5 cers CDn,jn) = O
les w; ;, parcourant encore 'ensemble des racines de G.

Algorithme 2.

a) Posons Go(X,) = X, — Y; on utilise I'algorithme 1 pour déterminer le
polyndme G(X) (Y étant considéré momentanément comme une constante);
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b) le polynome H(Y) cherché est donné par le terme constant de G(X).
(Ctf. [19])

2. Résultant et p.p.c.m. des polynomes F(X) et G(X)

Soient n®, i = 1,.., 1, et EP,j = 1,..,m des bases pour les espaces S
et Sg et soit

(1) (1)
1 1 O —— Nitm

) ()
TIY  ceeerererresreneenenrenteressesesseeennene Nitm

A =1 e

(1) (1)
EQ o eeeeeeeeeeeeeeeeeseeessennes gL

(m) (m)
EOM oeeeeeeeesnesesseneeseenenseeene gm

Le déterminant de A4 est égal au résultant de F et G, a une constante
multiplicative non nulle prés. [Preuve: S N Sg # {0} ssi det A=0]

De plus, si s est le rang de la matrice 4 et si i;,.. i;_;, sont des
indices tels que les s.rl. n'D, .., n®, W0, | Els-D gojent linéairement indépen-
dantes, le p.p.cm. de F et G est donné par le déterminant dont la premiere
ligne est 1, X, .., X° et dont les autres sont les s 4+ 1 premiéres valeurs
des suites précédentes. (Voir aussi [12].)

3. Division par un polynome G(X) fixé

Les applications r et ¢ de [ X] dans lui-méme qui associent au polynome
quelconque P(X) son reste r(P) et son quotient g(P) dans la division
euclidienne par G(X): P = G.q(P) + r(P), sont linéaires et donc repré-
sentables par des matrices R; et Q, de type (®, ®). Ces matrices peuvent
étre facilement décrites en termes de s.rl.; en effet, la prémiére est la
matrice ayant pour ses m = deg (G) premicres lignes les s.r.l. fondamentales
(O, ..., ™D @échelle G et les autres nulles (par commodité on supprime
ces derniéres), tandis que la seconde est formée par la seule (™~ (précédée,
dans la s-iéme ligne, par s + 1 termes nuls; s = 0, 1, 2, ..))

1 0 Oa CSP?) H QSr(l)-)*-l ’
0 1 09 Cgr‘}) H Cgll s
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0 0.0, 1, LgY, gEy, L
Q¢ = 0O 0..0, 0, 1 . ogmm | pmed
0O 0..0, O, O , 1 . (m-D

.......................................................................................................

La matrice R, du reste fournit diverses autres informations sur le
polyndme G(X). A titre d’exemple citons les suivantes:

a) la matrice formée avec les colonnes j-iéme, ..., (j+m—1)-ieme de Rg est
la puissance j-iéme M’ de la matrice-compagnon M du polyndéme G(X);

b) la suite des sommes diagonales des entrées de R est la suite des sommes
des puissances des racines des G:

(O ¢ 4+ o+ MY =0 + ..+ 1, 0F = Trace de M"
(ceci équivaut a la formule de Newton);

¢) si on donne encore un polynéome F(X), le déterminant de la matrice
F(M) — qui peut étre calculé en utilisant a) — est la forme de
Kronecker pour le résultant des polynomes G et F (cf. [13]).

4. Recherche des diviseurs quadratiques d’un polynéome

Dans ce paragraphe on considere des polyndmes a coefficients réels.

Notons par @(u, v) et ¥(u, v) deux fonctions réelles qui s’annulent au point
(ug, vg) et par (u, v) un point voisin de (uy, vo) et rappelons que la méthode
de Newton donne les expressions

od
g2 _ 0¥ 0¥ _y®

12) W, v) = ov ov K, v) = ou ou
T 00v oor YT 500v o0 ow

ou v Ov Ou ou v Ov u

pour les corrections a apporter a u et v, respectivement, afin d’obtenir une
meilleure approximation.

La méthode de Bairstow pour la recherche des valeurs approchées des
coefficients d’un facteur quadratique Go(X) = X2 — uyX — v, d’un polyndme
donné P(X) = b, X" + ... + b, fait usage de (12) relativement aux fonctions
O(u, v) et P(u, v) telles que

R(X) = an, v) + B, )X = D, )X + (¥(u, v)—ud(y, v))

soit le reste de la division de P(X) par un polynéme G(X) = X? — uX — v
proche de Go(X). Ce choix de ® et W trouve sa justification dans le fait
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quon peut alors exprimer — grace a lalgorithme connu sous le nom de
« division synthétique » — les valeurs en (u, v) de ces fonctions et de leurs
derivées partielles premieres et donc appliquer les formules (12).

Cependant — en calculant R(X) par la méthode exposée en 3) — il
est facile de vérifier que ces conditions sont satisfaites par des fonctions
plus générales @ et ¥ obtenues comme combinaisons linéaires indépendantes
arbitraires des coefficients du reste

R(X): D(u, v) = ©,u, v) + ©,B(u, v), ¥(u, v) = Y, un, v) + ¥,B(u, v)

(ou les coefficients ®; et W, peuvent dépendre ou non des parametres
u, v et vérifient ®,¥, — ®,¥, # 0). De plus: grace a la linéarité de notre
algorithme et a quelques propriétés élémentaires des s.r.l., on peut opérer
une transformation des formules (12) qui permet d’exprimer les corrections h
et k sous forme de quotients de formes quadratiques sur un espace de
dimension quatre évaluées au point R . P, reste de P modulo G*? (ou on a
posé R = Rg:):

13)  hu,v) =
S ) ()
—.R.P|)|[=—.R.P)-|—.R.P)|=—.R.P
ou v ov ou I
_ YRP).H.(RP)
~ YRP).L.(RP)
(®.R P)@?OR P) (¥ . R P)<§.R P)
(13)  k(w, v) = Y -

on ® = (®,,D,,D; = v, +ud,, D, = uwd; +u’>+v)®,) et ¥ est un
vecteur avec une expression analogue et ou H, K, L sont des matrices 4 x 4
données par

a@ 0P a@ oD ‘

H = \? * — — * —— = * —— — * — 5
ov’ ou’ 3

_ od 0¥ b a\i’f :

* — * :
ou ov ov Ou L
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ayant noté par (xX;, X,, X3, X4) * (1, Y2, V3, Ya) 12 matrice de coefficients

1
Zyj = ‘2* (xiyj+xjyi)°

Nous soulignons que la complication des formules précedentes est
purement apparente. Ainsi, par exemple, si on choisit ® = fet¥ = a + uf
comme dans la méthode de Bairstow, (13) et (13') deviennent

u(x()? — ux;x, + XoX3 — X1X;
h(u, v) =

(x1)2 — XoX2

. v(x1)? + (%2)* — XXy — X1X3

k(u, v) =

(x1)2 — XoX2

ol x; = byo; + b,6,41 + .. + b,0,.,, (0;) étant la quatriéme des s.r.l.
fondamentales associées a G.

On remarque encore que cette méthode peut étre reprise presque telle
quelle dans la recherche des corrections ﬁ(t, p) et Iz(t, p) relatives au cosinus t
de largument et au module p des racines de G = X? — nX —v = X?
— 2ptX + p? enfin on peut facilement généraliser I’algorithme au cas des
diviseurs de degré supérieur a deux (cf. [18]).

5. Recherche approchée des racines d’un polynéme

L’algorithme qu’on référe ici contient comme cas particulier celui de
Bernoulli et, dans le sens précis¢ a la fin de ce paragraphe, ’algorithme
de Aitken et le Q.D. algorithme (cf. [23], [29]).

Soit & = (&,) une s.r.l: ayant G(X) pour polynéme minimal (par exemple,

m

§ =" oug =™ Onpose G(X) = [] (X—p;) avec |p;| > .. = | pul,

i=1
sans exclure le cas de racines multiples. On considére la matrice formée

par les m premicres lignes de la matrice de Hankel H(E) et ses mineurs
d’ordre j

Hj,n: ............................................................ Py n?O.

On construit ensuite, pour chaque j < m, la suite 6; = (9, 2)nz0 OU
8,, = H; ,,,/H; ,. On distingue les deux cas suivants:

Cas (I;): La suite (9; ,),»0 converge et alors sa limite est égale au produit
des j premicres racines de G et | Pj| > | pj+1|. Si ¢a arrive pour chaque j
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on obtient ainsi successivement les produits p;, p;p;, .., P1P2 - P; €t donc
chacune des p;.

Cas (I1I;): Si la suite 0; ne converge pas alors | p;| = | p;+;|. Si, plus
précisement, on a la suite d’éventualités: (I,), (II;44), ... I 4, — 1), (I54,), alors

Lps| > 1 Ps+i| = o = | Pssr | > | Pswrsnl
et
lim O, ,
n— oo o — p1p2 ps+t — P p p
hm @s,n plpz ps st1 FMs+2 s Ms+t -

(Un cas particulier apparait en [39]).
Cet algorithme doit étre précisé (voir [17]) dans les deux cas suivants:

a) la suite (H; ,),»0 contient des termes nuls;

b) G(X) admet au moins un couple de racines réelles et opposées sans avoir
d’autres racines du méme module que celles-ci.

Remarquons qu’on peut calculer les déterminants de Hankel H; , a l'aide
de la relation de récurrence bien connue

— 2
Hj,nH',n+2 - H'+1,nHj—l,n+2 - (Hj,n+1) .

J J
Notons enfin que:

i) Si au lieu de G(X) on utilise G(X), le polyndbme quadratfrei qui a les
mémes racines que G, et la s.rl. associée introduite en 3.b) (dont le
polynéme minimal est précisément @) alors notre algorithme se réduit a
celui de Aitken.

ii) Rappelons que le Q.D.-schéma utilise les suites e, ¢{,j, n > 0, cons-
truites en utilisant les relations de récurrence

(14) e = (@ —af) +e¥rd, ¥t = g9, €Dy /e).
Notre algorithme donne la formule explicite suivante:

(15) (]) _ Hj+1,nHj—1,n+1 (J) — Hj’n+1 Hj—l,n
e H. . H ’ " H :
Jn="jntl h»n T Hj-1,n+1

J

Contrairement a ce qui peut se produire avec la formule (14), ces dernieres
formules permettent dans tous les cas de poursuivre la construction du
schéma Q.D.; en effet, s’il se présente un zéro dans la suite (9;,), cela
n’empéche pas de calculer les 0; , pour j > j. De plus, les formules (15)
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raménent le probléme de la recherche de conditions nécessaires et suffisantes
pour lexistence du Q.D.-schéma a celui de la distribution des zéros dans les
srl H,,. (Ce probléme — relativement a une s.rl. arbitraire — a €té
étudié en [6].)

B. ETUDE ARITHMETIQUE

La théorie des suites récurrentes est une mine inépuisable
qui renferme toutes les propriétés des nombres; en calculant
les termes consécutifs de telles suites, en décomposant
ceux-ci en facteurs, en recherchant par 'expérimentation les
lois de lapparition et de la reproduction des nombres
premiers, on fera progresser d’une maniere systématique
Pétude des propriétés des nombres et de leurs applications
dans toutes les branches des Mathématiques.

Edouard Lucas ( Théorie des Nombres)

I. METHODES ELEMENTAIRES

1. Propriétés de périodicité

Le premier résultat de ce type est dii a Lagrange, la proposition
suivante est essentiellement due & Carmichael.

PROPOSITION. Soit & une suite a valeurs dans un anneau < et
vérifiant la relation de récurrence linéaire (a coefficients dans <)

Enik = Op—1 Epap—1 + QG2 Epik—2 + - + ag E,,n=0.

On suppose que & ne prend quun nombre fini de valeurs; alors & est
ultimement périodique. De plus, lorsque a, wnest pas un diviseur de zéro,
la suite & est purement périodique.

Considérons la suite (§,, &,4 15 - Entk—1)n=0 des k-uples de valeurs suc-
cessives de . Si £ ne prend qu'un nombre fini de valeurs alors ces k-uples
ne prennent aussi quun nombre fini de valeurs, il existe donc ny = 0
et t > 0 tels que

(C> Cntts oo Gnik=1) = Ens141s o Enrer—1) DOUr 1 = ng.

Gréce a la relation de récurrence cette égalité reste vraie pour tout n > n,
etonadonc&,,., = &, pour n = n,. Cest la premiére assertion.

Supposons en outre a, non diviseur de zéro et que n, a été choisi
minimal. Si on a ny, > 1 alors la relation de récurrence montre que




	A. PROPRIÉTÉS ALGÉBRIQUES
	I. SÉRIES RATIONNELLES SUR UN CORPS K
	II. Quelques exemples
	III. Espaces de s.r.l. sur K
	IV.


