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48 P. LE BARZ

Sn— 18 (Z) + 14 (Z) + 8t — 8d(n—5) + 5(n—8).

Si de plus 'V contient un nombre fini de droites, la « contribution »

4+1
d’une telle droite de self-intersection leZ a ce nombre est —( :)

Remarque. On peut par exemple vérifier que la surface S(2, 2,2, 2, 3)
de P7 possede 512 trisécantes, ce que donne un calcul direct dans la
grassmannienne G(1, 7).

VI) ANNEXE

Nous avons regroupé dans cette annexe tous les calculs auxiliaires qui auraient alourdi
le cours du texte. 1l s’agira la plupart du temps de calculs en coordonnées locales.

1°) Hilb*Q

Ce paragraphe sert a étudier Hilb? S lorsque S = P* est une surface dont les
singularités sont ordinaires, i.e. localement réunion de deux branches lisses transverses.
(Voir 1.2.a.)

Soit Q dans C* la réunion de deux plans P, et P, se coupant en lorigine.

LEMME 9. a) Tout k-uplet curviligne &, de support {0} contenu dans Q est
limite dans (Hilb* Q)..q de k-uplets formés de points distincts. En particulier Hilb* Q
est génériquement réduit car Hilb’; Q est dense (et réduit ).

b) Hilbk Q est en fait réduit.

Preuve. Soit (x, y, z, u) un systetme de coordonnées pour lequel P, est donné par
x =y =0et P, par z = u = 0. De sorte que I'idéal de Q est

J = (x,9) N (z,u) = (xz, yz, xu, yu) .

Montrons a). Soit &, dans Q un k-uplet curviligne avec Supp &, = {0}. Mais &,
est contenu dans une courbe non-singuliere I'. Celle-ci est « transverse » soit a P,
soit a P,; supposons I' transverse a P;; quitte a faire une transformation linéaire
sur x et y, I' peut étre paramétrée par
y = ox), z = B(x), u = yx),
ou a, B,y sont dans lidéal maximal de C [[x]]. L’idéal de &, dans C [[x, ¥, Z, u]]
est donc
IO = (-xk: y——oc(x), zZ— B(x)a u—'Y(X)) s

Comme on a linclusion &, < @, soit encore I, > J, il vient xp(x) et xy(x) multiples
de x*. En supprimant par ailleurs les termes de degré supérieur a k, I'idéal se réécrit:
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Iy = (x5 y—A(x), z—Box* 1, u—yox* 1)

ou A est un polyndome de degré < k — 1, nul en O.
Considérons pour ¢t # 0 I'idéal de Ocs défini par

L= (x(F = 71, y— A(), 2= Bl ™1 =57 1), u—pp(xF I 7).

Cest lidéal de la réunion du point simple de coordonnées (0,0, —Bot* ™%, — 7yt~ 1)
dans P; et de k — 1 points simples distincts (et distincts du précédent) dans P, car
z = u = 0 pour ces points-la.

Clairement I, - I, si t —» 0, d’ou I’assertion a).

Montrons b). On se raméne comme toujours & Supp &, = {0}. Une carte de Hilb* C*
en I, est donnée par

@1y, @y, Ars by, by, Cpy e )
correspondant a I'idéal
I = (F4ax* "+ . +a,y—AX)+a' x* 1 +. . +ayp,
z—Box* T 4 b X T by, u—yoxF T e X 4 4 ¢p)
voisin de
Iy = (X", y—A(x), z—Box* "1, u—yoxF71).

Comment s’exprime Hilb} Q dans cette carte? D’aprés [8], on doit exprimer I'inclusion
I > J, ou J est l'idéal de Q, ce qui revient &:

xzel < (by—Bo)x* + byx* ' + . + bxel

xuel < (c;—v)x* + cpx* 1 + .+ cxel

vzelwaizel = ayb;—Bo)x* ™' + apb,x* 2 + .. + ajb el

ywelwawel < ac;—vo)x 1 + aje,x* ™2 + .. + aje, el

Ceci donne les relations

b, = (by—Bo)ay ¢, = (e —~7Yo0)ay
by = (by—Bo)a, ¢z = (c;—70)a,
by = (b1 —Bo)ax-1 Crkr = (c1—Yo) -
0 = (by—Bo)a 0 = (¢c;—7vo)
ainsi que
{a;c(bl_BO) = a, = .. = aib, =0
a,(cl—'YO) = a;cC2 = .. = a;cck == O

En r_er’nplacant bz,b32... by et cy,c¢3,...c; par leurs valeurs (ce qui correspond a
considérer un graphe), il ne reste que I'idéal

(ak(bl —Bo), awlby —Bo), al(¢1—"Yo)s a;c(cl—YO)) .

Cf}t kidéal de C[a,ay,cy,b;] est réduit, que B, et Yo soient nuls ou non. Donc
Hilb} Q est réduit.
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2°) Hilb* @, et Hilb* I1,

Ce paragraphe est utile pour la proposition 2 (voir 1.2.c.)
Nous définissons deux schémas relatifs ®/C et II/C comme sous-schémas relatifs
de C* x C (rapporté aux coordonnées (x, y, z, t)) par les idéaux

I0) = (xyz—t) et III) = (> —x*z—1).

Les schémas ®/C* et II/C* sont lisses tandis que les fibres ®, et II, sont respec-
tivement la réunion des trois plans de coordonnées de C> ainsi que la surface
appelée « parapluie de Whitney ».

LEMME 10. a) Hilb% ©, est dense dans Hilbi ®,. En particulier Hilbk @, est
génériquement réduit.

b) Tout k-uplet curviligne contenu dans ©, est limite de k-uplets curvilignes
contenus dans ©, avec t # 0.

Preuve. Soit £, un k-uplet curviligne dans ®,. On se rameéne comme toujours
au cas ou Supp &, est un point.

Regardong le cas ou Sup.p Cp = {O} Comme &, est par hypothese situé sur une
courbe non-singuliere I', quitte a faire une permutation entre x,y et z, une para-
métration en 0 de I est

y = ox) z = B(x)

ol o et B sont dans 'idéal maximal de C [[x]]. L’idéal I, de &, dans C [[x, y, z]]
est donc (x*, y—a(x), z— B(x)). On peut encore I’écrire

Iy = (xX, y—A(x), z— B(x))

ou A et B sont des polyndmes des degrés < k — 1, en éliminant les multiples de x*.
Notons a (resp. b) la valuation en 0 de A (resp. B). On a bien sir a < k — 1
etbh <k — L

Comme on doit avoir 'inclusion I, o I(®,) = (xyz), puisque §, < ®,, cela entraine
xA(x)B(x)e I,, soit 1 + a+ b = k (ce qui est toujours vérifie¢ si k = 3). Soit b,
I’entier positif tel que 1 + a + b; = k.

Montrons a). Soit A(x) = x*4,(x), B(x) = x"*B;(x) ou 4, et B, sont deux polyndmes.
Pour s # 0 dans C, notons I I'idéal de C [x, y, z] donné par:

I, = (x(x*—(25)%) (xb* —51), y—(x*—(25)%) A4(x), z—(x"* —s"")B,(x)) .

S

Cest I'idéal de la réunion de k points simples situé¢s chacun sur au moins 'un
des trois plans de coordonnées de C°.

De plus, I, —» I, dans Hilb* C* si s » 0 dans C. D’ou l'assertion a), car les cas
ou Supp &, est situé sur 'un des axes de coordonnées ou méme a lintérieur d’un
des plans de coordonnées sont beaucoup plus simples; on ne les traitera pas.

Montrons b). 1l est facile de voir qu'un point simple quelconque de ®, est limite
d’un point simple de ©, avec ¢t # 0. Ceci prouve I'inclusion

Hilb% ©, < Hilbk @/C*

la barre désignant I'adhérence dans Hilbf C°. A fortiori, on a Hilb% @,
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< Hilb% ©/C*. Mais d’apres a), on a Hilb* ®, contenu dans Hilb% @, ; il en résulte
donc P'inclusion

Hilb* ®, < Hilb%, ©/C*

ce qu’on cherchait a prouver. Le lemme 10 est donc démontré.
Montrons maintenant le

LemMe 11. a) Hilb% I, est dense dans Hilbf I1,. En particulier Hilbf IT,
est géneriquement réduit.

b) Tout k-uplet curviligne dans TI, est limite de k-uplets curvilignes dans II,
avec t # 0.

Preuve.

Montrons a). L’assertion est claire pour k = 1 et facile pour k = 2. Soit donc
k > 3 et montrons par récurrence sur k que Hilb% IT, est dense dans Hilbf IT,.

Soit &, un k-uplet curviligne situé dans Il,; on se raméne comme d’habitude a
Supp &, formé d’un seul point. Comme dans le lemme 10, seul le cas Supp &,
= {0} est délicat et on s’y place donc.

1) Puisque &, est situé sur une courbe non-singuliére I', supposons-la dans un premier
temps transverse au plan Oxy. L’idéal I, de &, est alors

Iy = (7%, y—A(z), x— B(2))

ou A et B sont des polynémes de degré < k — 1, nuls en 0, comme on I'a vu de
maniere analogue dans le lemme 10. Puisque I, > I(Il,) vu que &, < Il,, et comme
I(ITy) = (y*—x?z), on a nécessairement A%(z) — B*(z).z e I,. Ceci entraine

A*(z) — B*(2).z multiple de z*

et par suite val(4) > 2 car k > 3. On écrit donc
Iy = (2%, y—2%A4,(2), x—zB,(2))

ou A, et B, sont deux polyndmes vérifiant:
(%) z*A%(z) — z’°B%(z).z multiple de z*.

Posons pour s # 0:

I, = (2" %(z—s)%, y—z2(z—5)A,(2), x—(z—5)By(2)) .
On a bien sir I, > I(I1,) car vu (%), le polyndme
z(z—5)*A3(z) — (z—s)*B¥z).z est multiple de 2~ }(z—s)? .
L'idéal I; correspond a un k-uplet dans IT, formé d’un doublet sur I'axe des z

et d'un (k—2)-uplet disjoint, de support le point de coordonnées (—sB4(0), 0, 0).
De plus, I, — I, lorsque s — 0.

Mais chacun de ce doublet et de ce (k— 2)-uplet est lui-méme limite respectivement

de .2 et k — 2 points simples dans Il,, par 'hypothése de récurrence. Ainsi £, est
limite de k points simples comme on le voulait.

ii) Si maintenant &, est situé sur une courbe non-singuliere I' tangente au plan Oxy,
cette courbe est nécessairement tangente a I'axe des x (sinon comme &, est dans
I'n1l,, on aurait k = long &, < 2). On peut donc prendre comme idéal de &,:
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Io = (x*, y—x%4,(x), z—x*B;(x))
ou A; et B; sont des polynémes. Comme I, o I(Il,) = (y*—x?z), on a donc
(sk) x*4% — x*B, multiple de x* .
Posons pour s # 0:
Iy = (X7 2(x—s)?, y—x(x—5)A1(x), z—(x—s5)>B;(x)).

On a I; o I(I1,) car vu (), le polyndme x?(x —s)*(4 2 — B, ) est multiple de x*~%(x —s)?.
On conclut comme en 1i).

Montrons b). Preuve analogue au b) du lemme 10.

3°) MODELES LOCAUX POUR X,

Il s’agit de prouver les propositions 3 et 4 énoncées en 1.3 et qui donnent la
structure nilpotente du schéma Z,. On en reprend donc les notations.

Soit S = P* une surface a singularités ordinaires.

a) Commengons par étudier le schéma X, au voisinage d’un point triple M de §'.
Au point M correspondent trois points a, b,c de S se projetant en M €S’ sur H,
par o. Soit (x, y, z, u) un systéme de coordonnées inhomogénes de P* pour lequel H
est hyperplan u = 0 et ® le point a linfini sur laxe des u. On peut prendre
M = (0,0,0,0) et a =1(0,0,0,u;), b =(0,0,0,u,), ¢ =1(0,0,0,us) avec les u;
distincts.

On peut également choisir les coordonnées de telle sorte que les trois plans
tangents a S' en M (correspondants a a,b,c) soient donnés par les équations

Ainsi, des équations locales de S en a, b et ¢ sont:
{x = (Pl(y: Z) {y = (PZ(X) Z) {Z = (p3(X, y)
u = Vy(y, 2) u = Yy(x, 2) u = Ys(x, y)

avec ¢, V; € C[[S, T1], val ¢; = 2 et V(0) = u;. Comme dans [23], p. 173, I'idéal
du schéma X est alors

(x—=@1, u=M1) N (Y=, u=A2) N (=3, u—=A3).
Effectuons le changement de coordonnées (au voisinage de 0);
X=x—¢, Y=y—0,, Z=z—03, U=u.
On arrive a I'idéal
J =X, U=A8;)n (Y, U=AB,) N (Z, U—AB3)

ou §;e C[[X,Y,Z, U]]. Lidéal J est bien sr aussi le produit de ces trois idéaux,
car X, Y, Z et U sont des coordonnées.
Pour A = 0, I'idéal de la fibre est

X, U)n(Y,U)n(ZU).

I .

i
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Cet idéal est celui du schéma 7, étudié en [24] (p. 125). On a un isomorphisme
de germes:

(ZOaP) = (9—090)
Or on a vu (loc. cit. p. 126) 'égalite de schemas:

To =T o)ea ¥V vy {0}(2)'

SIS

]
X

~ AW, ;". wplede AN
=0 W TN

Les traits courts représentent des
doublets et les traits longs des tri-
- T™M  plets, cela dans C*.

Ceci prouve déja la proposition 3 au voisinage d’un point triple. De méme, les
assertions 4 1) et 41iii) de la proposition 4 sont prouvées puisqu’on les a vues pour
T o (loc. cit. prop. 5 et 7).

Enfin, prouvons Iassertion 4 ii), toujours au voisinage d’un point triple. On se
raméne comme en loc. cit. p. 130, a considérer le triplet curviligne &, d’idéal

Io = (U X +Us(U), Y + UB(U), Z+ Uy(U))
ot a, B, y e C[[U]]. On le déforme alors en I'idéal

I, = (U=%8,) (U—=48,) (U—A03), X +(U—10,)(U),
Y +(U —28,)B(U), Z +(U —105)7(V))

qui contient I'idéal J; pour A # 0, cet idéal correspond a la réunion de trois points
simples (car les 0,0) sont distincts), chacun sur une des branches de X,. De plus
I, > I, si A >0 (la déformation étant plate). L’assertion ii) de la proposition 4
est ainsi prouvée.

b) Cette fois-ci, P est un point-pince de S’, provenant par la projection sur Ihyper-
plan H, du point a € S. Nous allons ¢tudier X, au voisinage de P.

Soit (x, y, z, u) des coordonnées inhomogénes de P* pour lesquelles P = (0, 0, 0, 0),
g = (0,0,0, 1), le point ® par lequel on projette étant le point a Iinfini sur I'axe
es u.

D’apres Mather ([31], prop. 2), on peut choisir la projection © de S sur I’hyper-
plan H de sorte que n soit localement stable. Le fait que m soit localement stable
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en a montre ([31] p. 179) que pour certains systémes de coordonnées locales (s, t)
de Senaet(X,Y,Z)de H en P, le morphisme 7 est donné par

() i (s, t) — (s, st, t2).

Considérons alors le nouveau systéeme de coordonnées (X, Y, Z, u) dans un voisinage
de I'axe des u de P* et soit

(X(s, 1), Y(s, t), Z(s, ¢), u(s, t))

les coordonnées d’un point de S. Par définition de la projection m sur H, par
(%), on a

X(s,t)y =s, Y(s,t) =st, Zst)=t>.
Ecrivons par ailleurs u(s, t) = 1 + (s, t) avec ¢ dans lidéal maximal de C [[s, t]].
Comme S est non singuliére en a, on a nécessairement E;—(f(O) # 0.
Ainsi une représentation paramétrique locale de S en a est-elle:
X=X, Y=Xt, Z=¢t*, u=1+0¢X,0.
Si ’on écrit
o(X,t) = tafX, t) + B(X, 1)

ou o et B (dans Iidéal maximal de C[[X,t]]) ne contiennent que des puissances
paires de t, il vient aussi la représentation paramétrique de S au voisinage de a:

X=X, Y=Xt, Z=1¢t*, u=1+tdX,2) + (X, 2)
ou o, B’ e C [[X, Z]]. Enfin, si I'on écrit
(X, Z) = ay(Z) + Xa'(X, Z)

0
avec dy(0) # 0 car Ectp—(O) # 0, on a également la représentation paramétrique:

X=X, Y=2Xt, Z=12, u=1+toy(2) + Y&'(X, Z) + B(X, Z).

De 1.3.a, il ressort que X/C* est le schéma donné dans C* x C* (de coordonnées
(X,Y,Z, u \) avec A # 0) par la représentation paramétrique, au voisinage de l'axe
des u:

Y = Xt, Z=1=* u= Ml+ta(2)+ Yo" (X, Z)+p(X, Z))

et X = X,A = A
Effectuons le nouveau changement de coordonnées

U = %ZZ) (u—A—AYa'(X, Z)—AB(X, Z))  (on a ae(0)#0)

et X =X, Y=Y,Z=2Z,=>Adans C[[X,Y,Z u ]l
Dans ce dernier systéme, on a U = At d’ou la représentation paramétrique de
2/C*:

XU U?
Z:— U=U, }\.=}\4.

X=X, Y=——"', s
A A?
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11 est alors aisé de voir que I'adhérence dans C* x C a pour ideéal:
J = (Y2=X2Z,XU—-L\Y,U*=\Z, YU—-AXZ).

Ces équations sont en effet nécessaires; réciproquement, nous voyons qu’un poi'nt
(Xo, Yo, Zo, Ug) de la fibre en 0 (donc verifiant Y2—X,Zy=0 et Uy=0) est limite
de points dans des fibres au-dessus de A # 0. On remarque pour cela que

si Xo # 0: si Xo = 0:
X, X, 0 0
Y, = lim Y, 0 = lim 0
A—0 A—0
ZO ZO Zo ZO
0 }\'YO/XO O 7"7'0

ou r est une racine de Z,.

Ce qui précéde montre I'isomorphisme, au-dessus de C, entre les schémas relatifs
Y/C et 2/C, le schéma 2 ayant été introduit en [24], p. 131. La proposition 3
et les assertions i) et ii) de la proposition 4 sont donc prouvées au voisinage d’un
point-pince, puisquon a démontré 'analogue pour les schémas 2 et 2, (loc. cit.
prop. 9 et 10).

Il reste 2 montrer I'assertion iii) de la proposition 4. Soit donc d, un doublet
transverse 4 H = {u = 0}, contenu dans £,. Son idéal est

I, = (u?, x—owm, y—Bu, z—vyu),
ou o, B, v € C. Une carte de Hilb* C* en d,, est alors donnée par
(a,b,a,,by,a,,b,,as,bs)
correspondant a 'idéal voisin:
I = W4au+b, x—ou+au+b,,y—Butaut+b,, z—yu+azu+by).

Dire que le doublet est contenu dans £, revient a affirmer linclusion I = J. Or
u*el équivaut & a = b = 0. On en déduit b, = b, = 0. Réciproquement, si
a=b=b;, =b, =0 0naJcl Ilsetrouve quon a alors obtenu des équations
du sous-schéma Hilb* 2, dans Hilb? C*. (Voir [24], p. 124 et 131). Ainsi Hilb? 2,
est lisse, donc réduit.

¢) Etudions maintenant X, au voisinage de la courbe double I' de S'. On se
convainc facilement que Z/C est isomorphe au produit C x (Z/C) ou & est le schéma
relatif introduit en [24], p. 121 et qui servait de modéle local pour I'étude des
multisécantes aux courbes. Les assertions analogues se transportent donc mutatis
mutandis, le facteur C supplémentaire ne jouant que peu de réle. (Voir loc. cit.
propositions 2, 3 et 4.)

D’a'p.rés a), b) et c) qui précédent, nous avons donc démontré complétement les
propositions 3 et 4 énoncées en 1.3.b.

4°) LES LEMMES 7 ET 8

a) Prouvons le lemme 7 énoncé en I1.2.c.

Soit &, un triplet d, U m, ou do est un doublet de support un point de la
courbe double I' et m, un point de S situé sur Axed,. Si Suppd, = {0}, soit
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(x, y, z, u) un systéme de coordonnées inhomogénes centré en 0; on peut choisir ’axe
des z tangent a I" en O et my = (1,1,0,0) dans ce systétme. De sorte que I'idéal
de dy dans C[x,y,z, u] est (x?, y—x, z,u). Une carte de Hilb> P* en &, = dy U my
est alors donnée par d’une part les coefficients de I'idéal voisin

(x*+ax+b, y—x+a;x+by,z+a,x+b,, u+asx+b;)
pour un doublet d voisin de d, et d’autre part par
(I1+o, 1+B,7,9)

pour un point simple m voisin de m.
Dans cette carte, 4> P* s’exprime trés simplement: on doit avoir m € Axe d, soit

B—a+a(l+a)+b; =7+ a(l+a) +b, =8+ as(1+a) + by =0.

Par ailleurs, pour exprimer S,;, on doit avoir:

— la condition que Axed rencontre I'. Un calcul élémentaire (par exemple [29],
p. 252, prop. 20.b) montre que l'application linéaire tangente a cette condition
s’obtient en demandant a Axed de rencontrer la tangente en 0 a I, soit
(puisqu’ici c’est 'axe des z): by = b, = b; = 0;

— de plus, d doit étre un point-double, soit la condition d’annulation du discriminant
a’> — 4b = 0;

— enfin, le point m doit étre sur §’; écrivons @(x—1,y—1,z) = 0 (avec 0,0 #0)
une équation locale de S’ en my = (1, 1, 0) dans P? et soit donc

ox—1,y—1,z) =u=20

les équations de S’ dans P* Dire que le point m est sur S’ sexprime ainsi par

oo, B,v) = & = 0.
On vérifie rapidement que les équations linéaires tangentes a ces 9 équations
sont indépendantes et ceci prouve le lemme 7.

b) Prouvons maintenant le lemme 8 énoncé en IV.1.c.

Soit m un point générique de V' tel que la droite Nm ne soit pas tangente
a V' en m et que le plan T,V soit transverse a P et Q, ou P et Q désignent
les deux plans tangents aux deux composantes de V' en N. Apres choix d’un
hyperplan a Plinfini de P°, soit (x, y, z, u, v) un systéme inhomogéne centré en N tel
que ’hyperplan P* contenant ¥’ soit donné par {v=0} et les points
m donné par (0, 1,0, 1,0)
T,.V' n P donné par (1,0,0,0,0)
T, V' n Q donné par (0,0,1,0,0).

Un systéme d’équations de T,V est alors

x+y+z—1=y—u=v=0.

Considérons le triplet ¢t d’axe Nm, double en N, simple en m et montrons que
intersection AI® P° n U est transverse en t. Le choix de ¢ étant générique dans U,
le lemme sera démontré.

Or au voisinage de N, le triplet t est formé par le doublet d, d’idéal (u?, x, z, y —u, v).
Une carte de Hilb? P° en d est donc donnée par les coefficients de I'idéal voisin:
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(%) W +au+d, x+bu+b, z+cu+c, y—u+du+d,v+eut+e).
D’autre part, des équations locales de V' en m = (0, 1,0, 1, 0) sont
u=y+oxy—1

z=1—y—x+Vxy-1)
v=20

ot @ et ¥ sont dans C[[X, Y]], de valuations > 2. Un point voisin de m sera
repéré par

(*%) (0, 1+B,v,1+9,¢).

On obtient ainsi, avec (x) et (xx), une carte de Hilb®> P°> en t. Dans cette carte,
AP P® S’exprime par

o+ b1+ +b =0 B—8+d1+4+d) +d =0
Yy +c1+d) +c =0 e+ e(l+d)+€e =0

car le troisiéme point doit étre sur laxe du doublet. Par ailleurs U est donne,
par définition méme, par les équations

a=d=b=c=d=¢€¢ =0
qui concernent le point-double (il doit étre de support {N}) et par

6=B+(P((X>B): 'Y=_0(_B+\l/(0(>B)a e =0

qui concernent le point simple (il doit €tre sur V).

Les relations linéaires tangentes a ces 13 équations sont indépendantes, ce qui
termine la démonstration du lemme 8.

5°) IDENTIFICATION

Les deux lemmes ci-aprés servent a trouver des relations entre les coefficients

de polynémes que sont les nombres d’intersection cherchés; voir III.1.b, IIL.2.b,
IV.2.a, etc.

LEMME 12. Soit P un polynéme a 4 variables. On suppose pour toute surface a
singularités ordinaires de P* dinvariants (n,d,t,8) que P(n,d,t,8) = 0. Alors P
est identiquement nul.

Preuve. Soit S la surface de P* réunion d’un nombre fini de surfaces S; d’inva-
riants (n;, d;, t;, §;). Les invariants de S sont alors, comme on le vérifie facilement:

n=>yn
d:Zdi+ Y. nn;

i<j
t = Z ti + Z dinj + z ninjnk
i iF+j i<j<k
8 =338+ nn;.
i i<j

Regardons maintenant le cas particulier de la surface S réunion dans P* de
— p plans,
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— g surfaces quadriques

— rsurfaces cubiques } (dans certains hyperplans de P#)
— s surfaces S(2, 2), dont les invariants sont (4, 2, 0, 0).

D’apres ce qui précéde, les invariants de S sont donc:

n=p+2q+3r+4s,

p q r s
d =2 4 9 16 4
s + (2> + <2> + <2> + (2) + 2pq + 3pr + 4ps

+ 6gr + 8¢gs + 12rs,

_ 14 q r S P q
{ = (3) + 8<3> + 27 (3) + 64<3> + (2> (2g+3r+4s) + 4<2>(p+3r+4s)

+ 9<;> (p+2q+4s) + 16<;>(P+2q+3r) + bpar + Spgs + 12prs + grs,

=) ) o) le) ey nw s

Soit ¢: C* — C* l'application qui a (p, g, 1, s) associe (n, d, t, §) définis par les quatre
formules qui précédent. Par hypothése, pour toute surface S de P* d’invariants
(n,d,t,9), on a P(n,d,t,0) égal a 0. En particulier, pour la surface précédente;
ce qui signifie que le polyndme P,¢ s’annule sur N*. On a donc P, = 0. Mais
comme on le vérifie aisément, la différentielle d,¢p est inversible; par suite P est nul
dans un ouvert non vide de C*, donc identiquement nul.

LEMME 13. Soit S une surface de P* d’invariants (n,d,t,d). Soit S =SuUP
la réunion de S et dun plan transverse. Alors les invariants de § sont
A=n+1L,d=d+nt=t+d0=238+n

Preuve. On regarde dans ce qui précede les invariants d’une réunion S, U S,

Remarque. Les lemmes 12 et 13 sont encore valables si on remplace les invariants
(n,d, t,d) par (n,d,t, h) ou h est le nombre de points-doubles apparents (sur un P?)
de la courbe double apparente I' (sur un P?) de la surface. En effet, h est donné par

M = dd—n+2) — & — 3t
(voir [28],§ V) et pour S = SU P,onaalors h = h + dn—2).

6°) INVARIANTS DES SURFACES

Nous donnons ici les invariants des surfaces servant de cas particuliers pour établir
les formules.
Pour une surface S lisse de P¥, nous avons les invariants ¢,, K? et HK ou

¢, est la caractéristique d’Euler-Poincaré topologique,
K est le diviseur canonique,
H est le diviseur hyperplan.

Par rapport a ces invariants d,t et & sont donnés par les formules classiques
(sin = degré S):
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2d = n(n—4) — HK
28 = n(n—10) + ¢, — K* — 5HK
6t = n(n*—12n+44) + 4K* — 2¢c, — 3HK(n—38).
Ceci peut se voir par exemple en appliquant les formules du lieu double [22]

et triple [17]. .
On peut également donner les formules en utilisant ies invariants classiques

(Hos His Has Vo)t
2d = n(n—1) — p,;, 20 =nn—1) — p; — v,
6t = n(n—1) (n—2) — 3np, + 22, +2u,+v,)
et bien sr n = py, v = v, (voir [34]).
Ceci permet de dresser les tableaux suivants; un symbole tel que S(iy, ..., i)

désigne Pintersection compléte de k hypersurfaces de degrés i, .., i, dans P**? (voir
[34]). Les surfaces considérées dans P* ont 6 = 0 car lisses.

surface n d t surface n d t o
S@2,2) c P4 4 2 0] S2,2,2CP° 8 16 8 4
52,3) c P* 6 6 0| S2,2,3) CP’ 12 42 48 12
S$(3,3) Cc P4 9 18 6 | S2,2,2,2) C P® 16 88 208 40
S@2,4) C P4 8 12 0| 82,2,2,2,2) CP? 32 416 2880 256
S(3,4) c P* 12 36 24| S2,2,2,2,3) C P’ 48 984 11376 648
Veronese C P* | 4 3 1 | del Pezzo S5 C P3 5 5 | 1

7°)  QUASITRANSVERSALITE

Le lemme suivant sert, en utilisant la théorie de Fulton-MacPherson, a construire
un cycle fixé dans AI°P", de codimension (2n+1+3N) — 2N+1+43n) = N — n.
Voir I11.2.a, IV.1.b, V.1.

~ LemME 14. Soit P" un sous-espace linéaire de PY. Alors dans Hilb3 PV,
Pintersectionde AI* PN er Hilb? P" est schématiquement Al P*. Onale diagramme
commutatif ou les dimensions sont entre parenthéses :

@N+1)  ABPY & Hilb? PY  (3N)

U U

(2n+1) AP P" A Hilb? P" (3n)
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Preuve. On va voir que AI° P¥ et Hilb? P" se coupent quasitransversalement dans
Hilb? P¥. Soit pour cela (x, x,, X3, ... xy) un systéme de coordonnées inhomogénes
pour lequel P" est donné par Xy = Xy_; = .. = Xy_,+; = 0 et soit &, un k-uplet
aligné dans P". On peut supposer que Axe&, est 'axe des x; Iidéal I, de &,
est donc

Iy = (p(x), x5, X3 .. Xy)
ou p est un polynéme de degré 3. Une carte de Hilb? PY en &, est donc donnée par
les coefficients de I'idéal
I = (p(x)+ax®+bx+c, xa4+a,x> +byx+cyy oy xy+ayx>+byx+cy) .
Dans cette carte, AI® PY s’exprime par
a, = az = ..ay =0

et Hilb? PY par g, = b, =¢; =0 avec N —n + 1 <i < N. Dou lassertion de
quasitransversaliteé.

Remarque. Le résultat est évidemment analogue pour A PV si k > 3.

8°) CALCUL DE MULTIPLICITES

a) Soit S une surface de P* avec un point-double impropre O et soit m, un point

simple quelconque de S. Supposons que la droite Om, coupe une droite générique
fixte A (on prendra AnT,S = @). Si l'on regarde le triplet aligné d, u m,

d’axe Om, ou d, est le doublet de support {0}, ce triplet est évidemment contenu
dans S. Quelle est sa multiplicité dans le nombre T(S) des tangentes a S recoupant
S et ladroite A? (Voir IIL.1).

Soit pour ce calcul, un systeme de coordonnées inhomogenes (x, y, z, t) centré en O,
avec my = (1, 1, 1, 1), les plans tangents aux deux branches de S en O étant donnés
par x = y = Oet z = t = 0. L’idéal de d, dans C [[x, y, z, t]] est alors

(x%, y—x,z—x,t—X).
Un doublet d voisin de d, est repéré par I'idéal

(x> +ax+b,y—x+a,x+b,,z—x+a,x+b,, t—x+asx+b;).

De méme, un point m voisin de m, est repéré par (1+ug, l+uy, 1+u,, 1+u;)
On obtient ainsi une carte de Hilb? P* en le triplet d, U my.
Dans cette carte, AI° P* s’exprime évidemment par

(1) uy —ug + ay(l+ug) + b, =0

car le point simple m doit étre sur Axed. De plus, la sous-variété & de AI® P*
s’exprime par

) @ — 4b = 0

puisque d doit avoir pour support un seul point.
Par ailleurs, la condition pour I’axe de rencontrer A signifie que m reste dans
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le plan fixe P engendré par O et A. On peut par exemple prendre z = x et t =y
pour équations de ce plan. D’ou les conditions supplémentaires:

(5) Uy = U,y
et
(6) Uy = Us.

Enfin, exprimons Hilb® S dans cette carte.
Pour ce qui est du doublet d: on doit avoir l'inclusion d’idéaux I(d) o I(S). Soit

xX+.=y+.=0
et z+.=t4+..=0

les équations des deux branches de S en 0, les ... signifiant des termes d’ordre au
moins 2. L’idéal I(S) est dans C [[x, y, z, t]1] :
(xz+ .., xt+.., yz+.., yt+..)

les ... signifiant des termes d’ordre au moins 3.

Regardons par exemple la condition xz + .. e I(d). On doit avoir alors puisque
z + (a,—)x + b, € I(d), 1a relation

byx + (a,—1)x* + .. = f(x) (b+ax+x?)
ou f e C[[x]]. Si f =3 fix!, on obtient en identifiant:

Désignons I'idéal maxunal de C[[ab,a,,b,,a,,b,, as,b;]] par m et écrivons
f=g+m pour f — g e m*. La troisiéme relation obtenue montre: 1 + fo € met donc,
par la premiere:

(7) b=0.

La deuxiéme donne ainsi:

(8) b, = —a+ m?.
Méme raisonnement avec xt + ...; on obtient b = 0 et
9) by = —a+md.
Regardons la condition yz + ... € I(d). On a

yz = ((a;—=1Dx+by) ((a;—1)x+b,) modulo I(d).
D’ou la relation

(@, —1)x+by) ((ay—1)x+b,) + termes d’ordre > 3 = g(x) (b+ax+x3?).
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En identifiant :
bib, = gob
bi(az—1) + by(a,—1) = gib + goa
(a,—1)(a;—1) = g,b + g1a + go .

de la troisiéme relation vient g, = 1 + m, doit vu que b = 0 et b, = — a + m?,
par la deuxiéme relation: — b, — b, = a + m?, soit
(10) bl = m2 .

Idem avec yt + ...

Pour ce qui est du point simple m: soit z = 1«~+ o(x—1,y—1) et t =1
+ Y(x—1,y—1) des équations locales de S au voisinage de my, = (1,1,1,1). La
condition que le point m est sur S est alors simplement

(11) u, = @(ug, u,)
et
(12) uz = Ylug, uy) .

Les 12 équations précédentes forment alors un idéal dont il est facile de voir que
la longueur est 2. En effet, comme b = 0 et a®> — 4b = 0, on obtient a? = 0.
Par ailleurs les 11 autres équations ont des relations linéaires tangentes indépendantes.
(En effet, le déterminant

% J¢
0x dy
oV N,
0x dy

est non nul en m, car les deux plans T,, S et P sont transverses).
La multiplicité cherchée est donc 2.

b) Soit S une surface de P*. On regarde maintenant le nombre T(S) des tangentes
d’inflexion coupant un plan fixe m. Cest par définition (II1.2) le degré du O-cycle

T(S) = deg [7]. Axe*o, . [Hilb? S]

dans Hilb? P* ou o, est le cycle des droites coupant un plan fixe.
Si § admet un point-double impropre O avec deux branches S, et S,, supposons

que T recoupe 3TOS2 en P. Alors la droite OP coupe S en O suivant un triplet 6,
de la forme . Nous voulons calculer la contribution de ce triplet dans T(S).

Mais seulement sa contribution parasite, car il west pas exclu que la droite OP
puisse étre une vraie tangente d’inflexion de la branche S,, auquel cas 6,
compterait légitimement comme intersection entre Hilb} S, et 7. Evidemment,
ce ne sera pas le cas génériquement; mais c’est cependant le cas dans le calcul
effectué en III pour la surface § = S U P.

Pour éclairer cette situation, regardons plutét les tangentes d’inflexion d’une courbe
C dans P. Leur nombre est défini comme le nombre d’intersection

T(C) = deg [77].[Hilb? C]
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dans Hilb? P? ou < est la sous-variété de Al° P? des triplets de la forme 3.
Ce nombre est comme on sait [28] 3n(n—2) ou n = deg C. Cependant, le cas ou
C est singuliére est a interpréter. Examinons en effet un croisement normal O de C
et soient C,,C, les deux branches de C en ge point. La tangente a C, en O
coupe C suivant le triplet 0, de la forme - et ce triplet devra étre compté
avec multiplicité 3. Si h est le nombre de points-doubles de C, on aura donc le
nombre correct

3n(n—2) — 6h

de tangentes d’inflexion (car il y en a deux « fausses » par point-double).

Supposons maintenant que O soit un point d’inflexion de la branche C,. Le
triplet 6, devra étre compté deux fois dans T(C): une fois comme « vraie » tangente
d’inflexion de C, avec multiplicité 1 et une fois comme dans ce qui précede (et
avec multiplicité 3). Cela vient en effet de ce que le germe de Hilb? C en 6,
est formé des deux composantes

Hilb3C, et Hilb2C? x C?

ou C; est C; — {0}, la barre désignant I'adhérence dans Hilb? P2 (la derniére
composante est formée des limites de triplets ayant deux points sur C, et un
point sur C, ).

Exemple: Si C est la réunion de deux droites L, et L,, on a évidemment
T(C) = 0 (en déformant en une conique lisse) ce qu’on voit aussi en écrivant

0=-3-3+3+3,

car ce sont les contributions respectives de

Hilb® L,, Hilb3L,, Hilb>L? x LY, Hilb? L3 x L?

(on a en effet T(droite) = — 3 puisquici n = 1).

Donc dans le calcul de lintervention parasite de 0, (qu'on va effectuer maintenant )
seule la composante Hilb> C§ x C9 doit intervenir dans son intersection avec I .
Bien sir il n’y a qu'elle dans un cas générique, encore une fois.

Pour effectuer le calcul de la multiplicit¢ de 6, dans J n Hilb?> CY x C?
plagons-nous dans des coordonnées locales (x, y) pour lesquelles

{Cz a pour équation y = f(x), feC[[x]] valf =2
C, a pour équation y = 4(y), geCllyl] valg=2.

Lideéal de 6, est (x, y) et une carte de Hilb>P? en 6, est donnée par les
coefficients de I'idéal voisin

=
=

I(0) = (x*+3ax*+3bx+c, y+a'x>+b'x+¢).

Dans cette carte, A’ P? s'exprime évidemment par

(1) a=0
€t sa sous-variété  par
) b = a?
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(Dans toute la suite on fait donc a’ = 0).
Si m est un point simple de C;, de coordonnées (g(v),v), il faut et il suffit
pour que m soit dans 6 que I'on ait

) J90)° + 3ag(v)* + 3bg(v) + ¢ = 0
v+ bgl)+c =0
Ces deux équations, vu (2) et (3) sont équivalentes a
/ %
a+g@)? =0
@) (a+g0) =0
v+ bglv)+c =0

Par le théoréme des fonctions implicites, la derniére équation donne v = V(b/, ¢'),
la partie linéaire de V étant ¢

Exprimons maintenant que le doublet d, complémentaire du point simple m dans
0 est situé sur C,. On a, vu (*):

x> + 3ax® + 3bx + ¢ = (x—g(v)) (x* +(3a+g(v))x + 3b+ 3ag(v) +(g(v))?) .
Posons
{3A = 3a + g(v) = 3a + gV(b', c)
3B = 3b + 3ag(v) + g(v)* = 3b + 3agV(b, c) + (gV (b, ¢))*.
L’idéal de d est alors

J = (x*+3A4x+3B, y+b'x+¢)

et dire que d est dans C, revient a demander I'inclusion J > (y— f(x)), soit demander:
(%) f(x) + b'x + ¢’ multiple de x> + 34x + 3B dans C [[x]].

Si on écrit f(x) = fox*> 4+ f3x* + .., il est facile de voir, par identification dans
C [[x]] quon obtient

{b’ = 3/,A+ 3B+ M? (5
¢ = f,B + BM (6)

ou M est l'idéal maximal de C [[¥/, ¢, 4, B]].

Ainsi lidéal défini par les relations (1) a (6) est de multiplicité 3: les équations
(1), (2), (3), (5), (6) définissent en effet une courbe non-singuliére I" dans les coor-
données (a, b, ¢, @', b', ¢') et ’équation (4) définit un triplet curviligne sur I'.

Le calcul analogue pour les points-doubles impropres d’une surface S de P*
est laissé au lecteur.

9°) TANGENTES D’INFLEXION DE S(2, 3) ET S(2, 4)

Soit # une hypersurface de degré 3 ou 4 dans P* et soit G = G(1,4). Soit
[F]e A*G) ou F est 'ensemble des droites contenues dans une hyperquadrique Q
de P*. i

Soit [X] e A*(G) ou X est I’ensemble des drsoites coupant s suivant un triplet
> s deg # = 3 ou bien suivant un quadruplet — - si deg # = 4.
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Les calculs qui suivent ont lieu dans A'(G) avec les notations de [21]. Tout
d’abord, on a

[F].(1,3) = 4 (nombre de droites dans une quadrique de P?
et coupant une droite fixe),

[F].(0,4) = 0 (un point générique de P* n’est pas sur Q).

Il en résulte [F] = 4(1, 3) par dualite. ’
Cherchons [F].[X].(2, 4) qui représentera donc le nombre m de droites tangentes
d’inflexion a S = # n Q recoupant un plan fixe. On a

m=[F].[X].2,4 =4[X].2,4).(1,3).
Or par la formule de Pieri, on a
2,4).(1,3) = (1,2) + (0,3).
D’autre part, suivant que deg # = 3 ou4,ona

[X].(1,2) = 9 ou 24 (tangentes d’inflexion d’une cubique ou quartique plane)
[X].(0,3) = 6 ou 24 (tangentes d’inflexion d’une surface cubique ou quar-
tique de P* passant par un point fixe: [34], p. 199
et 203).
m=4.94+4.6 =060 si deg# =3
Donc .
m=4.24 +4.24 =192 si deg# =4

Désignant le nombre de tangentes d’inflexion d’une surface de P* coupant un plan fixe
par T, on a donc T(S(2,3)) = 60 et T(S(2,4) = 192. (1l faut vérifier que les
multiplicités sont bien 1).
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