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48 P. LE BARZ

5n - 18 [fj+ 14 (jj + 81- 8d(n-5) + 8(n-8).

Si de plus V contient un nombre fini de droites, la « contribution »

d'une telle droite de self-intersection le Z à ce nombre est —

Remarque. On peut par exemple vérifier que la surface S(2, 2, 2, 2, 3)

de P7 possède 512 trisécantes, ce que donne un calcul direct dans la

grassmannienne G( 1, 7).

VI) Annexe

Nous avons regroupé dans cette annexe tous les calculs auxiliaires qui auraient alourdi
le cours du texte. Il s'agira la plupart du temps de calculs en coordonnées locales.

1°) HilbJ Q

Ce paragraphe sert à étudier Hilbc3 S lorsque S c= P4 est une surface dont les

singularités sont ordinaires, i.e. localement réunion de deux branches lisses transverses.
(Voir I.2.a.)

Soit Q dans C4 la réunion de deux plans P1 et P2 se coupant en l'origine.

Lemme 9. a) Tout k-uplet curviligne de support {0} contenu dans Q est
limite dans (Hilb^ g)reci de k-uplets formés de points distincts. En particulier HilbJ Q
est génériquement réduit car Hilb^ Q est dense (et réduit).

b) HilbJ Q est en fait réduit.

Preuve. Soit (x, y, z, u) un système de coordonnées pour lequel Px est donné par
x y 0 et P2 par z u 0. De sorte que l'idéal de Q est

J (x, y) n (z, u) (xz, yz, xu, yu).

Montrons a). Soit dans Q un /c-uplet curviligne avec Supp {0}. Mais
est contenu dans une courbe non-singulière T. Celle-ci est « transverse » soit à P1
soit à P2 ; supposons F transverse à P1; quitte à faire une transformation linéaire
sur x et y, F peut être paramétrée par

y oc(x), z ß(x), u y(x),

où a, ß, y sont dans l'idéal maximal de C [[x]]. L'idéal de dans C [[x, y, z, u]]
est donc

I0 (xk, y — a(x), z — ß(x), u — y(x)).

Comme on a l'inclusion c g, soit encore I0 => J, il vient xß(x) et xy(x) multiples
de xk. En supprimant par ailleurs les termes de degré supérieur à k, l'idéal se réécrit:
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Io {xk,y-A(x),z-$0xk \u-y0xk *)

où A est un polynôme de degré < fc — 1, nul en 0.

Considérons pour t 0 l'idéal de &C4 défini par

It [x(x^^-tk-%y-A{x),z-ß0(xk~1-tk-1)iu-y0{xk-1-tk-1)).
C'est l'idéal de la réunion du point simple de coordonnées (0,0, — ß0ffc_1, — Yo*fc _1)
dans Pt et de k — 1 points simples distincts (et distincts du précédent) dans P2 car
z u 0 pour ces points-là.

Clairement It -> I0 si t - 0, d'où l'assertion a).

Montrons b). On se ramène comme toujours à Supp {0}. Une carte de Hilbk C4
en J0 est donnée par

(a1, ••• ak,a[,... ai, b1}... bk,cl9... ck)

correspondant à l'idéal

I (x/c + a1xfe_1 -K.. + ak, y — + + + ai,
z — ßcpcfc-1 + 61xfc~1 + + &*, u — y0xi_1 Ac^"1 + + ck)

voisin de

/o (**> J>-4(x), z-ß0x*~\ w-y0xfc_1).

Comment s'exprime HilbJ Q dans cette carte? D'après [8], on doit exprimer l'inclusion
/ 3 /, où J est l'idéal de Q, ce qui revient à :

XZE I o{b1-f>0)xk + b2xk~1 + + bkxel
xue I o (c1 — y0)xk + c2xk-1 + + ckx e I
yz e I o a'kz e I o a'k(b1 — fi0)xk~1 + akb2xk~2 + + a'kbkel
yuel o a'kuel o a'k(c1 — yQ)xk~1 + akc2xk~2 + + akck e I.

Ceci donne les relations

b2 (^i-ßo)^i c2 (c1—y0)a1
k>3 {bi ß0)a2 l c3 (c1 — y0)a2

bk - (ii-ßoK-i / (Cj-Yo
0 (bi—ß0)ü»; i 0 (cx—

ainsi que

fak(^i — ßo) akb2 akbk 0

V(ci-Yo) a'^i - akck 0

En remplaçant b2,b3,... bk et c2, c3,... ck par leurs valeurs (ce qui correspond i
considérer un graphe), il ne reste que l'idéal

(<*k(h i - ßo a'k(b i - ß0 ak{cx - yQ a'k(cx- y0

de ^ tak>ak> ci, bx] est réduit, que ß0 et y0 soient nuls ou non. Donc
HilbJ Q est réduit.
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2°) Hilbî ©o et Hilb* n0

Ce paragraphe est utile pour la proposition 2 (voir I.2.c.)
Nous définissons deux schémas relatifs 0/C et n/C comme sous-schémas relatifs

de C3 x C (rapporté aux coordonnées (x, y, z, t)) par les idéaux

7(0) (xyz — t) et 7(11) (y2 — x2z — t).

Les schémas 0/C* et n/C* sont fisses tandis que les fibres 0O et n0 sont
respectivement la réunion des trois plans de coordonnées de C3 ainsi que la surface
appelée « parapluie de Whitney ».

Lemme 10. a) Hilb^ ©0 est dense dans Hilb* 0O • En particulier HilbJ 0O est
génériquement réduit.

b) Tout k-uplet curviligne contenu dans ©0 est limite de k-uplets curvilignes
contenus dans 0t avec t ^ 0.

Preuve. Soit £,0 un fc-uplet curviligne dans ©0. On se ramène comme toujours
au cas où Supp est un point.

Regardons le cas où Supp {0}. Comme est par hypothèse situé sur une
courbe non-singulière F, quitte à faire une permutation entre x, y et z, une para-
métration en 0 de T est

y a(x) z ß(x)

où a et ß sont dans l'idéal maximal de C [[x]]. L'idéal 70 de dans C [[x, y, z]]
est donc (xk, y — a(x), z—ß(x)). On peut encore l'écrire

I0 (xk, y-A(x), z-
où A et Bsont des polynômes des degrés — 1, en éliminant les multiples de xk.

Notons a (resp. b) la valuation en 0 de ZI (resp. B). On a bien sûr a < k — 1

et b ^ k — 1.

Comme on doit avoir l'inclusion 70 7(©0) (xyz), puisque c 0O, cela entraîne
xA{x)B{x)eI0, soit 1 + a + b ^ k (ce qui est toujours vérifié si k 3). Soit b1

l'entier positif tel que l+a + b1 k.

Montrons a). Soit A(x) xGZL1(x), B(x) x^R^x) où A1 et B1 sont deux polynômes.
Pour s # 0 dans C, notons Is l'idéal de C [x, y, z] donné par :

Is (x(xa-(2sr)(x^-sbi), y-{xa-(2s)a) A.ixl z-ix^-s^B^x)).
C'est l'idéal de la réunion de k points simples situés chacun sur au moins l'un
des trois plans de coordonnées de C3.

De plus, 7S - 70 dans Hilbfc C3 si s 0 dans C. D'où l'assertion a), car les cas
où Supp est situé sur l'un des axes de coordonnées ou même à l'intérieur d'un
des plans de coordonnées sont beaucoup plus simples; on ne les traitera pas.

Montrons b). Il est facile de voir qu'un point simple quelconque de ©0 est limite
d'un point simple de Qt avec t # 0. Ceci prouve l'inclusion

Hilb^ ©o c= Hilb^ O/C*

la barre désignant l'adhérence dans Hilb£ C3. A fortiori, on a Hilb^ ©0
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c Hilbk^ 0/C*. Mais d'après a), on a HilbJ 0O contenu dans Hilb^ 0O ; il en résulte
donc l'inclusion

Hilbk 0O c= Hilb^ 0/C*

ce qu'on cherchait à prouver. Le lemme 10 est donc démontré.
Montrons maintenant le

Lemme 11. a) Hilb^ IT0 est dense dans HilbkIÏ0. En particulier Hilbk II0
est génériquement réduit.

b) Tout k-uplet curviligne dans Iï0 est limite de k-uplets curvilignes dans Ilf
avec t # 0.

Preuve.

Montrons a). L'assertion est claire pour k 1 et facile pour k 2. Soit donc
k ^ 3 et montrons par récurrence sur k que Hilb^ II0 est dense dans HilbJ no.

Soit un fc-uplet curviligne situé dans Il0; on se ramène comme d'habitude à

Supp ^o formé d'un seul point. Comme dans le lemme 10, seul le cas Supp
{0} est délicat et on s'y place donc.

i) Puisque est situé sur une courbe non-singulière F, supposons-la dans un premier
temps transverse au plan Oxy. L'idéal IQ de est alors

I0 (zk,y-A(z),x-B(z))
où A et B sont des polynômes de degré < k — 1, nuls en 0, comme on l'a vu de
manière analogue dans le lemme 10. Puisque I0 I(H0) vu que c= no, et comme
/(n0) (y2 — x2z), on a nécessairement A2(z) — B2(z) .zel0. Ceci entraîne

A2(z) — B2(z) z multiple de zk

et par suite val(A) > 2 car k ^ 3. On écrit donc

I0 (zk, y — z2A1(z), x-zB^z))
où A1 et B1 sont deux polynômes vérifiant:

(*) z4A 2(z) — z2B l(z). z multiple de zk.

Posons pour s # 0 :

Is (zk~2(z-s)2, y-z(z~s)A1(z),
On a bien sûr Is /(n0) car vu (*), le polynôme

z2(z - s)2A i(z) - (z — s)2B i(z). z est multiple de zk ~ 2(z — s)2

L'idéal Is correspond à un /c-uplet dans Il0 formé d'un doublet sur l'axe des z
et d'un (k — 2)-uplet disjoint, de support le point de coordonnées (—sB^O), 0, 0).
De plus, Is ^ I0 lorsque s -* 0.

Mais chacun de ce doublet et de ce (k — 2)-uplet est lui-même limite respectivement
de 2 et k - 2 points simples dans no, par l'hypothèse de récurrence. Ainsi est
limite de k points simples comme on le voulait.

ii) Si maintenant est situé sur une courbe non-singulière F tangente au plan Oxy,
cette courbe est nécessairement tangente à l'axe des x (sinon comme est dansr n no, on aurait k long ^ 2). On peut donc prendre comme idéal de :
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I0 (xk, y — x2A1(x), z — x2B1(x))

où A% et B1 sont des polynômes. Comme I0 I(Tl0) (y2 — x2z\ on a donc

(**) x4A\ — x4B1 multiple de xk.

Posons pour s 7^ 0 :

Is (xk~2{x — s)2 y — x(x — z — (x — s^B^x)).

On a Is Z3 /(II0) car vu (**), le polynôme x2(x — s)2(A \ — By) est multiple de xk~2{x — s)2.

On conclut comme en i).

Montrons b). Preuve analogue au b) du lemme 10.

3°) Modèles locaux pour Z0

Il s'agit de prouver les propositions 3 et 4 énoncées en 1.3 et qui donnent la
structure nilpotente du schéma Z0. On en reprend donc les notations.

Soit 5cP4 une surface à singularités ordinaires.

a) Commençons par étudier le schéma £0 au voisinage d'un point triple M de S'.

Au point M correspondent trois points a, b, c de S se projetant en M e S' sur H,
par co. Soit (x, y, z, u) un système de coordonnées inhomogènes de P4 pour lequel H
est l'hyperplan u 0 et © le point à l'infini sur l'axe des u. On peut prendre
M (0,0,0,0) et a (0, 0, 0, wt), b (0, 0, 0, u2\ c — (0,0,0, w3) avec les ut
distincts.

On peut également choisir les coordonnées de telle sorte que les trois plans
tangents à S' en M (correspondants à a, b, c) soient donnés par les équations

x 0 (y 0 (z 0

u 0 0 \u 0

Ainsi, des équations locales de S en a, h et c sont :

(x (Pi(y,z) (y q>2{x,é \z (p3(x, y)

u \|/i(y, z) lu z) lu y)

avec <pf, \|/j- e C [[5, T]], val cp, ^ 2 et \|/£(0) ut. Comme dans [23], p. 173, l'idéal
du schéma X est alors

{x — cp!, u — X\(/J n (y — cp2, u — Aa|/2) n (z —cp3, w —7a|/3).

Effectuons le changement de coordonnées (au voisinage de 0) ;

X x (pi 7 y — cp2 Z z — (p3 U — u.

On arrive à l'idéal

j (x, tz-xe,) n (y, c-xe2) n (z, i/-x,e3)

où 0f e C [[X, y, Z, U]]. L'idéal J est bien sûr aussi le produit de ces trois idéaux,
car X, y, Z et C sont des coordonnées.

Pour X 0, l'idéal de la fibre est

(X, U) n (y, U) n (Z, C).
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Cet idéal est celui du schéma étudié en [24] (p. 125). On a un isomorphisme

de germes :

(X0,P)*o,o).

Or on a vu (loc. cit. p. 126) l'égalité de schémas :

Ceci prouve déjà la proposition 3 au voisinage d'un point triple. De même, les

assertions 4 i) et 4 iii) de la proposition 4 sont prouvées puisqu'on les a vues pour
F0 {loc. cit. prop. 5 et 7).

Enfin, prouvons l'assertion 4 ii), toujours au voisinage d'un point triple. On se

ramène comme en loc. cit. p. 130, à considérer le triplet curviligne d'idéal

J0 (U3,X+Uol(U), Y+U$(U),Z+Uy(U))

où a, ß, y e C [[17]]. On le déforme alors en l'idéal

({U-XQ1)(U-XQ2){U-XQ3),X + {U-XQ1MU),
Y+{U- XQ2)ß(l7), Z + (17 -Xd3 )y(U))

qui contient l'idéal J; pour X ^ 0, cet idéal correspond à la réunion de trois points
simples (car les 0£(O) sont distincts), chacun sur une des branches de De plus
Ix -> 70 si X -y 0 (la déformation étant plate). L'assertion ii) de la proposition 4

est ainsi prouvée.

b) Cette fois-ci, P est un point-pince de S\ provenant par la projection sur l'hyper-
plan H, du point ae S. Nous allons étudier Z0 au voisinage de P.

Soit (x, y, z, u) des coordonnées inhomogènes de P4 pour lesquelles P (0, 0, 0, 0),
a (0, 0, 0, 1), le point co par lequel on projette étant le point à l'infini sur l'axe
des u.

D'après Mather ([31], prop. 2), on peut choisir la projection n de S sur l'hyper-
plan H de sorte que n soit localement stable. Le fait que n soit localement stable
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en a montre ([31] p. 179) que pour certains systèmes de coordonnées locales (s, t)
de 5 en a et (X, Y, Z) de H en P, le morphisme n est donné par

(*) 7i : (s, t) (s, st, t2).

Considérons alors le nouveau système de coordonnées (X, Y, Z, u) dans un voisinage
de l'axe des u de P4 et soit

(X(s, t), 7(s, t\ Z(s, t), u(s, t))

les coordonnées d'un point de S. Par définition de la projection n sur H, par
(*), on a

X(s, t) s Y(s, t) st, Z(s, t) — t2

Ecrivons par ailleurs u{s, t) 1 + cp(s, t) avec cp dans l'idéal maximal de C [[s, t]J.
dep

Comme S est non singulière en a, on a nécessairement — (0) # 0.
ot

Ainsi une représentation paramétrique locale de S en a est-elle :

X X, Y Xt, Z t2, u 1 + <p(X, t).

Si l'on écrit

cp(X, t) toc(X, t) + ß(X, t)

où a et ß (dans l'idéal maximal de C [[X, t]]) ne contiennent que des puissances
paires de t, il vient aussi la représentation paramétrique de S au voisinage de a:

x X, y Xt, Z t2 u 1 + ta'(X, Z) + ß'(X, Z)

où a', ß'eC [[X, Z]]. Enfin, si l'on écrit

a'(X, Z) a0(Z) + Xa"(X, Z)

dep
avec ao(0) ^ 0 car — (0) ^0, on a également la représentation paramétrique :

dt

X X, Y Xt, Z t2 m 1 + toc0(Z) + ya"(X, Z) + ß'(X, Z).

De I.3.a, il ressort que Z/C* est le schéma donné dans C4 x C* (de coordonnées
(X, 7, Z, u, X) avec X ^ 0) par la représentation paramétrique, au voisinage de l'axe
des u :

Y Xt, Z t2 u X(1 + tai0(Z) + y<x"(X, Z) + ß'(X, Z))

et X X, X X.

Effectuons le nouveau changement de coordonnées

U -3— (u - X-XYa"(X,Z)- 'k$(X, Z)) (on a oc0(0) # 0)

et X - .V. Y Y, Z Z,XXdansC [[X, Y, Z, u, Â.]].
Dans ce dernier système, on a U Xtd'où la représentation paramétrique de

2/C* :

xu U2
x x, y —~, z=* xx x.

X X2
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Il est alors aisé de voir que l'adhérence dans C4 x C a pour idéal :

j (Y2-X2Z,XU-XY, U2-X2Z, YU-XXZ).

Ces équations sont en effet nécessaires; réciproquement, nous voyons qu'un point

(X0, Y0, Z0, U0) de la fibre en 0 (donc vérifiant Yl~XoZo 0 et U0 0) est limite
de points dans des fibres au-dessus de X # 0. On remarque pour cela que

si V0 # 0: siX0 0:

•* (l) •*
où r0 est une racine de Z0.

Ce qui précède montre l'isomorphisme, au-dessus de C, entre les schémas relatifs

Z/C et ^/C, le schéma & ayant été introduit en [24], p. 131. La proposition 3

et les assertions i) et ii) de la proposition 4 sont donc prouvées au voisinage d'un

point-pince, puisqu'on a démontré l'analogue pour les schémas et (loc. cit.

prop. 9 et 10).

Il reste à montrer l'assertion iii) de la proposition 4. Soit donc d0 un doublet
transverse à H {u 0}, contenu dans é?0 • Son idéal est

I0 (m2, x — au, y — ßu, z — yu),

où a, ß, y e C. Une carte de Hilb2 C4 en d0 est alors donnée par

(a, b, u!, bx, a2, b2, a3, b3

correspondant à l'idéal voisin :

/ (w2 + au + h, x — au-\-a1u-\-bl, y — ßw + a2w + fr2, z — ju + a3u + b3).

Dire que le doublet est contenu dans revient à affirmer l'inclusion I =3 J. Or
u2 e I équivaut à a b 0. On en déduit b1 b2 0. Réciproquement, si

a b bx b2 0, on a J c= L II se trouve qu'on a alors obtenu des équations
du sous-schéma Hilb2 dans Hilb2 C4. (Voir [24], p. 124 et 131). Ainsi Hilb2
est lisse, donc réduit.

c) Etudions maintenant £0 au voisinage de la courbe double T de S'. On se
convainc facilement que Z/C est isomorphe au produit C x (âT/C) où 3C est le schéma
relatif introduit en [24], p. 121 et qui servait de modèle local pour l'étude des
multisécantes aux courbes. Les assertions analogues se transportent donc mutatis
mutandis, le facteur C supplémentaire ne jouant que peu de rôle. (Voir loc. cit.
propositions 2, 3 et 4.)

D'après a), b) et c) qui précèdent, nous avons donc démontré complètement les
propositions 3 et 4 énoncées en I.3.b.

4°) Les lemmes 7 et 8

a) Prouvons le lemme 7 énoncé en II.2.C.

Soit un triplet d0 u m0 où d0 est un doublet de support un point de la
courbe double T et m0 un point de S' situé sur Axe d0. Si Supp d0 {0}, soit
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(x, y, z, u) un système de coordonnées inhomogènes centré en 0 ; on peut choisir l'axe
des z tangent à T en 0 et m0 (1, 1, 0, 0) dans ce système. De sorte que l'idéal
de d0 dans C [x, y, z, u] est (x2, y — x, z, u). Une carte de Hilb3 P4 en £,0 d0 u ra0
est alors donnée par d'une part les coefficients de l'idéal voisin

(x2 + ax + b, y — x4-%x + £>i, z + a2x + b2,u-\-a3x + b3)

pour un doublet d voisin de d0 et d'autre part par

(1+a, 1 + ß, y, 5)

pour un point simple m voisin de ra0.
Dans cette carte, Al3 P4 s'exprime très simplement : on doit avoir m e Axe d, soit

ß - a + a1(l + a) + bx y + a2(l+a) + è2 8 + a3(l+a) + b3 0.

Par ailleurs, pour exprimer S21, on doit avoir:

— la condition que Axe d rencontre T. Un calcul élémentaire (par exemple [29],
p. 252, prop. 20.b) montre que l'application linéaire tangente à cette condition
s'obtient en demandant à Axe d de rencontrer la tangente en 0 à T, soit
(puisqu'ici c'est l'axe des z): b1 b2 b3 0;

— de plus, d doit être un point-double, soit la condition d'annulation du discriminant
a2 - 4b 0;

— enfin, le point m doit être sur S'; écrivons cp(x— 1, y— 1, z) 0 (avec do(p^0)
une équation locale de S' en ra0 (1, 1, 0) dans P3 et soit donc

cp(x — 1, y — 1, z) u 0

les équations de S' dans P4. Dire que le point m est sur S' s'exprime ainsi par
cp(a, ß, y) 8 0.

On vérifie rapidement que les équations linéaires tangentes à ces 9 équations
sont indépendantes et ceci prouve le lemme 7.

b) Prouvons maintenant le lemme 8 énoncé en IV.I.e.

Soit m un point générique de V tel que la droite Nm ne soit pas tangente
à F' en m et que le plan TmV soit transverse à P et Q, où P et Q désignent
les deux plans tangents aux deux composantes de V en N. Après choix d'un
hyperplan à l'infini de P5, soit (x, y, z, u, v) un système inhomogène centré en N tel
que l'hyperplan P4 contenant V soit donné par {^ 0} et les points

!ra
donné par (0, 1,0, 1, 0)

TmV' n P donné par (1, 0, 0, 0, 0)

TmV o Q donné par (0, 0, 1, 0, 0).

Un système d'équations de TmV' est alors

x + y + z — 1 y — u v 0

Considérons le triplet t d'axe Nm, double en N, simple en m et montrons que
l'intersection Al3 P5 n U est transverse en t. Le choix de t étant générique dans U,
le lemme sera démontré.

Or au voisinage de N, le triplet t est formé par le doublet d, d'idéal (u2, x, z, y —u, v).

Une carte de Hilb2 P5 en d est donc donnée par les coefficients de l'idéal voisin :
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(*) (u2 + au + a', x + bu + b\ z + cu + &', y—u + du + d', v + eu + e).

D'autre part, des équations locales de F' en m (0, 1, 0, 1, 0) sont

!u
y + cp(x, y-i)

z=l-y-xA \|/(x, y — 1)

v 0

où (p et \|/ sont dans C £[2^, Y"]], de valuations ^ 2. Un point voisin de m sera

repéré par

(**) (oc, 1 + ß, y, 1 + S, g).

On obtient ainsi, avec (*) et (**), une carte de Hilb3 P5 en t. Dans cette carte,
Al3 P5 s'exprime par

a + b(l + 8) + b' 0 fß — 8 + d( 1 + 8) + d' — 0

y + c(l + 8) + c! 0 [s + e(l+S) + ef 0

car le troisième point doit être sur l'axe du doublet. Par ailleurs U est donné,

par définition même, par les équations

a a' b' c' d' e' — 0

qui concernent le point-double (il doit être de support {N}) et par

8 ß + cp(oc, ß), y - oc - ß + \|/(a, ß), g 0

qui concernent le point simple (il doit être sur F').
Les relations linéaires tangentes à ces 13 équations sont indépendantes, ce qui

termine la démonstration du lemme 8.

5°) Identification

Les deux lemmes ci-après servent à trouver des relations entre les coefficients
de polynômes que sont les nombres d'intersection cherchés; voir III.Lb, III.2.b,
IV.2.a, etc.

Lemme 12. Soit P un polynôme à 4 variables. On suppose pour toute surface à
singularités ordinaires de P4 d'invariants (n, d, t, 8) que P(n, d, t, 8) 0. Alors P
est identiquement nul

Preuve. Soit S la surface de P4 réunion d'un nombre fini de surfaces St d'invariants

(ni9 dif tif 8f). Les invariants de S sont alors, comme on le vérifie facilement:

I »
1 l*

\ d Y, di+ y n,rtj
< i i<j

11Z fi + E dini + Z
i i ifj i<j<k
\8 Z 5i + Z "."j •

i i<j
Regardons maintenant le cas particulier de la surface S réunion dans P4 de

— p plans,



58 P. LE BARZ

— q surfaces quadriques
— r surfaces cubiques f (dans certains hyperplans de P4)

— s surfaces 5(2, 2), dont les invariants sont (4, 2, 0, 0).

D'après ce qui précède, les invariants de 5 sont donc :

n p + 2q + 3r + 4s,

!d
2s +(2)+ 4 (2)+ 9 (2)+16 (2)+ 2pq + + 4ps

+ 6qr + 8 qs + 12rs

' - (I) + 8(') + ''G) + "G) + (2) (2^3"3," + 4ï) + 4(^ + 3^4,)

+ 9 {p + 2q + 4s) + 16 (p + 2q + 3r) + 6pqr + 8pqs + 12prs + 24qrs

5 (^j + 4 + 9 + 16 + 2pq + 3pr + 4ps + 6qr + &qs + 12rs.

Soit cp : C4 ^ C4 l'application qui à {p, q, r, s) associe (u, d, t, 8) définis par les quatre
formules qui précèdent. Par hypothèse, pour toute surface 5 de P4 d'invariants
(n, d, t, 8), on a P(n, d, t, 8) égal à 0. En particulier, pour la surface précédente ;

ce qui signifie que le polynôme P0cp s'annule sur N4. On a donc P0cp 0. Mais
comme on le vérifie aisément, la différentielle d0cp est inversible; par suite P est nul
dans un ouvert non vide de C4, donc identiquement nul.

Lemme 13. Soit S une surface de P4 d'invariants (n, d, t, 8). Soit S S u P
la réunion de S et d'un plan transverse. Alors les invariants de S sont
n n + l, 3 d + n, t t + d, 5 8 + n.

Preuve. On regarde dans ce qui précède les invariants d'une réunion 5X u S2
où Sj S et S2 P.

Remarque. Les lemmes 12 et 13 sont encore valables si on remplace les invariants
(n, d, t, 8) par (n, d, t, h) où h est le nombre de points-doubles apparents (sur un P2)
de la courbe double apparente F (sur un P3) de la surface. En effet, h est donné par

2h d(d — n + 2) — 8 — 31

(voir [28], § Y) et pour S S u P, on a alors K h + d(n — 2).

6°) Invariants des surfaces

Nous donnons ici les invariants des surfaces servant de cas particuliers pour établir
les formules.

Pour une surface S lisse de PN, nous avons les invariants c2, K2 et HK où

c2 est la caractéristique d'Euler-Poincaré topologique,

K est le diviseur canonique,

H est le diviseur hyperplan.

Par rapport à ces invariants d, t et 8 sont donnés par les formules classiques
(si n degré S) :
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2d n(n-4) - HK
25 n(n-10) 4- c2 - K2 - 5HK
6t n{n2-12n + 44) + 4K2 - 2c2 - 3HK(n-8).

Ceci peut se voir par exemple en appliquant les formules du lieu double [22]
et triple [17].

On peut également donner les formules en utilisant les invariants classiques
(4o> ^2, v2):

2d n(n— 1) — Pi 25 n(n— 1) — — v2

61 n(n—l)(n — 2) — 3n[i1 + 2(2[i1 +2p2 + v2)

et bien sûr n p0, v v2 (voir [34]).
Ceci permet de dresser les tableaux suivants; un symbole tel que S(it,..., ik)

désigne l'intersection complète de k hypersurfaces de degrés dans pfe + 2 (voir
[34]). Les surfaces considérées dans P4 ont 5 0 car lisses.

surface n d t surface n d t 5

S(2,2) C P4 4 2 0 S(2, 2, 2) C P5 8 16 8 4

S(2, 3) C P4 6 6 0 S(2, 2, 3) C P5 12 42 48 12

S(3,3) C P4 9 18 6 S(2, 2, 2, 2) C P6 16 88 208 40

S(2, 4) C P4 8 12 0 S(2, 2, 2, 2, 2) C P7 32 416 2880 256

S(3, 4) C P4 12 36 24 S(2, 2, 2, 2, 3) C P7 48 984 11376 648

Veronese C P4 4 3 1 del Pezzo S$ C P5 5 5 1 1

7°) Quasitransversalité

Le lemme suivant sert, en utilisant la théorie de Fulton-MacPherson, à construire
un cycle fixé dans Al3 PN, de codimension (2rc+l + 3iV) - (2iV+l+3rc) N - n
Voir III.2.a, IV.l.b, V.l.

Lemme 14. Soit P" un sous-espace linéaire de PN. Alors dans Hilb^ PN,
l intersection de Al3 P^ et Hilb^ P" est schématiquement Al3 P". On a le diagramme
commutatif où les dimensions sont entre parenthèses :

(21V+ 1) ,4/3P" o Hilb3 PN (31V)

t t
(2n+1) Al3P"Hilbc3 P" (3n)
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Preuve. On va voir que Al3 PN et Hilb2 P" se coupent quasitransversalement dans
Hilb2 PA. Soit pour cela (x, x2, x3,... xN) un système de coordonnées inhomogènes
pour lequel P" est donné par xN xN_1 «= xjV_n+1 0 et soit un /c-uplet
aligné dans P". On peut supposer que Axe £0 est l'axe des x ; l'idéal I0 de
est donc

I0 {p(x),x2,x3...xN)

où p est un polynôme de degré 3. Une carte de Hilb2 PN en est donc donnée par
les coefficients de l'idéal

I (p{x) + ax2 + bx + c, x2 + a2x2 + b2x + c2,..., xN +aNx2+ bNx + cN).

Dans cette carte, Al3 PN s'exprime par

Ci 2 ^3 ••• &N — 0

et Hilbc PN par a-t bt c-x 0 avec N — n + 1 ^ i ^ TV. D'où l'assertion de

quasitransversalité.

Remarque. Le résultat est évidemment analogue pour Alk PN si k > 3.

8°) Calcul de multiplicités

a) Soit S une surface de P4 avec un point-double impropre 0 et soit m0 un point
simple quelconque de S. Supposons que la droite Om0 coupe une droite générique
fixée À (on prendra À n TmoS 0). Si l'on regarde le triplet aligné d0 u ra0

d'axe Om0 où d0 est le doublet de support {0}, ce triplet est évidemment contenu
dans S. Quelle est sa multiplicité dans le nombre T(S) des tangentes à S recoupant
S et la droite A? (Voir III.l).

Soit pour ce calcul, un système de coordonnées inhomogènes {x, y, z, t) centré en 0,
avec m0 (1, 1, 1, 1), les plans tangents aux deux branches de S en 0 étant donnés

par x y 0Qtz t 0. L'idéal de d0 dans C [[x, y, z, t]] est alors

(x2, y — x, z — x, t — x).

Un doublet d voisin de d0 est repéré par l'idéal

(x2-l-ax + b, y — x + a^ + bi, z — x + a2x-\-b2, t-x-\-a3x + b3).

De même, un point m voisin de m0 est repéré par (1 + u0, 1 +ul,, 1 + u2, 1 + u3).
On obtient ainsi une carte de Hilb2 P4 en le triplet d0 u m0.

Dans cette carte, Al3 P4 s'exprime évidemment par

(1) Ui — Uq + cq(l ~\~Uq) + b± 0

(2) u2 — Uq -j- cf2(l-+ Wo) -j- b2 0

(3) u3 — Uq + <23(1+110) + £>3 0

car le point simple m doit être sur Axe d. De plus, la sous-variété Q) de Al3 P4

s'exprime par

(4) a2 - 4b 0

puisque d doit avoir pour support un seul point.
Par ailleurs, la condition pour l'axe de rencontrer A signifie que m reste dans
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le plan fixe P engendré par 0 et À. On peut par exemple prendre z x et t y
pour équations de ce plan. D'où les conditions supplémentaires :

(5) u0 u2

et

(6) u1 u3

Enfin, exprimons Hilb3 S dans cette carte.
Pour ce qui est du doublet d: on doit avoir l'inclusion d'idéaux 1(d) ^ I(S). Soit

x + y + 0

et z + t + 0

les équations des deux branches de S en 0, les signifiant des termes d'ordre au
moins 2. L'idéal I(S) est dans C [[x, y} z, t]] :

(xz +..., xt +..., yz +..., yt +...)

les signifiant des termes d'ordre au moins 3.

Regardons par exemple la condition xz + e 1(d). On doit avoir alors puisque
z + (a2— ljx + b2 e 1(d), la relation

b2x + (a2 — l)x2 + /(x) (b + ax + x2)

où / e C [[x]]. Si / £ ftxl. on obtient en identifiant:
i

(0 fob
lb2 ffo + fQa

\ a2 — 1 f2b + f2a + /0

Désignons l'idéal maximal de C[^la,b, a1>b1, a2,b2, a3,b3f] par m et écrivons
/ g + mk pour f — g e mk. La troisième relation obtenue montre : 1 + fQ e m et donc,
par la première :

(7) b 0

La deuxième donne ainsi :

(8) b2 — a + m2

Même raisonnement avec xt + ; on obtient fi 0 et

W fi3 — a + m3

Regardons la condition yz + e 1(d). On a

yz ((a1-l)x + fi1)((a2-l)x + fi2) modulo 1(d).

D'où la relation

{(a1 — l)x + fii) ((a2 — l)x + fi2) -f- termes d'ordre ^ 3 g(x) (b + ax + x2).
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En identifiant :

bflb2 Qob

fti(a2-l) + b2(a2-1) gtb + g0a

(ai — 1) (a2 — l) ^ + g^a + g0

de la troisième relation vient g0 1 + m, d'où vu que b 0 et b2 — a + m2,

par la deuxième relation: — bx — b2 a 4- m2, soit

(10) b1 m2

Idem avec yt +

Pour ce qui est du point simple m: soit z 1 + (p(x — 1, y— 1) et t — 1

+ \|/(x — 1, y — 1) des équations locales de S au voisinage de m0 (1,1,1,1). La
condition que le point m est sur S est alors simplement

(11) «2 <p("o»"1)

et

(12) 1*3 11/(1*0,^).

Les 12 équations précédentes forment alors un idéal dont il est facile de voir que
la longueur est 2. En effet, comme b 0 et a2 — 4b 0, on obtient a2 0.

Par ailleurs les 11 autres équations ont des relations linéaires tangentes indépendantes.
(En effet, le déterminant

d(p dcp

ôx dy

d\|/ 0\|f

dx dy

est non nul en m0 car les deux plans TmoS et P sont transverses).
La multiplicité cherchée est donc 2.

b) Soit S une surface de P4. On regarde maintenant le nombre T(S) des tangentes
d'inflexion coupant un plan fixe n. C'est par définition (III.2) le degré du 0-cycle

T(S) deg [iT] Axe*a1. [Hilbc3 S]

dans Hilb3 P4 où est le cycle des droites coupant un plan fixe.
Si S admet un point-double impropre 0 avec deux branches ^ et S2, supposons

que 7i recoupe T0S2 en P. Alors la droite OP coupe S en O suivant un triplet 0O

de la forme Nous voulons calculer la contribution de ce triplet dans T(S).

Mais seulement sa contribution parasite, car il n'est pas exclu que la droite OP
puisse être une vraie tangente d'inflexion de la branche S2, auquel cas 0O

compterait légitimement comme intersection entre Hilb3 S2 et ZT. Evidemment,
ce ne sera pas le cas génériquement ; mais c'est cependant le cas dans le calcul
effectué en III pour la surface S S u P.

Pour éclairer cette situation, regardons plutôt les tangentes d'inflexion d'une courbe
C dans P. Leur nombre est défini comme le nombre d'intersection

T(C) deg |;<n [Hilb;? C]
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3
dans Hilbc3 P2 où 2T est la sous-variété de Al3 P2 des triplets de la forme -.
Ce nombre est comme on sait [28] 3n(n — 2) où n deg C. Cependant, le cas où
C est singulière est à interpréter. Examinons en effet un croisement normal 0 de C

et soient C1} C2 les deux branches de C en ce point. La tangente à C2 en 0
coupe C suivant le triplet 0O de la forme et ce triplet devra être compté
avec multiplicité 3. Si h est le nombre de points-doubles de C, on aura donc le

nombre correct

3n(n-2) - 6h

de tangentes d'inflexion (car il y en a deux « fausses » par point-double).
Supposons maintenant que 0 soit un point d'inflexion de la branche C2. Le

triplet 90 devra être compté deux fois dans T(C) : une fois comme « vraie » tangente
d'inflexion de C2 avec multiplicité 1 et une fois comme dans ce qui précède (et
avec multiplicité 3). Cela vient en effet de ce que le germe de Hilb3 C en 0O

est formé des deux composantes

Hilb3 C2 et Hilb2 C2 x Cj
où Cf est Ct — {0}, la barre désignant l'adhérence dans Hilb3?2 (la dernière
composante est formée des limites de triplets ayant deux points sur C2 et un
point sur Ci).

Exemple: Si C est la réunion de deux droites L± et L2, on a évidemment
T(C) 0 (en déformant en une conique lisse) ce qu'on voit aussi en écrivant

0 —3 —3 +3 +3,
car ce sont les contributions respectives de

Hilb3 L,, Hilb3 L2 Hilb2 L? x L°2, Hilb2 L\ x L?

(on a en effet T(droite) — 3 puisqu'ici n 1).
Donc dans le calcul de l'intervention parasite de 0O (qu'on va effectuer maintenant)

seule la composante Hilb2 C\ x C? doit intervenir dans son intersection avec
Bien sûr il n'y a qu'elle dans un cas générique, encore une fois.

Pour effectuer le calcul de la multiplicité de 0O dans ZT n Hilb2 C2 x C?
plaçons-nous dans des coordonnées locales (x, y) pour lesquelles

C2 a pour équation y f(x) / e C [[x]] val f> 2

Cl a pour équation y g(y) ; [[>]] val > 2

L'idéal de 90 est (x3, y) et une carte de Hilb3 P2 en 90 est donnée par les
coefficients de l'idéal voisin

7(0) — (x3 + 3ax2 + 3bx + c, y + a'x2 + b'x + c').
Dans cette carte, Al3 P2 s'exprime évidemment par
(1) a' 0

et sa sous-variété y par
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(Dans toute la suite on fait donc a' 0).
Si m est un point simple de C1, de coordonnées (g(v), v), il faut et il suffit

pour que m soit dans 0 que l'on ait

s fé^)3 + 3 ag(vf+ 3bg(v) + c 0
(*) <

(ï> + b'giv) + c' 0

Ces deux équations, vu (2) et (3) sont équivalentes à

(4)
f(a + 9W)3 0

\v + b'g(v) + c' 0

Par le théorème des fonctions implicites, la dernière équation donne v V(b\ c'),
la partie linéaire de V étant c'.

Exprimons maintenant que le doublet d, complémentaire du point simple m dans
0 est situé sur C2. On a, vu (*) :

x3 + 3ax2 + 3bx + c (x — g(v)) (x2 Jr(3a + g{v))x + 3b + 3ag{v) + (g(v))2).

Posons

3A 3a + g(v) 3a + gV(b\ c')

3B 3b + 3ag(v) + g(v)2 3b + 3agV(b', c') + (,gV(bc'))2

L'idéal de d est alors

J (x2 + 3Ax + 3B, y + b'x + c')

et dire que d est dans C2 revient à demander l'inclusion J ^ (y — f(x)\ soit demander:

(**) f(x) + b'x + c' multiple de x2 + 3^4x + 3B dans c [M].
Si on écrit f(x) f2x2 + /3x3 + il est facile de voir, par identification dans
C [[x]] qu'on obtient

b' 3f2A + 3 fzB + M2 (5)

c' f2B + BM (6)

où M est l'idéal maximal de C \_\_b', c\ A, £]]
Ainsi F idéal défini par les relations (1) à (6) est de multiplicité 3 : les équations

(1), (2), (3), (5), (6) définissent en effet une courbe non-singulière F dans les
coordonnées (a, b, c, a', b', c') et l'équation (4) définit un triplet curviligne sur T.

Le calcul analogue pour les points-doubles impropres d'une surface S de P4
est laissé au lecteur.

9°) Tangentes d'inflexion de S(2, 3) et S(2,4)

Soit une hypersurface de degré 3 ou 4 dans P4 et soit G G( 1,4). Soit
[F] e ^43(G) où F est l'ensemble des droites contenues dans une hyperquadrique Q
de P4.

Soit [XI e A2(G) où X est l'ensemble des droites coupant suivant un triplet
3 3

si deg XF 3 ou bien suivant un quadruplet -> • si deg XF — 4.
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Les calculs qui suivent ont lieu dans A (G) avec les notations de [21]. Tout

d'abord, on a

i[F]
(1, 3) 4 (nombre de droites dans une quadrique de P3

et coupant une droite fixe),

[F] (0, 4) 0 (un point générique de P4 n'est pas sur Q).

Il en résulte [F] 4(1, 3) par dualité.
Cherchons [F] [X] (2, 4) qui représentera donc le nombre m de droites tangentes

d'inflexion à S n Q recoupant un plan fixe. On a

m - [F] [X] (2, 4) 4 [X]. (2, 4). (1,3).

Or par la formule de Pieri, on a

(2, 4). (1,3) (1,2) + (0,3).

D'autre part, suivant que deg 3 ou 4, on a

[X] (1, 2) 9 ou 24 (tangentes d'inflexion d'une cubique ou quartique plane)

\ [X] (0, 3) 6 ou 24 (tangentes d'inflexion d'une surface cubique ou quar-
tique de P3 passant par un point fixe: [34], p. 199

et 203).

fm 4.9 + 4. 6 60 si deg 3
Donc <

[m 4.24 + 4.24 192 si deg jf 4

Désignant le nombre de tangentes d'inflexion d'une surface de P4 coupant un plan fixe

par F, on a donc T(S{2, 3)) 60 et T(S(2, 4)) 192. (Il faut vérifier que les

multiplicités sont bien 1).
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