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42 P. LE BARZ

Reste à trouver quatre autres équations. Or on a démontré ([26], 4.d)

qu'une droite isolée de V contribue dans T(V) de —3(2 + /) où le Z est sa

self-intersection. Les quatre surfaces 5(2, 2, 1), 5(2, 2, 2), Veronese et del Pezzo

5 5 (vues en b) contiennent respectivement 16, 0, 0, 10 droites et elles sont de

self-intersection —1. Comme ces quatre surfaces sont des intersections de

quadriques dans P5, elles n'ont pas d'autre trisécante que les droites qu'elles
contiennent ; ainsi pour ces surfaces, T est égal respectivement à

— 48, 0, 0, — 30. On obtient donc comme en b) quatre nouvelles équations.
Jointes aux quatre précédentes, on obtient un système inversible dont la
solution est

On a donc démontré le

Théorème 5. Soit V une surface de P5 d'invariants (n, d, t, 8).

Alors le degré du 0-cycle \ß"\ i* [Hilbc3 V~\ (nombre de tangentes d'inflexion
de V) est

De plus, si V contient un nombre fini de droites, la « contribution » d'une

droite de self-intersection l dans ce nombre est — 3(2 + /).

Naturellement, seuls les cas N 6 et N 7 vont nous intéresser car
au-delà, il n'y a génériquement plus de trisécante à une surface.

1°) Retour à P5

Nous allons voir qu'une formule trisécante pour une surface de PN, N > 5,

est de la même forme qu'une formule trisécante pour une surface de P5.

Précisément, on a la

Proposition 12. Soit N 6 ou N 7. Soit V une surface non-

singulière de PN, n son degré, 8 le nombre de points-doubles impropres

apparents au-dessus d'un P4, d le degré de la courbe double apparente
au-dessus d'un P3 et t son nombre de points-triples.

a2 —48 a3 24

y 84 u 0

a 12

v — -12

2n(2rc2 — 18n + 25) + \2{t-h-d{n-l)).

V) Trisécantes dans PN, N > 5
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Alors toute formule trisécante pour V est, comme dans P5, de la forme

7(F) axn + a2 + a3 + d(ßn+y) + 8(un + v)

où a1, a2, a3, a, ß, y,11 et f sont des constantes.

Preuve. Elle consiste à appliquer le théorème de Fulton-MacPherson

comme on l'a déjà fait en (IV.l.b), pour se ramener à P5.

Soit en effet P5 fixé dans PN et projetons génériquement V dans P5

(par un point si N 6, par une droite si N 7). La projection est un

isomorphisme de V sur l'image, notée V. Comme toujours (voir 1.3.a),

on a dans PN x C un sous-schéma relatif y/C (qui dans ce cas est

isomorphe à un produit puisque V n'acquiert pas de singularité par projection)
avec yl V et y Q V.

On a donc dans Hilb3 P^ x C un sous-schéma relatif Hilbc3 y/C
isomorphe à un produit, ayant pour fibre Hilb3 F en 1 et Hilb3 V en 0.

Ainsi [Hilbc3 F] est rationnellement équivalent à [Hilb3 F] dans Hilb3 PN.

Soit K un cycle fixé de A7~N(Al3 P^). On a

deg K. i* [Hilb3 F] deg K i* [Hilb3 F]

soit encore T(F) T(F). Regardons alors le diagramme commutatif où les
flèches sont les injections canoniques et les dimensions sont indiquées entre
parenthèses :

(2N + 1) Al3 PN i Hilb3 PN (3N)

tj' t"
(11) ^;3P5 i Hilb3 P5 (15)

Bien entendu, schématiquement Al3 Pv n Hilb3 P5 Al3 P5, comme le
prouve le lemme 14 de l'Annexe 7. D'après le théorème de Fulton-MacPherson
(voir II.2.a), leur intersection en tant que cycle peut être choisie à support
dans Al3 P5.

Plus précisément, si a [Hilb3 F], on a i*«*a où

C ß. i* [Hilb3 F]

avec ß dans AN s(Al3P5).(Le N —5étantla différence entre 3 + 11 et
2 N + 16). Par suite, pour un cycle fixé de A7~N(Al3 P'Y), il vient par la
formule des projections :
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deg K i* [Hilb3 F] deg K.j^C dQgj*K.C
deg j*K. ß. i* [Hilbc3 F]

Mais comme j*K. ß est un cycle fixé dans A2{Al2 P5), ce degré représente

une formule trisécante pour F dans P5, par définition même (voir 1.1).

D'après la proposition 11, il est donc de la forme

a^n + a2 ^2^ (^3^) ^ d{$n-\-y) ^(wn + p)

puisque les invariants de F sont évidemment les mêmes que ceux de F.

D'où la proposition 12.

2°) Trisécantes dans P6

a) Commençons par chercher pour une surface F de P6, le nombre de tri-
sécantes à V rencontrant un P4 fixé. Ce nombre T(F) est par définition
le degré du 0-cycle Axe*ax. z* [Hilbc3 F] où i : Al3 P6 c» Hilb3 P6 est

l'injection canonique et oq e A1{G{ 1, 6)) est le cycle des droites coupant un P4

fixé de P6.

D'après la proposition 12, ce nombre est de la forme

T(F) axn + a2 + a3 + at + d(ßn + y) + 8(un + i;).

Soit F la réunion de F et d'un plan P disjoint. On a (vu l'Annexe 5) les

invariants de F :

n n -h 1 d n + d, t t -f- d, B 5 n

D'autre part, Hilb3 F est formé des quatre composantes disjointes Hilb3 F,
Hilb2 F x P, F x Hilb2 P et Hilb3 P. La contribution de la première et la

dernière dans T(V) est respectivement T(F) et T{P) a1 (puisque n 1,

^ t 5 0 pour P). La troisième a une contribution nulle, puisqu'un
triplet aligné ayant deux points dans P est dans P, donc ne peut couper F.

Reste à trouver la contribution à T(F) de la deuxième composante
Hilb2 F x P. Il s'agit des sécantes à F coupant P et un P4. Par la formule
de Pieri, on a dans A\G{ 1, 6)) :

^.(2,6) (2, 5) + (1, 6).

De sorte que, à équivalence rationnelle près, la contribution à T(F) de

Hilb2 F x P se décompose en
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— les sécantes à V rencontrant une droite de P6,

— les sécantes à V dans un P5 fixé et y rencontrant un plan.

Dans le premier cas. leur nombre est 5 puisqu'il s'agit du nombre

de points-doubles d'une projection sur un P4 par une droite. Dans le

deuxième cas. il s'agit du nombre de points-doubles de la courbe KnP3
projetée sur un P2 par un plan de P3. C'est donc d : le degré de la courbe

double T de la surface V projetée sur un P3. Grâce à la généricité de P,

les multiplicités sont bien 1. On a donc en conclusion:

T(V) T(V) + 8 + d + a±.

Comme d'habitude, on trouve par identification (lemme 12) de

5 : u — 1

d: 7. -h ß 1

f — y — v a 2 — a3 (n — 1)

1^2 Ht 2ß + y -f- 2u + r 0 (?7 1)

Il reste maintenant à trouver quatre autres équations. Si on désigne par
S(a. b. c, d) l'intersection complète de quatre hypersurfaces de degrés a, h, c, d

dans P6. on voit que 5(2. 2, 1, 1), 5(2, 2, 2, 1) et 5(2, 2, 2, 2) n'ont pas de tri-
sécante pour raison de degré. De plus, seule la première contient des droites,

en nombre fini: 16. On a donc T 0 pour ces trois surfaces puisqu'elles
n'ont pas de trisécante rencontrant un P4 fixé.

De même, la surface de Veronese dans Pu plongée dans P6, n'a pas de

trisécante car elle est intersection de quadriques dans P3 et elle ne contient

pas de droite non plus. Pour elle aussi, T 0. On obtient ainsi quatre
nouvelles équations. Jointes aux précédentes, elles forment un système inversible

dont la solution est

{a1 —2 a2 0 a3 4 ex 4

[ß — 3 y — 8 u 1 v — 4.

On a donc démontré le

Théorème 6. Soit V une surface de P6 d'invariants (n, d, t, 5).

Alors le degré du 0-cycle Axe*Gj. i* [Hilb3 7] (nombre de trisécantes à V
rencontrant un P4 fixé) est

4f
J - 2n + 4r — d(3n — 8) + 8(h —4).
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b) Cherchons maintenant, toujours pour une surface F de P6, le nombre de

tangentes à V recoupant F. Cette fois, ce nombre T(F) est le degré
du 0-cycle [~ß] z* [Hilbc3 F] où Q) est l'hypersurface de Al3 P6 formée des

triplets non simples.

Toujours d'après la proposition 12, ce nombre est de la forme

axn + a2 (^j + a3 + at + d(ßn + y) + b(un + v).

Soit F F u P où P est un plan disjoint de F, comme en a). La contribution

de la composante Hilb2 F x P de Hilb3 F dans T(F) est alors le

nombre de tangentes à F coupant un plan fixe. C'est donc le nombre v
de points de ramification dans une projection générique sur un P3 par un
plan de P6, correspondant aux v points-pince de la surface projetée. Or on a

(Annexe 6) v 2(d — 8). D'où comme précédemment,

T(V) T(V) + fll + 2(d — 8).

Comme en a), par identification grâce au lemme 12, on obtient quatre
équations.

Maintenant, des quatre surfaces vues précédemment : 5(2,2, 1, 1),

5(2, 2, 2, 1), 5(2, 2, 2, 2) et Veronese, les trois dernières ne contiennent pas de

droite et n'ont pas de trisécante. On a donc T 0 pour ces trois
surfaces, d'où trois nouvelles équations. Par contre, 5(2, 2, 1, 1) contient 16 droites
de self-intersection — 1. Or on a montré ([26], 4.e) qu'une droite isolée dans

V, de self-intersection l g Z, contribue de ^ans nombre T(V).

Pour 5(2, 2, 1, 1), on a donc T 64. D'où une dernière équation.
Le système de huit équations ainsi obtenu est inversible et on trouve

a1 — 24 a2 72 a3 — 48 a — 24

ß 26 y -144 u -2 v 24

On a donc montré le

Théorème 7. Soit V une surface de P6 d'invariants (n, d, t, 8).

Alors le degré du 0-cycle [ß~]. i* [Hilb3 F] (nombre de tangentes à F
recoupant F) est:

— 4rc(2n2 — 15n+19) - 241 + 2ù(13n-72) - 28(n-12).

De plus, si V contient un nombre fini de droites, la « contribution » -

d'une droite de self-intersection l e Z dans ce nombre est 4
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3°) TRISÉCANTES DANS P7

Dans ce cas, il n'y a qu'une formule à chercher, car en général il n'y

a qu'un nombre fini de trisécantes pour une surface V de P7. Nous nous

intéressons donc au degré T(V) du 0-cycle i* [Hilb2 V~\ où comme d'habitude

i: Al3 P7 c> Hilb2 P7 est l'injection canonique. D'après la proposition 12, ce

degré est de la forme

aYn + a2 + oct + d(ßn + y) + 5(un + v).

Comme dans le cas de P6 (paragraphe 2), soit V la réunion de V et

d'un plan P disjoint. Pour les mêmes raisons que précédemment, on a

T(V) T(V) + a1 + 5

En effet, 8 est la contribution de la composante Hilb2 V x P de Hilb2 V
dans T(V): c'est le nombre de sécantes à V rencontrant un plan P, soit

le nombre de points-doubles 8 de la projection de V sur un P4. (Les

multiplicités sont 1 car P est générique).

Il vient alors une identité entre n, d, t, 8 puisqu'on connaît (lemme 13)

les invariants de V. Grâce au lemme 12, par identification, on obtient quatre
équations liant les coefficients al9a2 v. Il reste à trouver quatre autres

équations. Soit S(a, b, c, d, é) l'intersection complète de cinq hypersurfaces de

degrés a, b, c, d, e dans P7. Aucune des quatre surfaces suivantes n'a de tri-
sécante dans P7, pour raison de degré, et aucune ne contient de droite:
5(2, 2, 2, 1, 1), 5(2, 2, 2, 2, 1), 5(2, 2, 2, 2, 2) et la surface de Veronese (plongée
dans P7). On a donc T 0 pour ces quatre surfaces, d'où (puisqu'on
connaît leurs invariants) quatre autres équations.

Jointes aux quatre équations précédentes, on obtient un système inversible
dont la solution est

a1 5 a2 —18 a3 14 a 8

ß -8 y 40 u — 1 v — 8

Par ailleurs, on a vu ([26], 4.f) qu'une droite isolée de F, de self-

(43intersection l e Z, contribue de - [' dans le nombre T(V).

On a donc dénombré le

Théorème 8. Soit V une surface de P7 d'invariants (n, d, t, ô).
Alors le degré du 0 -cyclei*[Hilbc3 F] (nombre de trisécantes à F) est
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5n - 18 [fj+ 14 (jj + 81- 8d(n-5) + 8(n-8).

Si de plus V contient un nombre fini de droites, la « contribution »

d'une telle droite de self-intersection le Z à ce nombre est —

Remarque. On peut par exemple vérifier que la surface S(2, 2, 2, 2, 3)

de P7 possède 512 trisécantes, ce que donne un calcul direct dans la

grassmannienne G( 1, 7).

VI) Annexe

Nous avons regroupé dans cette annexe tous les calculs auxiliaires qui auraient alourdi
le cours du texte. Il s'agira la plupart du temps de calculs en coordonnées locales.

1°) HilbJ Q

Ce paragraphe sert à étudier Hilbc3 S lorsque S c= P4 est une surface dont les

singularités sont ordinaires, i.e. localement réunion de deux branches lisses transverses.
(Voir I.2.a.)

Soit Q dans C4 la réunion de deux plans P1 et P2 se coupant en l'origine.

Lemme 9. a) Tout k-uplet curviligne de support {0} contenu dans Q est
limite dans (Hilb^ g)reci de k-uplets formés de points distincts. En particulier HilbJ Q
est génériquement réduit car Hilb^ Q est dense (et réduit).

b) HilbJ Q est en fait réduit.

Preuve. Soit (x, y, z, u) un système de coordonnées pour lequel Px est donné par
x y 0 et P2 par z u 0. De sorte que l'idéal de Q est

J (x, y) n (z, u) (xz, yz, xu, yu).

Montrons a). Soit dans Q un /c-uplet curviligne avec Supp {0}. Mais
est contenu dans une courbe non-singulière T. Celle-ci est « transverse » soit à P1
soit à P2 ; supposons F transverse à P1; quitte à faire une transformation linéaire
sur x et y, F peut être paramétrée par

y oc(x), z ß(x), u y(x),

où a, ß, y sont dans l'idéal maximal de C [[x]]. L'idéal de dans C [[x, y, z, u]]
est donc

I0 (xk, y — a(x), z — ß(x), u — y(x)).

Comme on a l'inclusion c g, soit encore I0 => J, il vient xß(x) et xy(x) multiples
de xk. En supprimant par ailleurs les termes de degré supérieur à k, l'idéal se réécrit:
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