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42 P. LE BARZ

Reste a trouver quatre autres équations. Or on a démontré ([26], 4.d)
qu’une droite isolée de V contribue dans T(V) de —3(2+1) ou le Z est sa
self-intersection. Les quatre surfaces S(2, 2, 1), S(2, 2, 2), Veronese et del Pezzo
Ss (vues en b) contiennent respectivement 16, 0, 0, 10 droites et elles sont de
self-intersection —1. Comme ces quatre surfaces sont des intersections de
quadriques dans P>, elles n’ont pas d’autre trisécante que les droites qu’elles
contiennent; ainsi pour ces surfaces, T est égal respectivement a
—48,0,0, —30. On obtient donc comme en b) quatre nouvelles équations.
Jointes aux quatre précédentes, on obtient un systéme inversible dont la
solution est

p=—12 y = 84 u=20 v = —12 .

On a donc démontré le
THEOREME 5. Soit V une surface de P° dinvariants (n,d, t, d).

Alors le degré du O-cycle [77].i* [Hilb? V] (nombre de tangentes d’inflexion
de V) est

2n(2n® —18n+25) + 12(t—5—d(n—7)).

De plus, si 'V contient un nombre fini de droites, la « contribution » d’une
droite de self-intersection | dans ce nombre est —3(2+1).

V) TRISECANTES DANS PY, N > 5

Naturellement, seuls les cas N = 6 et N = 7 vont nous intéresser car
au-dela, il n’y a génériquement plus de trisécante a une surface.

1°) RETOUR A P°

Nous allons voir qu’une formule trisécante pour une surface de PN, N > 5,
est de la méme forme qu’une formule trisécante pour une surface de P°.
Précisément, on a la

ProposITION 12. Soit N =6 ou N = 7. Soit V wune surface non-
singuliere de PN, n son degré, & le nombre de points-doubles impropres -
apparents au-dessus dun P* d le degré de la courbe double apparente
au-dessus d'un P> et t son nombre de points-triples.
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Alors toute formule trisécante pour V est, comme dans P>, de la forme

T(VYy = ayn + a, (;) + a; <§> + ot + d(fn+7v) + dun+v)

L ou ay,a,,ds, % B,Y,u et v sont des constantes.

Preuve. Elle consiste 4 appliquer le théoréme de Fulton-MacPherson
| comme on I'a déja fait en (IV.1.b), pour se ramener a P°.

; Soit en effet P> fixé dans PV et projetons génériquement V dans P°
- (par un point si N = 6, par une droite si N = 7). La projection est un
'~ isomorphisme de V¥ sur I'image, notée 7. Comme toujours (voir 1.3.a),
on a dans PY¥ x C un sous-schéma relatif ¥'/C (qui dans ce cas est iso-
morphe a un produit puisque ¥ n’acquiert pas de singularité par projection)
| avec V', = Vet?v, = V.

On a donc dans Hilb? P x C un sous-schéma relatif Hilb? ¥°/C iso-
~ morphe & un produit, ayant pour fibre Hilb? V en 1 et Hilb? I/ en 0.
Ainsi [Hilb? V] est rationnellement équivalent a [Hilb> V] dans Hilb? PV

Soit K un cycle fixé de 47" MAI* PY). On a

deg K .i* [Hilb? V] = deg K . i* [Hilb2 7]

- soit encore T(V) = T(V). Regardons alors le diagramme commutatif ou les
- fleches sont les injections canoniques et les dimensions sont indiquées entre
- parenthéses:

i

@N+1)  APPY & HiBEPY (3N

& L

L

(11) AP P’ & HiIB2PS (15

t Bien entendu, schématiquement AI® PN A Hilb? P’ = AP PS5, comme le
! prouve le lemme 14 de I’Annexe 7. D’aprés le théoréme de Fulton-MacPherson
(voir II.2.a), leur intersection en tant que cycle peut é&tre choisie & support
| dans 4° P°.

. Plus précisément, si « = [Hilb? V], on a i*u, o = j,Cou

C = B.i* [Hilb3 7]

;avec B dans AV7°(AP° P). (Le N—5 étant la différence entre 3N + 11 et
| ON + 16). Par suite, pour un cycle fixé K de 47~¥A> PY), il vient par la
formule des projections:
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deg K .i* [Hilb? V] = deg K .j,C = degj*K.C
= degj*K . .i* [Hilb3 V].

Mais comme j*¥*K . est un cycle fixé dans A%(Al° P°), ce degré représente
une formule trisécante pour ¥ dans P°, par définition méme (voir IL.1).
D’apres la proposition 11, il est donc de la forme

n n
an + a, <2> + as (3> + at + dPn+vy) + d(un+v)
puisque les invariants de ¥ sont évidemment les mémes que ceux de V.
D’ou la proposition 12.

2°) TRISECANTES DANS P°

a) Commencons par chercher pour une surface V de P®, le nombre de tri-
sécantes a 'V rencontrant un P* fixé. Ce nombre T(V) est par définition
le degré du O-cycle Axe*o,.i* [Hilb? V] ou i: AI° P® ¢, Hilb? P® est
linjection canonique et o, € A}(G(1, 6)) est le cycle des droites coupant un P*
fixé de P°.

D’apres la proposition 12, ce nombre est de la forme

T(V) = an + a, <Z> + as (:) + of + d(Pn+vy) + d(un+v).

Soit ¥ la réunion de V et d’un plan P disjoint. On a (vu ’Annexe 5) les
invariants de V:

A=n+1, d=n+d, t=t+d, 6=08+n.

D’autre part, Hilb? ¥ est formé des quatre composantes disjointes Hilb3 V,
Hilb? V x P, V x Hilb? P et Hilb? P. La contribution de la premiére et la
derniére dans T(¥) est respectivement T(V) et T(P) = a, (puisque n = 1,
d =t =0 = 0 pour P). La troisieme a une contribution nulle, puisqu’un
triplet aligné ayant deux points dans P est dans P, donc ne peut couper V.

Reste & trouver la contribution a T(¥7) de la deuxiéme composante
Hilb? ¥V x P. Il s’agit des sécantes & V coupant P et un P* Par la formule
de Pieri, on a dans A(G(1, 6)):

G,.(2,6) = (2,5 + (1,6).

De sorte que, 4 équivalence rationnelle prés, la contribution a T(¥) de
Hilb? V x P se décompose en
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— les sécantes a V rencontrant une droite de P,
— les sécantes & ¥ dans un P? fixé et y rencontrant un plan.

Dans le premier cas, leur nombre est 3 puisquil s’agit du nombre
de points-doubles d'une projection sur un P* par une droite. Dans le
deuxiéme cas, il s'agit du nombre de points-doubles de la courbe ¥V N P>
projetée sur un P2 par un plan de P° Cest donc d: le degré de la courbe
double T de la surface V' projetée sur un P°. Grace & la généricite¢ de P,
les multiplicités sont bien 1. On a donc en conclusion:

T(V)=T(V)+ 8 +d+ a,.

Comme d’habitude, on trouve par identification (lemme 12) de

d: u =1,
d: 2+ B =1,

— Y — U = a, — d; (n=—1)
i {ag+25—!—‘/—:—2u+t'-——0 (n=1) .

Il reste maintenant a trouver quatre autres équations. Si on deésigne par
S(a. b. ¢, d) I'intersection complete de quatre hypersurfaces de degrés a, b, ¢, d
dans P®, on voit que S(2,2. 1. 1), S(2. 2.2, 1) et S(2,2, 2,2) n'ont pas de tri-
sécante pour raison de degré. De plus, seule la premiere contient des droites,
en nombre fini: 16. On a donc T = 0 pour ces trois surfaces puisqu’elles
n'ont pas de trisécante rencontrant un P* fixé,

De méme, la surface de Veronese dans P>, plongée dans P®, n’a pas de
trisécante car elle est intersection de quadriques dans P> et elle ne contient
pas de droite non plus. Pour elle aussi, T = 0. On obtient ainsi quatre
nouvelles equations. Jointes aux précédentes, elles forment un systéme inver-
sible dont la solution est

a = —2 a, =0 a; = 4 x =4
p=— v =8 u=1 vt = —4.,

On a donc démontré le

THEOREME 6. Soit V  une surface de P® dinvariants (n, d, t, 0).
Alors le degré du O-cycle Axe*o,.i* [Hilb? V] (nombre de trisécantes a V
rencontrant un P* fixé) est

4<§> — 2n+ 4t — d(3n—8) + 8(n—4).
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b) Cherchons maintenant, toujours pour une surface V de P®, le nombre de
tangentes @ V  recoupant V. Cette fois, ce nombre T(V) est le degré
du O-cycle [2].i* [Hilb2 V] ou @ est Phypersurface de Al P® formée des
triplets non simples.

Toujours d’apres la proposition 12, ce nombre est de la forme

an + a (Z) + a; (g) + at + dPn+vy) + d(un+v).
Soit ¥ = ¥V U P ou P est un plan disjoint de V, comme en a). La contri-
bution de la composante Hilb? V x P de Hilb? ¥V dans T(V) est alors le
nombre de tangentes a V coupant un plan fixe. C’est donc le nombre v
de points de ramification dans une projection générique sur un P3 par un
plan de P°, correspondant aux v points-pince de la surface projetée. Or on a
(Annexe 6) v = 2(d—9). D’ou comme précédemment,

T(V) = T(V) + a; + 2(d—79).

Comme en a), par identification grace au lemme 12, on obtient quatre
équations.

Maintenant, des quatre surfaces vues précédemment: S(2,2,1, 1),
S(2,2,2,1), S(2, 2,2, 2) et Veronese, les trois dernicres ne contiennent pas de
droite et n’ont pas de trisécante. On a donc T = 0 pour ces trois sur-
faces, d’ou trois nouvelles équations. Par contre, S(2, 2, 1, 1) contient 16 droites
de self-intersection — 1. Or on a montré ([26], 4.€) quune droite isolée dans

3+1
V, de self-intersection [ € Z, contribue de 4( ;) dans le nombre T(V).

Pour S(2,2, 1, 1), on a donc T = 64. D’ou une derniere €quation.
Le systéme de huit équations ainsi obtenu est inversible et on trouve
a, = —24 a, = 72 a; = —43 o= —24
B = 26 vy = —144 u= —2 v

On a donc montré le

THEOREME 7. Soit V  une surface de P°® dinvariants (n,d,t,d).
Alors le degré du O-cycle [2].i* [Hilb? V] (nombre de tangentes a V
recoupant V) est:

—4n2n% — 15n+19) — 24t + 2d(13n—"72) — 28(n—12).

De plus, si V contient un nombre fini de droites, la « contribution» _ -

: : 341
d’une droite de self-intersection le Z dans ce nombre est 4 5 ]
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3°) TRISECANTES DANS P’

Dans ce cas, il 'y a quune formule & chercher, car en général il n’y
a quun nombre fini de trisécantes pour une surface V' de P’. Nous nous
intéressons donc au degré T(V) du O-cycle i* [Hilb? V] ou comme d’habitude
i: A3 P7 ¢, Hilb2 P7 est Iinjection canonique. D’apres la proposition 12, ce
degré est de la forme

an + a, (Z) + as (Z) + ot + d(Bn+v) + S(un+v).

Comme dans le cas de P® (paragraphe 2), soit ¥ la réunion de V et
d’'un plan P disjoint. Pour les mémes raisons que précédemment, on a

TV) = T(V) + a, + 8.

En effet, § est la contribution de la composante Hilb?2 V x P de Hilb? ¥
dans T(V): cest le nombre de sécantes a V rencontrant un plan P, soit
le nombre de points-doubles & de la projection de V sur un P* (Les
multiplicités sont 1 car P est générique).

Il vient alors une identité entre n,d, t, 0 puisquon connait (lemme 13)
les invariants de V. Grace au lemme 12, par identification, on obtient quatre
équations liant les coefficients a,, a, .. v. Il reste a trouver quatre autres
équations. Soit S(a, b, ¢, d, e) I'intersection complete de cinq hypersurfaces de
degrés a, b, ¢, d, e dans P’. Aucune des quatre surfaces suivantes n’a de tri-
sécante dans P7, pour raison de degré, et aucune ne contient de droite:
S(2,2,2,1,1), S2,2,2,2,1), S(2, 2,2, 2,2) et la surface de Veronese (plongée
dans P7). On a donc T = 0 pour ces quatre surfaces, d’ou (puisqu’on
connait leurs invariants) quatre autres équations.

Jointes aux quatre équations précédentes, on obtient un systéme inversible
dont la solution est

a1:5 a2=_18 a3:14 O(=8
B=—8 vy = 40 u=1 v = —8

Par ailleurs, on a vu ([26], 4f) qu'une droite isolée de V, de self-
: : . 441
intersection [ € Z, contribue de — ( ;_ ) dans le nombre T(V).

On a donc dénombré le

THEOREME 8. Soit V une surface de P’ dinvariants (n, d, t, d).
Alors le degré du O-cycle i* [Hilb? V] (nombre de trisécantes a V) est
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Sn— 18 (Z) + 14 (Z) + 8t — 8d(n—5) + 5(n—8).

Si de plus 'V contient un nombre fini de droites, la « contribution »

4+1
d’une telle droite de self-intersection leZ a ce nombre est —( :)

Remarque. On peut par exemple vérifier que la surface S(2, 2,2, 2, 3)
de P7 possede 512 trisécantes, ce que donne un calcul direct dans la
grassmannienne G(1, 7).

VI) ANNEXE

Nous avons regroupé dans cette annexe tous les calculs auxiliaires qui auraient alourdi
le cours du texte. 1l s’agira la plupart du temps de calculs en coordonnées locales.

1°) Hilb*Q

Ce paragraphe sert a étudier Hilb? S lorsque S = P* est une surface dont les
singularités sont ordinaires, i.e. localement réunion de deux branches lisses transverses.
(Voir 1.2.a.)

Soit Q dans C* la réunion de deux plans P, et P, se coupant en lorigine.

LEMME 9. a) Tout k-uplet curviligne &, de support {0} contenu dans Q est
limite dans (Hilb* Q)..q de k-uplets formés de points distincts. En particulier Hilb* Q
est génériquement réduit car Hilb’; Q est dense (et réduit ).

b) Hilbk Q est en fait réduit.

Preuve. Soit (x, y, z, u) un systetme de coordonnées pour lequel P, est donné par
x =y =0et P, par z = u = 0. De sorte que I'idéal de Q est

J = (x,9) N (z,u) = (xz, yz, xu, yu) .

Montrons a). Soit &, dans Q un k-uplet curviligne avec Supp &, = {0}. Mais &,
est contenu dans une courbe non-singuliere I'. Celle-ci est « transverse » soit a P,
soit a P,; supposons I' transverse a P;; quitte a faire une transformation linéaire
sur x et y, I' peut étre paramétrée par
y = ox), z = B(x), u = yx),
ou a, B,y sont dans lidéal maximal de C [[x]]. L’idéal de &, dans C [[x, ¥, Z, u]]
est donc
IO = (-xk: y——oc(x), zZ— B(x)a u—'Y(X)) s

Comme on a linclusion &, < @, soit encore I, > J, il vient xp(x) et xy(x) multiples
de x*. En supprimant par ailleurs les termes de degré supérieur a k, I'idéal se réécrit:
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