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334 D. LAKSOV

In the case that k is an ordered field results similar to the Hilbert
K-Nullstellensatz were proved by Dubois [2] and Risler [7]. To state their
results we introduce the following notation:

Assume that k is an ordered field. Given an ideal I in R we let

I, = {f € R| there exists an integer m, positive elements a,, a,, .., a, of
k and rational functions u,, u,, .., u,, in k(x,, x,, ..., x,) such

that f"(1+ > a,u?)el} and
i=1

Ix = {f € R| there are positive elements a,, das, .., a, of k and elements
f2s f5» e [y Of R such that f? + Z aifl?e]}.
i=1

It is fairly easy to see that I and I, are radical ideals and clearly
I € I,. The Hilbert Nullstellensatz of Risler [7] states that, if k = K = R,
where we denote by R, the real closure of k, then

Ix = {f eR| Zx(f) 2 Z(D)}
and the Nullstellensatz of Dubois [2] that, if K = R,, then

Ip = {f e R| Zx(f) 2 Zx(D)} .
In particular it follows from these results that in the above cases I,

or I, are equal to the K-radical \’ﬁ . From our point of view it is more
satisfactory to proceed in the opposite direction and first prove directly, in
the above cases, that the ideals I, or I are equal to the K-radical and thus
obtain the results of Dubois and Risler as a consequence of our K-Null-
stellensatz. This can be done, however in order to prove that the various
ideals are equal we need to use S. Lang’s [6] version of Hilbert Nullstellensatz
for real closed fields or Artin’s solution of Hilbert’s 17th problem (see [6], § 3
in particular Theorem 5 and Corollary 2 p. 279), so that this procedure
is too close to the methods of Dubois and Risler to merit a separate
presentation here.

§5. TwO EXAMPLES

In the introduction we associated to each ideal I of R a subset I, of
R such that I < I; < \’f/f For the two pairs of fields k = K = Z/2Z
= GF(2) and k = K = Q we give, in this section, examples of ideals I
such that we have a strict inclusion 1, C \’ﬁ/f :

fa)
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Example 1. Let k be the field with two elements and let K = k. Consider
the ideal I = (x,) E k[x,,x,] = R. The following three assertions hold:

(i) We have that
Z() = {(0,0),(0,1)} & Az and
{f eR| f vanishes on Zg(I)} = (x1, x,(x;+1)).
(i) T = (x,x0e2+1)
(i) Iy = (x;) = I.
In particular we have a strict inequality [ C \’fff .

Of the three assertions (i) is obvious and the second follows from (i)
and the Hilbert K-Nullstellensatz. To prove assertion (iii) we let p € P ¥(m)
and f;, f5.... f,, be elements in R such that p(fy, f5, . fm) € L. We shall
prove that f,el for i = 1,2,..,r. Assume to the contrary that not all
the f; are in I. Then the polynomials f;(0, x,) are not all identically zero.
Let d be the non-negativ integer such that

£i(0,x,) = x%g:(x, for i=12 ..,m

and x, does not divide g;(x;) for some index j. Since p(fi, fo, ., fr) €1
we have that

p(fl(o .\'2), f2(0= X’Z): s fm(o xz)) = xgep(gl(x?.): gZ(XZ)a ey gm(x?.))

1s 1dentically zero in k[x,], where e is the degree of p. Hence

P(gl(xz): ga(x2)s ooy Qm(xz))

is identically zero. In particular we have that (g,(0), g,(0), ... g,,(0)) is a zero
of p in A¥ with g;(0) # 0. This contradicts the assumption that p € P %(m).

Example 2. Let k = K = Q and let R = k[x,, x,, x5]. Moreover, let

frisya.¥3) = yi+ y3 + 3y3

and I = (f(y;, y,, ys) the ideal in R generated by f.
The following three assertions hold:

() We have that Zy(I) = {(a, —a,0)|]ae K} = A} and

{f €R| f vanishes on Zg(I)} = (x;+x,, x3).
() I = (x;+x,, x3).
(ii1) The ideal I does not contain a (non-zero) linear form.

In particular we have a strict inequality I, C \’}fl :




336 D. LAKSOV

The first assertion of (i) is a well known result in number theory
(see e.g. Hardy and Wright [3], Theorem 232 page 196) and the second
assertion of (i) is an immediate consequence of the first. Assertion (ii)
follows from (i) and the Hilbert K-Nullstellensatz.

To prove assertion (ii1) we let [ = ax; + bx, + cx; be a non-zero linear
form and p = p(y;, ¥4, ., V) € PYm) an element of degree d. Assume
that there are polynomials f; = fi(x;,x,,Xx3) of R for i = 1,2,..,m — 1
such that

p(f1> f2> ey fm—l> l) - f(x1> X2 XS) g(xla X2 X3)
for some polynomial g = ¢g(x,, x,, x3). Then the following six assertions
hold:

(@) The polynomials f,, f,, ..., fm—1 have zero constant term.

Indeed, specialize x;, x,, x5 to 0, 0, O respectively. We obtain that

p(fl(oﬂ Oa 0)7 fZ(Oa 07 0)7 e fm—1(07 O: O)> 0) = f(0> 07 0) g(Oa 07 0) = 0 .

Hence the existence of a non-zero constant term would contradict the
assumption that p € P Y(m).
Denote by [; = [;(x,, x,, x3) the linear term of f;.

(b) The homogenous polynomial p(ly,1,,..1,-,,1) is not (identically)
zero and it is the lowest non-zero homogeneous term of

p(f1> f2>'"> fm—l: l)

Indeed, if p(l;,1,, .. [,_,,]) were zero, we can specialize (x;, X,, X5)
to a point (a;, b;,c;) of K* which is not a zero of /. We then obtain
p(ll(al ’ bl 5 Cl)’ lz(al 5 bl 5 Cl), ceey lm_l(al N bl 5 Cl)’ l(al N bl s Cl)) - 0 Wthh agaln
contradicts the assumption that pe P9%(m). The second assertion of (b)

follows from (a). ,
Denote by h(x;, x,, x3) the non-zero homogenous term of g(x,, x,, x5)
which has lowest degree.

(c) We have that h(x,, x,, x3) is of degree d — 3 and that
plis Loy s ln—1s ) = f(x1, X2, X3) h(xy, X5, X3) -

Indeed, since f is homogeneous of degree 3, assertion (c) follows from

assertion (b).
We write I, = a;x; + bix, + ¢xzfori=1,2,..,m — 1.

(d) We have that a = b and that a; = b; for i =1,2,..,m — 1.
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Indeed, specialize x;, x,, x5 to 1, —1, 0 respectively. From assertion (c)

we obtain that
pla,—by,a,—by, .y p_1—bn_1,a—b) = f(1, =1,0)h(1, —1,0) = 0.
Hence assertion (d) follows from the assumption that p e P g(m).

() We havethat a =b =a; =b; =0 for i =12, .,m— 1.

Indeed, specializing x,, x,, X3 to x;, x,, 0 respectively, we obtain from
the equation of assertion (c) and from assertion (d) that

p(al(xl +X3), (X1 +X3), ceey Ay 1(X1 +X5), alx; + xz))
= (x3+x3) h(x;, X5, 0) .
The left hand side of the latter equation is equal to
(x1+x5)play, ay s ooy A1, Q)

which is not divisible by x3 + x3 unless p(a;, dy, ..., @,—, a) = 0. Assertion
(e) therefore follows from assertion (d) and the assumption that p e P$(m).

() We have that ¢ # 0 and p(cy,Cy, . Cpu—y,C) = 0.

Indeed, since | = ax; + bx, + cx; is non-zero it follows from assertion (e)
that ¢ # 0. Moreover it follows from assertion (e) that the equation of
assertion (c) can be written as

p(Cl)C3 9 02x39 g Cm_1X3, CX3) = f(xl ) xZ: X3) h(xl > x2) X3) .

The left hand side of the latter equation is equal to x4p(cy, Cys oy Cpyy, C)
which is not divisible by f(x,, x,, x3) unless p(¢y, ¢y, ... ¢y 1, ¢) = O.

We have thus proved that, if we assume that polynomials f;, f5, ..., fo,_1
such that p(f;, f>, .., fu—1,1) €I exist, we arrive at the contradiction (f)
to the assumption that p € P (m). Hence we must have that [ ¢ I, as asserted.
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