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HILBERT NULLSTELLENSATZ 333

To prove that, if K = k and I is a proper ideal of R, we have that
ZI) # @, we choose a maximal ideal M containing I. By repeated
application of assertion (ii) of Proposition 7 we see that there is a k-homo-
morphism

a:R/M - k = K

Hence, if o,,0d,,.., o are the classes of x;,Xx,,..,x, in R/M we have
that (a(,), a(0ty), ., a(et,)) € Z (M) S Zi(I) and Zg(I) # @ as we wanted to
prove.

§ 4. CONNECTIONS WITH PREVIOUS RESULTS

A less elegant form of the Hilbert K-Nullstellensatz, that do not involve
the K-radical explicitely, is the following:

Let J be an ideal of R. The following two assertions are equivalent :
(i) If f e R wvanishes on Zg(J), then felJ.

G) If fi, fs. fn are polynomials in R such that p(fi, f2, - fm)€J
for some p in Pg(m), then f,€eJ.

From Proposition 4 (ii) it follows that assertion (1) can be stated as

J = {feR|Z(f) 2 Z(J)}

and from the definition of the K-radical assertion (i) can be stated as

J = \% . Hence the equivalence of the two assertions is the Hilbert
K-Nullstellensatz for K-radical ideals. However, if I is any ideal of R,

we have that J = \7? 1s K-radical by Proposition 3 and that Z (1) = Z(J)
by Proposition 4 (1). Hence, the above result is equivalent to the Hilbert
K-Nullstellensatz

BT = {feR| Z(f) 2 Z(D)

for I.

The sets Pg(m) in the particular case k = K, were introduced by Adkins,
Gianni and Tognoli [1] in order to prove the above result when k = K.
As a consequence they obtained the Hilbert Nullstellensatz in the particular
case k = K = k. The reason for introducing the sets Pg(m) in general is
to formulate the above more general result, that is a true generalization
of the Hilbert Nullstellensatz.
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In the case that k is an ordered field results similar to the Hilbert
K-Nullstellensatz were proved by Dubois [2] and Risler [7]. To state their
results we introduce the following notation:

Assume that k is an ordered field. Given an ideal I in R we let

I, = {f € R| there exists an integer m, positive elements a,, a,, .., a, of
k and rational functions u,, u,, .., u,, in k(x,, x,, ..., x,) such

that f"(1+ > a,u?)el} and
i=1

Ix = {f € R| there are positive elements a,, das, .., a, of k and elements
f2s f5» e [y Of R such that f? + Z aifl?e]}.
i=1

It is fairly easy to see that I and I, are radical ideals and clearly
I € I,. The Hilbert Nullstellensatz of Risler [7] states that, if k = K = R,
where we denote by R, the real closure of k, then

Ix = {f eR| Zx(f) 2 Z(D)}
and the Nullstellensatz of Dubois [2] that, if K = R,, then

Ip = {f e R| Zx(f) 2 Zx(D)} .
In particular it follows from these results that in the above cases I,

or I, are equal to the K-radical \’ﬁ . From our point of view it is more
satisfactory to proceed in the opposite direction and first prove directly, in
the above cases, that the ideals I, or I are equal to the K-radical and thus
obtain the results of Dubois and Risler as a consequence of our K-Null-
stellensatz. This can be done, however in order to prove that the various
ideals are equal we need to use S. Lang’s [6] version of Hilbert Nullstellensatz
for real closed fields or Artin’s solution of Hilbert’s 17th problem (see [6], § 3
in particular Theorem 5 and Corollary 2 p. 279), so that this procedure
is too close to the methods of Dubois and Risler to merit a separate
presentation here.

§5. TwO EXAMPLES

In the introduction we associated to each ideal I of R a subset I, of
R such that I < I; < \’f/f For the two pairs of fields k = K = Z/2Z
= GF(2) and k = K = Q we give, in this section, examples of ideals I
such that we have a strict inclusion 1, C \’ﬁ/f :

fa)
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