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326 D. LAKSOV

For which pair of fields k ç K do we have that IT for all
ideals I of R?

It was long conjectured that equality holds for all pairs of fields (at
least when the characteristics of k is zero). We shall however, in section 5,

give examples showing that one may have strict inequality IT C ffl for
the two pairs k K Z/2Z and k K Q.

Before we proceed (in § 3) to prove the Hilbert K-Nullstellensatz we shall
in § 2 collect all the results that we need about the K-radicals and the
polynomials PK(m) in the next section.

§ 2. Some properties of the K-radical

We shall denote by S(m) the polynomial ring k\_y1, y2,ymf

Lemma 1. Let p e PK(m) and q e Pk(n). For each polynomial
s s(yx, y2, -, ym + n) G S(m + ri) of degree one less than q, we have that,

r p(yi •S,y2S,ym_j • s, q(ym + 1 ,ym + 2, -, 6

Proof\ It is clear that r is a homogeneous polynomial in S(m + n).
Let (tfi, a2, am+n) e Af+ n be a zero of r. Since pePK(m), we have

that q(am + 1, am + 2,am+n) 0. However, we have that qePK(m) so that
am + n

0. Consequently r e PK(m + n) as asserted.

Proposition 2. Let A be a k-algebra and I an ideal of A. Then

the K-radical fifl of I is an ideal of A (possibly A itself) which

contains the radical of /.

Proof Since PK( 1) yït -} it is clear that the set f/1 contains

A-
Let / and g be elements in jfl. Then by the definition of the

.K-radical there are positive integers m and n, polynomials p e PK(m) and

qePK{n) and elements and glt g2,gn_ of A such that

PiA,)eland
q(9i ,92,-,dn-,9)el

Let h be an element of A and let d be the degree of p. Then we have that

P(hA,hf2 hfm_hf) h«p(fx f2 -, fm- 1 > /) 6 / •
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Consequently it follows from the definition of K-radicals that h • / g ffl.
In order to prove the Proposition it remains to prove that (f + g)e ffl.
To this end we rewrite the polynomial q{ym^g, ym + 2 * 3'm + n) in the

following form

0 I'm + 1 > j'mil ' ym + rt— 1 Ym-tn 3 m) "P 3 m^O m ; 3m- 1 > •"> Ym -f n) >

where s is a homogeneous polynomial of S(m + n) of degree one less than the

degree of q.

By Lemma 1 we have that

y — y{\'i 9 y2 5 3'm + J 1
* ^ 3 I * L« -"5 3/m—1 * rl ' 3'm + 2> •*• 3;m + n))

is in PK(m + n). However, from the above form of q(ym +1, 3'm+ 2 > ••• Ym + n) *

it follows that r can be rewritten as

Pi.Yq ' y% * 5, 3'm— 1
* ^5 3 m ' 7 ^(imrl ; 3Jm-r2 •••> )m-fn - 1 » 3'm-i-n 37m)

• t(3W2> ->3wJ »

where £(jq, y2,ym+„) is a homogeneous polynomial in S(m + n) of degree

equal to (d— 1) • deg(g).

From the latter form of r we obtain that, if we write I s{f\ gl, g2%g„),
then h r(/i, f2,/m_ i, /, g1, g2,.... 0„- i, / + 0) can be written as

ldp(fi*fz,-»,fm-i,f)
+ q(g 1 02 > -> 9n-u9)' t(fl * Î2 > -, /m- 1 5 /, 011 02 > -, 0* - 1 / + 0) *

The latter element is in I and since r e PK(m + n) it follows from the

definition of the Pi-radical that f + g e ffl, as we wanted to prove.
We shall call an ideal J of a /c-algebra A, K-radical, if ^^7 I.

The next result shows that ffî is always K-radical.

Proposition 3. Let A be a k-algebrci and I an ideal of A.

Moreover, let J fyf Then we have that f/J J.

Proof Let / be in ffj We shall prove that f e J. By definition of the
Pi-radical, there is a positive integer n, a polynomial q e Px(n) and elements

/i > /2 > - /n-1 in ^ such that

0 0(A>/2,-, /„-i,/)e J.

Now, since g g ^7, there is furthermore a positive integer n, a polynomial
p g Px(m) and elements gl9g29... 9m~ i in A such that
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p{g1,g2,-,gm_L,g)sI.
Let d be the degree of q. Then by Lemma 1 with s

~ we have that

Kyi, yi,-, ym+n)

p(yi • ydm~ \ y2 • yt~\-,ym-1 • yt~ i, - -, yJ)

is in PK(m + n). However, we have that the element

r(g1, g2,gm_ 1,1, /t, f2 ,/„_j, /)
p{d 1,92, -, 9m-1 q(flk, -,92 9m-1,9)

is in I. Hence / is in jfl Jas we wanted to prove.
As in the traditional case, one of the two assertions of the Hilbert

K-Nullstellensatz and of its weak form is easy.

Proposition 4. Let I be an ideal of R and J ffl. Then the

following assertions hold :

(i) ZK(J) ZK(I),

(ii) Jg {/ e R I ZK(f)2ZK(I)},
(iii) if ZK(I) # 0 then J # R

Proof Since J contains I we have the inclusion ZK(J) E ZK(I). To prove
the opposite inclusion as well as assertion (ii) it suffices to prove that for
each point a (al, a2,..., ar) e A'K of ZK(I), we have that f{a) 0 for all

/ g J. However if / e T then there exists a polynomial p in PK(m) for
some natural number m and elements f1, /2,..., fm-i in R such that

p(fi, fl,-,fm-l,f)el-
Since a is in ZK(I) we obtain that

p[fiia),fzia), -,fm-i /(«)) 0 •

However, we have that p e PK(m) so that /(a) 0.

The last assertion of the Proposition follows from assertion (ii).

The crucial tool in our proof of the Hilbert K-Nullstellensatz is the

following result, which certainly is well known, but for which we have no
reference.

Proposition 5. Assume that K is not algebraically closed. Then, for each

positive integer m, there is a homogeneous polynomial p e k[y1, y2,ym]
with only the trivial zero in A£. That is, ZK(p) (0, 0,..., 0).
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Proof. For m 1 we can use p(y1) jq. The heart of the proof is the

case m 2. We divide the proof for m 2 into two cases.

Case 1. There exists an element a in k\K which is separable over k.

Let L be the normal closure of k(a) in k. Then L is a finite separable

extension of k and thus generated by one element ß. That is L k(ß).

Since L is normal all the conjugates ß ßi5 ß2, -, ßn of ß are in L and

clearly L /c(ß£) for z 1, 2,..., n. We have that L is not contained in

K because cn^K. Hence, none of the roots ßi,ß2»—>ßn °f niinimal

polynomial f(x)ek[x] of the element ß over k, are in K. Consequently,

the homogenization.

p(.yi ' j;2) yd2- f(yi-y 21)

of /, where d is the degree of /, has no non-trivial root in A|.

Case 2. All elements of k\K are purely inseparable over k. Choose an

element y e k\K. Then yq a is in k for some power q of the

characteristics of k and y is the only root of the polynomial xq — a. Hence

p(y 1^2) (yi~ay2)q

is a homogeneous polynomial without any non-trivial roots in A|.
The two cases above exhaust all possibilities for elements in k\K.

Hence we have proved the existence of homogeneous polynomials in k[y1, y2]
without any non trivial zeroes.

We now proceed by induction on m. Assume that m ^ 2 and that

we have proved the existence of a homogeneous polynomial p(yl9 y2, -, ym)

with only the trivial zero in A^. Let q(y1, y2) be a homogeneous polynomial
with only the trivial zero in A|. Then, if d is the degree of p, we have

that r(yi,y2,...,ym+1) q(p(y1 y2, -, yj, ydm+i) is a homogeneous poly-
nomial with only the trivial zero in A£ + 1. Indeed, the homogeneity is clear,
and if {alJa2,...,am + JeAf1 is a zero of r, we must have that
p(a1, a2,..., am) 0 and am + 1

0 since q has no non-trivial zeroes. Then

we must have that a1 a2 am 0 since the same is true for p.

§ 3. Proof of the Hilbert K-Nullstellensatz

There exists in the literature a great variety of proofs of the Hilbert
Nullstellensatz. Most of them start by proving the weak form and then
deducing the Nullstellensatz by localization procedures that are more or less
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