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RADICALS AND HILBERT NULLSTELLENSATZ
FOR NOT NECESSARILY ALGEBRAICALLY CLOSED FIELDS

by Dan LAKSov

§ 1. THE MAIN RESULT AND DEFINITIONS

We shall in the following fix a (commutative) field k and denote by k
the algebraic closure of k. Moreover, we shall denote by K a subfield of k
containing k. The polynomial ring k[xi, X,, .., X,] in r variables over k
we denote by R. Given an ideal I in R, we denote by Zg(I) the algebraic
subset of the r-dimensional affine space A% which consists of the common
zeroes of the polynomials in I. That is

Z) = {(ay,a,,..a,)laeK for i=12.,r
and f(a;,a,..,a) =0 forall fel}.

The HiLBERT NULLSTELLENSATZ is usually stated as follows:

Given an ideal I in R and a polynomial f of R, then f
vanishes at all points of ZyI) if and only if f"e R for some positive
integer n.

In symbols the Hilbert Nullstellensatz can be written in the form:

JI = {f eRIZ{f) 2 Zx(D} .

Here \/f denotes the radical of I, defined as the intersection of all prime
ideals containing I, or equivalently by

\/f = {feR| f"eR for some positive integer  n} .

As an immediate consequence of the Hilbert Nullstellensatz we obtain the
following result which is often referred to as the weak HILBERT NULL-
STELLENSATZ :

Given an ideal I in R, then I is not all of R if and only if
Zi(I) is non-empty.

The Hilbert Nullstellensatz is one of the fundamental algebraic tools
in geometry because it leads to a dictionary between algebraic subsets
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of A7 on the one hand and radical ideals in R on the other. In algebraic
geometry over a not-necessarily algebraically closed field K the main objects
of study are the algebraic subsets of the affine space A% . However, if K is
not algebraically closed, there always exists ideals in R with no zeroes
in A . Hence the above correspondence between radical ideals and algebraic
sets fails, even in the sence of the weak Nullstellensatz.

The purpose of this article is to prove a generalization of the Hilbert
Nullstellensatz which makes it possible to set up a dictionary between the
algebraic subsets of A% on the one hand and certain ideals of R, that
we shall call K-radical, on the other.

To state our main result it is convenient to introduce the following
notation:

Let y;,y,,.. be a countably infinite set of elements that are alge-
braically independent over k. We denote by Pg(m) the set of homo-
geneous polynomials in k[y,, y,, .., V,.] Whose zeroes in A%, if any, are of
the form (a,, a,, ... a,,—, 0). That is,

Py(m) = {p€kly:, 3, yml|p  is homogeneous and  Z(p) E Z(yn)}

Let A be a k-algebra and I an ideal of A. We denote by \’ﬁ the subset

{ae A| for some positive integer m there exists a polynomial p € Pyg(m)
and elements a, , a,, .., a,,—, of A such that p(a,, a,, .., a,_1,a) €l}.

Below we shall prove that ﬁ is an ideal in A which we call the K-radical
of I. We can now state the main result of this article, which we shall refer
to as the HILBERT K-NULLSTELLENSATZ as follows:

Given an ideal 1 of R, then

M1 = {f eR| Z(f) 2 Zx(D)} .

As an immediate consequence of the Hilbert K-Nullstellensatz we obtain the
following result which we refer to as the weax HILBERT K-NULLSTELLENSATZ :

Given an ideal 1 of R, then \’ﬁ is not all of T if and only if
Z (1) is non-empty.

We observe that the Hilbert Nullstellensatz gnd its weak form are the
Hilbert k-Nullstellensatz and the weak Hilbert k-Nullstellensatz. Indeed, it

is clear that we have

Pim) = {1, Y, Y2, v, .} for m=12.
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Hence it follows from the definition of \’ﬁ that, if K = k then \’7} = \/f
is the usual radical of I.

A result in the direction of the Hilbert Nullstellensatz was given by
D. W. Dubois [2] and J.J. Risler [7] when k is ordered and K the real
closure of k. A similar weaker result, which is however valid for any field k,
when k = K, was given by W. A. Adkins, P. Gianni and A. Tognoli [1].
We shall return to these results in § 4 and see how they relate to the results
of this article. In that section we also discuss some open problems related
to the previous work.

In the process of generalizing the Hilbert Nullstellensatz we introduce,
for each pair of fields k and K with k & K, the K-radical of an ideal in any
k-algebra. The K-radical of ideals in R makes it possible to give a treatment
of the Nullstellensatz over an arbitrary field which is analogous to the
traditional presentation over algebraically closed fields. Most properties that
hold for the usual radical of an ideal can be seen to hold for the
K-radical and the K-radical merits some interest of its own. Below we
shall however only give those properties needed in our presentation of the
Nullstellensatz. These properties we have collected in § 2. For a more complete
treatment see Laksov [4] and [5].

The results of Dubois and Risler strongly suggest that the K-radical of
an ideal can be defined by much smaller sets of polynomials than the sets
Py(m). Restricting the set of polynomials used to define the K-radical would
be the first step towards generalizing Hilberts 17°th problem and would give
extremely interesting information about the fields involved. We shall however
show that even modest advances in this direction may be very difficult.
To be more precise we introduce, for each natural number m a set

Pm) = {peklyi, ys, . ¥l | P is homogeneous and the only zero
of p in A% is the origin}
and for any ideal I in R we define a subset I of R by

It = {f; € R|for some positive integer m > i there exists a polynomial

p € Pg(m) and elements f, f5, .., f,, in R such that p(f,, f5, .., f,) € I}

Then PR(m) = Px(m) and consequently I, < \’ﬁ . Moreover we have that
I < Ir. The definition of I; is apparently more natural and symmetric

than that of %1,

An intriguing problem raised by Tognoli is:
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For which pair of fields k = K do we have that 1; = \'f/f for all
ideals I of R?

It was long conjectured that equality holds for all pairs of fields (at
least when the characteristics of k is zero). We shall however, in section 5,

give examples showing that one may have strict inequality I, C \’5/7 for
the two pairs k = K = Z/2Z and k = K = Q.

Before we proceed (in § 3) to prove the Hilbert K-Nullstellensatz we shall
in § 2 collect all the results that we need about the K-radicals and the poly-
nomials Pg(m) in the next section.

§ 2. SOME PROPERTIES OF THE K-RADICAL
- We shall denote by S(m) the polynomial ring k[ y,, 5, .. Vinl-

LemMA 1. Let pePg(m) and qePyn). For each polynomial
S = S(V1, V25 Vmsn) ES(Mm+n) of degree one less than ¢q, we have that,
r = p(yl *5 V28 s V-1 5, Q(ym+1> Vm+25 - ym+n)) € PK(m+n) .

Proof. 1t is clear that r is a homogeneous polynomial in S(m + n).
Let (a1,a2,...,0n.,)€EARY" be a zero of r. Since pe Px(m), we have
that g(a, 41, Gnias - Amen) = 0. However, we have that q € Pg(m) so that
a,+, = 0. Consequently r € Pg(m+n) as asserted.

PROPOSITION 2. Let A be a k-algebra and 1 an ideal of A. Then

the K-radical \'}/f of I is an ideal of A (possibly A itself) which
contains the radical of 1.

Proof. Since Pi(1) = {1,y,, y1, .~} it is clear that the set I contains

.
Let f and g be elements in \’571 . Then by the definition of the
K-radical there are positive integers m and n, polynomials p € Pg(m) and

q € Pg(n) and elements f,f,,..fn-1 and g;,9,,...9,—1 of A such that

p(fl:fZ:-"afm—l)EI and
q(g1>g27"-9 In—-1> g)el

Let h be an element of A and let d be the degree of p. Then we have that
p(hfla hf27 ey hfm—17 hf) = hdp(fla f27 ) fm—1> f) EI .
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Consequently it follows from the definition of K-radicals that h- f e\’y} :

In order to prove the Proposition it remains to prove that (f+g) € \’ﬁfl
To this end we rewrite the polynomial g(¥m=«1»> Yms2s - Vms+n) 10 the
following form

Q(ynr}- 1s Ym+2s o Ymsn—1: }‘m+n—ym) + yms(ym s Yms1s o0 ym‘vn) ’

where s is a homogeneous polynomial of S(m+#n) of degree one less than the
degree of g.
By Lemma 1 we have that

r= 7'(}"1 > ¥Yas oo .‘"m+n) = p(}l *S Y2 S s Ym—1 S, q(ym+1 s ¥Ym+2s - ym+n))

is in Pg(m+n). However, from the above form of q(Vms1s Yms2s - Ymin) s
it follows that r can be rewritten as

P S Y27 S s V1S ¥ S) + GUms1s Yms25 = Ymen—15 Yman ™ Ym)
C1(1s Yo oo Ymn) s
where t(Vy, V3, - Vm+,) 1S @ homogeneous polynomial in S(m+n) of degree
equal to (d—1) - deg(q).
From the latter form of r we obtain that, if we write [ = S(f, g1, 925 - In)s
then h = r(fi, fos o frueis f>G1>G2s - Gu_1, f +g) can be written as

Ep(fis [ fum15 f)

+ (1,92 Gno1:9) 15 Jos s fnm15 5915925 s Gn-1> [ +9) -
The latter element is in I and since re€ Pg(m+n) it follows from the
definition of the K-radical that f + g€ \{9/; . as we wanted to prove.

We shall call an ideal I of a k-algebra A4, K-radical, if \176 = [,

The next result shows that \/M}— is always K-radical.

ProrosiTioN 3. Let A be a k-algebra and I an ideal of A.
Moreover, let J = \17/? Then we have that \173 = J.

Proof. Let f be in \15/} . We shall prove that f e J. By definition of the
K-radical, there is a positive integer n, a polynomial g € Pg(n) and elements
fis fos - f,—; In A such that

g = q(fl>f2:""fn—1af)€‘]-

Now, since g € \17? , there is furthermore a positive integer n, a polynomial
p € Py(m) and elements g, g5, ... gm— 10 A such that
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p(g19927---> gm——lag)EI-
Let d be the degree of g. Then by Lemma 1 with s = y%~' we have that

r(yl bl .VZv sy ym+n)
= P v LY Ve s Vet VAT At 15 Yt 25 o Vi)

is in Pg(m+ n). However, we have that the element

r(glagza"'a Im—1> 1) flafza"'a fn~1:f)
= p(gla gas o gm~1>q(f1>f2>"'n fn—1> f)) = p(gl792)"°> gm—1>g)

is in I. Hence f is in \17— = J as we wanted to prove.
As in the traditional case, one of the two assertions of the Hilbert
K-Nullstellensatz and of its weak form is easy.

ProprosITION 4. Let I be an ideal of R and J = \Iﬁ . Then the
following assertions hold :

(i) ZK(J) = ZK(I) 5

(i) JE {feR|Zf) =2 ZD},
(iii) if Z,(I) # @ then J # R.

Proof. Since J contains I we have the inclusion Zg(J) E Zg(I). To prove
the opposite inclusion as well as assertion (i) it suffices to prove that for
each point a = (a,, a,, ..., a,) € Ay of Zg(I), we have that f(a) = O for all
f eJ. However if f e T then there exists a polynomial p in Pg(m) for
some natural number m and elements f;, f,, ..., f,,—1 in R such that

p(flafzr'“a fm—1>f)€I-

Since a is in Z(I) we obtain that

p(fl(a)a fZ(a)a RS fm— l(a)a f(a)) = 0 .

However, we have that p € Pg(m) so that f(a) = O.

The last assertion of the Proposition follows from assertion (i1).

The crucial tool in our proof of the Hilbert K-Nullstellensatz is the
following result, which certainly is well known, but for which we have no
reference.

PROPOSITION 5.  Assume that K is not algebraically closed. Then, for each
positive integer m, there is a homogeneous polynomial pek[y,,V,, s Yl
with only the trivial zero in AY¥. Thatis, Zg(p) = (0,0, ..., 0).
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Proof. For m = 1 we can use p(y;) = y;. The heart of the proof is the
case m = 2. We divide the proof for m = 2 into two cases.

Case 1. There exists an element o in k\K which is separable over k.
Let L be the normal closure of k(o) in k. Then L is a finite separable
extension of k and thus generated by one element B. That is L = k(B).
Since L is normal all the conjugates B = By, B3, .., B, of B are in L and
clearly L = k(B;) for i = 1,2,..,n. We have that L is not contained in
K because ok K. Hence, none of the roots By, B,, ... B, of the minimal
polynomial f(x)e k[x] of the element B over k, are in K. Consequently,
the homogenization.

p(isy2) = yo - frirya?)
of f, where d is the degree of f, has no non-trivial root in A%,

Case 2. All elements of k\K are purely inseparable over k. Choose an
element y € k\K. Then ¥4 = a is in k for some power g of the charac-
teristics of k and vy is the only root of the polynomial x? — a. Hence

p(yi,y2) = (y1—ayy)?

is a homogeneous polynomial without any non-trivial roots in A%,

The two cases above exhaust all possibilities for elements in K\K.
Hence we have proved the existence of homogeneous polynomials in k[y;, y,]
without any non trivial zeroes.

We now proceed by induction on m. Assume that m > 2 and that
we have proved the existence of a homogeneous polynomial p(yy, V2, - Ym)
with only the trivial zero in A¥. Let q(y;, y,) be a homogeneous polynomial
with only the trivial zero in AZ. Then, if d is the degree of p, we have

that r(yl s V25 oo Yt 1) = Q(p(yl > V25 e yrn)> y;jn+ l) iS a homogeneous pOly_

nomial with only the trivial zero in A% "', Indeed, the homogeneity is clear,

and if (a;,a,,..,a,+1) AR is a zero of r, we must have that
pla;,a,,..,a,) = 0 and a,,,; = 0 since g has no non-trivial zeroes. Then
we must have that a; = a, = ... = a,, = 0 since the same is true for p.

§ 3. PROOF OF THE HILBERT K-NULLSTELLENSATZ

There exists in the literature a great variety of proofs of the Hilbert
Nullstellensatz. Most of them start by proving the weak form and then
deducing the Nullstellensatz by localization procedures that are more or less
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related to a method called Rabinowitz trick. We shall next show that
Rabinowitz trick also can be used to deduce the Hilbert K-Nullstellensatz
from its weak form.

PROPOSITION 6.  We have that the Hilbert K-Nullstellensatz follows from its
weak form.

Proof. 1t follows from Proposition 3 (i) that it suffices to prove that, if
the weak Nullstellensatz holds, then we have an inclusion

(fER| Zy(f) 2 ZD} € H1

for all ideals I in R.

Let f in R be an element that vanishes on Zg(I). Choose generators
hi,hy,..,h, of I and let J be the ideal, in the polynomial ring R[x]
in the variable x over R, which is generated by the elements

hy hyywh,, 1 — xf

of R[x]. Since f vanishes on the common zeroes of hy, h,,.., h, in A%,
it follows that the subset Z (J) of A% is empty. It then follows from

the weak K-Nullstellensatz that /J = R[x]. Hence there is a polynomial
p € Pg(m) for some natural number m and elements f;, f,, .., f,,—1 in R[x]
such that

p(fi, f2s o fu—1,1)EJ.
That is, there are polynomials ¢, g5, ..., gn, g In R[x] such that

P foson fuis D) = Y gy + o(1=P).

We substitute x = y~! in the latter equation and obtain, after multiplying
by a sufficiently high power yV of y and using the homogeneity of p, an
equation

P oo S ¥ = 2 g + 90— )
in R[y]. If we substitute f for y in the latter equation we obtain that

pley, esy e epmy, fNel

where ¢; = fixy, X5, .., X,_1, f) for i = 1,2,..,m — 1. Consequently we
have that f~ ¢ \’fq . However, by Proposition 3 we have that \’ﬁ is K-radical
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and hence radical by Proposition 2. We conclude that f e\’ﬁ/f as was to
be proved.

To prove the Hilbert K-Nullstellensatz we must now prove it in the
weak form. We shall here give a proof that emphasizes the difference
between the case when K is not algebraically closed, which is the main
theme of this article, and the traditional case when K is algebraically closed,
for which there exists at least as many presentations as there are textbooks in
algebra or geometry.

Proof of the weak Hilbert K-Nullstellensatz when K is not algebraically
closed
From Proposition 4 (iii) it follows that it suffices to prove that, if I is

and ideal of R such that Z,(I) = (@, then we have that 1 e % .

To this end we choose generators h,,h,, .., h, of the ideal I. By
Proposition 5, there is a homogeneous polynomial p € k[y,, v5, ..., V,n] With
only the trivial zero in A%. Since the polynomials h; have no common zero
we see that the polynomial

g(xl 5 X205 s X,.) = p(hl s hZ 3 00y hm)

in R has no zeroes in A%. We homogenize g by substituting x; = y; -y, .}
for i = 1,2 ..,r and multiplying by y{,,, where d is the degree of g. The

resulting polynomial g(y,, y,, ... ¥,+ ) is then in Pg(r+ 1). Moreover, we have
the equalities

Q(xl > X2, ey Xpy 1) = g(xl s Xz, oivy xr) = p(hl b h2 s hm)

Since p is homogeneous and the h; are in I, all the members of the latter

equalities are in I. Since g € Pi(r+1) we conclude that 1 e \’ﬁq as we wanted
to prove.

Proof of the weak Hilbert Nullstellensatz

For completeness we give one of the many short proofs of the weak
Nullstellensatz. It is based upon the following two elementary results

(@) Let L[x] be a polynomial ring in the variable x over a field I
and f a non-zero element of L[x]. Then L[x] r1s not a field.

(b) Let A be an integral domain and x an element that is integral over
A. If A[x] is a field, then A is a field.

Of these results the second is trivial and the first follows immediately
from the existence of infinitely many irreducible polynomials over L.
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The weak Nullstellensatz is a consequence of the following more general
result.

PRroOPOSITION 7. The following two assertions hold.

() Let P be a prime ideal in R. If (R/P), is a field for some
element g in R/P, then P is maximal.

(1) Let M be a maximal ideal in R. Denote by S the polynomial ring
k[x{,%x5, ., x,_1] andlet Q = M nS. Then Q isa maximal ideal in
S and the class x of x, in R/M is algebraic over S/Q.

Proof. We shall prove the two assertions of the Proposition simulta-
neously by induction on r. For r = 1 the Proposition is assertion (a) above.
Assume that the assertions of the Proposition hold for S. We shall prove
that they hold for R.

Let P be a prime ideal of R and let ge R/P. We let Q = Pn S
and denote by L the field of fractions of S/Q.

Assume that (R/P), 1s a field. If x denotes the class of x, in R/P
we then obtain that

(R/P), = (8/Q[x]), = L[x], .

From assertion (a) above it follows that x is algebraic over L. Hence L[Xx]
is a field and in particular L[x] = L[x],.
We obtain on the one hand a relation

g ' = a YNag+a;x+..+a,x")

with a and g; in S/Q for i = 0, 1, ..., m and consequently equalities
(R/P), = (R/P), = (S/Q).Lx] -

On the other hand we obtain a relation
bx" + b,_ 1 X" '+ ..+ by =0

with b and b; in S/Q for i = 0, 1, .., n and consequently that x is integral
over (S/0),, - Since (S/Q),[x] = (S/Q).[x] is a field it follows from assertion (b)
above that (S/0),, is a field. By the induction assumption we then have
that Q is maximal. In particular we have that a is invertible in (S/Q) = L,
so that (R/P), = (R/P), = R/P. Hence the ideal P is maximal. This proves
assertion (i) of the Proposition. However, the above proof applied to M
gives assertion (ii) so that we have proved the Proposition.
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To prove that, if K = k and I is a proper ideal of R, we have that
ZI) # @, we choose a maximal ideal M containing I. By repeated
application of assertion (ii) of Proposition 7 we see that there is a k-homo-
morphism

a:R/M - k = K

Hence, if o,,0d,,.., o are the classes of x;,Xx,,..,x, in R/M we have
that (a(,), a(0ty), ., a(et,)) € Z (M) S Zi(I) and Zg(I) # @ as we wanted to
prove.

§ 4. CONNECTIONS WITH PREVIOUS RESULTS

A less elegant form of the Hilbert K-Nullstellensatz, that do not involve
the K-radical explicitely, is the following:

Let J be an ideal of R. The following two assertions are equivalent :
(i) If f e R wvanishes on Zg(J), then felJ.

G) If fi, fs. fn are polynomials in R such that p(fi, f2, - fm)€J
for some p in Pg(m), then f,€eJ.

From Proposition 4 (ii) it follows that assertion (1) can be stated as

J = {feR|Z(f) 2 Z(J)}

and from the definition of the K-radical assertion (i) can be stated as

J = \% . Hence the equivalence of the two assertions is the Hilbert
K-Nullstellensatz for K-radical ideals. However, if I is any ideal of R,

we have that J = \7? 1s K-radical by Proposition 3 and that Z (1) = Z(J)
by Proposition 4 (1). Hence, the above result is equivalent to the Hilbert
K-Nullstellensatz

BT = {feR| Z(f) 2 Z(D)

for I.

The sets Pg(m) in the particular case k = K, were introduced by Adkins,
Gianni and Tognoli [1] in order to prove the above result when k = K.
As a consequence they obtained the Hilbert Nullstellensatz in the particular
case k = K = k. The reason for introducing the sets Pg(m) in general is
to formulate the above more general result, that is a true generalization
of the Hilbert Nullstellensatz.
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In the case that k is an ordered field results similar to the Hilbert
K-Nullstellensatz were proved by Dubois [2] and Risler [7]. To state their
results we introduce the following notation:

Assume that k is an ordered field. Given an ideal I in R we let

I, = {f € R| there exists an integer m, positive elements a,, a,, .., a, of
k and rational functions u,, u,, .., u,, in k(x,, x,, ..., x,) such

that f"(1+ > a,u?)el} and
i=1

Ix = {f € R| there are positive elements a,, das, .., a, of k and elements
f2s f5» e [y Of R such that f? + Z aifl?e]}.
i=1

It is fairly easy to see that I and I, are radical ideals and clearly
I € I,. The Hilbert Nullstellensatz of Risler [7] states that, if k = K = R,
where we denote by R, the real closure of k, then

Ix = {f eR| Zx(f) 2 Z(D)}
and the Nullstellensatz of Dubois [2] that, if K = R,, then

Ip = {f e R| Zx(f) 2 Zx(D)} .
In particular it follows from these results that in the above cases I,

or I, are equal to the K-radical \’ﬁ . From our point of view it is more
satisfactory to proceed in the opposite direction and first prove directly, in
the above cases, that the ideals I, or I are equal to the K-radical and thus
obtain the results of Dubois and Risler as a consequence of our K-Null-
stellensatz. This can be done, however in order to prove that the various
ideals are equal we need to use S. Lang’s [6] version of Hilbert Nullstellensatz
for real closed fields or Artin’s solution of Hilbert’s 17th problem (see [6], § 3
in particular Theorem 5 and Corollary 2 p. 279), so that this procedure
is too close to the methods of Dubois and Risler to merit a separate
presentation here.

§5. TwO EXAMPLES

In the introduction we associated to each ideal I of R a subset I, of
R such that I < I; < \’f/f For the two pairs of fields k = K = Z/2Z
= GF(2) and k = K = Q we give, in this section, examples of ideals I
such that we have a strict inclusion 1, C \’ﬁ/f :

fa)
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Example 1. Let k be the field with two elements and let K = k. Consider
the ideal I = (x,) E k[x,,x,] = R. The following three assertions hold:

(i) We have that
Z() = {(0,0),(0,1)} & Az and
{f eR| f vanishes on Zg(I)} = (x1, x,(x;+1)).
(i) T = (x,x0e2+1)
(i) Iy = (x;) = I.
In particular we have a strict inequality [ C \’fff .

Of the three assertions (i) is obvious and the second follows from (i)
and the Hilbert K-Nullstellensatz. To prove assertion (iii) we let p € P ¥(m)
and f;, f5.... f,, be elements in R such that p(fy, f5, . fm) € L. We shall
prove that f,el for i = 1,2,..,r. Assume to the contrary that not all
the f; are in I. Then the polynomials f;(0, x,) are not all identically zero.
Let d be the non-negativ integer such that

£i(0,x,) = x%g:(x, for i=12 ..,m

and x, does not divide g;(x;) for some index j. Since p(fi, fo, ., fr) €1
we have that

p(fl(o .\'2), f2(0= X’Z): s fm(o xz)) = xgep(gl(x?.): gZ(XZ)a ey gm(x?.))

1s 1dentically zero in k[x,], where e is the degree of p. Hence

P(gl(xz): ga(x2)s ooy Qm(xz))

is identically zero. In particular we have that (g,(0), g,(0), ... g,,(0)) is a zero
of p in A¥ with g;(0) # 0. This contradicts the assumption that p € P %(m).

Example 2. Let k = K = Q and let R = k[x,, x,, x5]. Moreover, let

frisya.¥3) = yi+ y3 + 3y3

and I = (f(y;, y,, ys) the ideal in R generated by f.
The following three assertions hold:

() We have that Zy(I) = {(a, —a,0)|]ae K} = A} and

{f €R| f vanishes on Zg(I)} = (x;+x,, x3).
() I = (x;+x,, x3).
(ii1) The ideal I does not contain a (non-zero) linear form.

In particular we have a strict inequality I, C \’}fl :
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The first assertion of (i) is a well known result in number theory
(see e.g. Hardy and Wright [3], Theorem 232 page 196) and the second
assertion of (i) is an immediate consequence of the first. Assertion (ii)
follows from (i) and the Hilbert K-Nullstellensatz.

To prove assertion (ii1) we let [ = ax; + bx, + cx; be a non-zero linear
form and p = p(y;, ¥4, ., V) € PYm) an element of degree d. Assume
that there are polynomials f; = fi(x;,x,,Xx3) of R for i = 1,2,..,m — 1
such that

p(f1> f2> ey fm—l> l) - f(x1> X2 XS) g(xla X2 X3)
for some polynomial g = ¢g(x,, x,, x3). Then the following six assertions
hold:

(@) The polynomials f,, f,, ..., fm—1 have zero constant term.

Indeed, specialize x;, x,, x5 to 0, 0, O respectively. We obtain that

p(fl(oﬂ Oa 0)7 fZ(Oa 07 0)7 e fm—1(07 O: O)> 0) = f(0> 07 0) g(Oa 07 0) = 0 .

Hence the existence of a non-zero constant term would contradict the
assumption that p € P Y(m).
Denote by [; = [;(x,, x,, x3) the linear term of f;.

(b) The homogenous polynomial p(ly,1,,..1,-,,1) is not (identically)
zero and it is the lowest non-zero homogeneous term of

p(f1> f2>'"> fm—l: l)

Indeed, if p(l;,1,, .. [,_,,]) were zero, we can specialize (x;, X,, X5)
to a point (a;, b;,c;) of K* which is not a zero of /. We then obtain
p(ll(al ’ bl 5 Cl)’ lz(al 5 bl 5 Cl), ceey lm_l(al N bl 5 Cl)’ l(al N bl s Cl)) - 0 Wthh agaln
contradicts the assumption that pe P9%(m). The second assertion of (b)

follows from (a). ,
Denote by h(x;, x,, x3) the non-zero homogenous term of g(x,, x,, x5)
which has lowest degree.

(c) We have that h(x,, x,, x3) is of degree d — 3 and that
plis Loy s ln—1s ) = f(x1, X2, X3) h(xy, X5, X3) -

Indeed, since f is homogeneous of degree 3, assertion (c) follows from

assertion (b).
We write I, = a;x; + bix, + ¢xzfori=1,2,..,m — 1.

(d) We have that a = b and that a; = b; for i =1,2,..,m — 1.
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Indeed, specialize x;, x,, x5 to 1, —1, 0 respectively. From assertion (c)

we obtain that
pla,—by,a,—by, .y p_1—bn_1,a—b) = f(1, =1,0)h(1, —1,0) = 0.
Hence assertion (d) follows from the assumption that p e P g(m).

() We havethat a =b =a; =b; =0 for i =12, .,m— 1.

Indeed, specializing x,, x,, X3 to x;, x,, 0 respectively, we obtain from
the equation of assertion (c) and from assertion (d) that

p(al(xl +X3), (X1 +X3), ceey Ay 1(X1 +X5), alx; + xz))
= (x3+x3) h(x;, X5, 0) .
The left hand side of the latter equation is equal to
(x1+x5)play, ay s ooy A1, Q)

which is not divisible by x3 + x3 unless p(a;, dy, ..., @,—, a) = 0. Assertion
(e) therefore follows from assertion (d) and the assumption that p e P$(m).

() We have that ¢ # 0 and p(cy,Cy, . Cpu—y,C) = 0.

Indeed, since | = ax; + bx, + cx; is non-zero it follows from assertion (e)
that ¢ # 0. Moreover it follows from assertion (e) that the equation of
assertion (c) can be written as

p(Cl)C3 9 02x39 g Cm_1X3, CX3) = f(xl ) xZ: X3) h(xl > x2) X3) .

The left hand side of the latter equation is equal to x4p(cy, Cys oy Cpyy, C)
which is not divisible by f(x,, x,, x3) unless p(¢y, ¢y, ... ¢y 1, ¢) = O.

We have thus proved that, if we assume that polynomials f;, f5, ..., fo,_1
such that p(f;, f>, .., fu—1,1) €I exist, we arrive at the contradiction (f)
to the assumption that p € P (m). Hence we must have that [ ¢ I, as asserted.
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