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320 A. FATHI

2. FIXED POINTS FOR HOMEOMORPHISMS OF THE SPHERE

The next lemma is the second important ingredient. It can be proved by
Nielsen’s theory of fixed points. We will give a direct proof.

LEmMa 2.1. Let h:S* — S? be an orientation preserving homeomorphism.
If h has a period 2 point which is not a fixed point, then the set
Fix (h) can be written as a disjoint union Fix(h) = F, U F, with F,
and F, closed non empty and having point index equal to 1.

Proof. Call x the point of period 2. Remark that since h preserve the
orientation it induces on m,(S*\{x, A(x)}) = Z the map x — —x. Choose an
essential annulus 4 = S?\{x, h(x)} large enough so that when we compose
h: A — S*\{x, h(x)} with a retraction of S*\{x, h(x)} on 4 we obtain a map
h:A— A Wthh has no fixed point on the boundary, has the same fixed
point as & and is equal to & in a neighborhood of the set of fixed points
Fix (h) = Fix (h). We will call A — A the universal cover of A4 of course
4 = [0,1] x R and if we denote by T a generator of the group of deck
transformation of A — A, we can write under this identification T(x) = x + 1
where addition is to be taken in the R coordinate. The map h lifts to a
proper map h which verifies h'T = T~ 'h. It follows that h can be extended
to the compactification of A by its two ends e¢_,e, by a map which
exchange these to ends. Since A U {e_,e,} is homeomorphic to a disk &
has a non empty compact set F , of fixed points which does not intersect
the boundary because h exchange ¢_ and €, and h has no fixed point on
the boundary of 4. Remark that the index of F . 1s 1. Moreover, the map
A—> A is injective on F1 because if h(x) = x we have h(x+n) =X —n
#x+nifn#0. Since 4 > A4 is a covering it is clear that this map is
also injective in a neighborhood of F1 It follows that the image F,
of F , under A—>Ais a compact non empty set of fixed points of h
which has index 1. If x eFl, we have Th(x+n) Tx—n) =x+1—n
# x + n for all n because 1/2 ¢ Z. It follows that F,, the image under
A — A of Fix (T E) which is also a compact non empty set of fixed points
of h with index 1—is disjoint from F,. If x € 4 is a fixed point of , it lifts to
a pomt xe A which verifies h()Z) = x +n If n=2k then h(x+k)
—hX) —k=x+2k—k=x+k I n=2k—1 then Thx+k)
= T(x+2k—1—k) = X + k. This shows clearly that Fix (h) = F, U F,.
Since h is equal to h in a neighborhood of Fix (h) = Fix (h), this ends
the proof. ]
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If we combine the Main Lemma 1.1 and lemma 2.1, we obtain:

LEMMA 2.2. Let h:S? — S? be an orientation preserving homeomorphism.
If h has a non wandering point which is not a fixed point, then the set
Fix (h) can be written as a disjoint union Fix(h) = F, 0 F, with F,
and F, closed non empty and having fixed point index equal to 1.

Since we can compactify an orientation preserving homeomorphism of R?
by an orientation preserving homeomorphism of S* with one more fixed
point at infinity, we obtain the next two corollaries.

COROLLARY 2.3. (Brouwer’s Lemma on translation arcs). Let h:R?* — R?
be a fixed point free orientation preserving homeomorphism. Then h has no
periodic point, each point wanders under h. Moreover, if o is a translation
arc, the union Unezlz"(oc) is homeomorphic to a line and it does not accumulate
on itself.

COROLLARY 24. Let h:R?* — R? be an orientation preserving homeo-
morphism. If the non wandering set of h is not reduced to the set of fixed
points then there is a compact non empty subset F < Fix (h) which has
fixed point index equal to 1.
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