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312 L. PARIS

since

(l — a)(l—b) mod M3

We know that (1 — a)2, (1 — b)2, (1 — a) (1 — b) forms a X-basis of M2/M3.
Hence u • v / 0 and v • u ^ 0 mod M3. Otherwise

*1*2 j>lJ>2 *1^2 + *2.Vl 0

and xly2 — x2y1 0 contrary to the fact that {u, v} gives a basis of
M/M2.

Thus uv, vu e B satisfy uv vu mod M3 and uv ^ 0, vu ^ 0 mod M3.

It follows that uv vu. In fact more generally, if ux,u2e B\Mk and

u1 u2 mod Mfe then ux u2. Proof: B n Mk is a basis of Mk, thus

ul — u2 £ This is possible only if u1 — u2 0.
ueBnMk

§ 3. The group of quaternion units

Let Q be defined by generators and relations :

Q <a, b: a4 1 ,b2 a2, ab b3a>

Set i a, j b, k ab and c a2. Then

Q{1, c, i, ccj, k, ck}

Proposition 2. Let K be a field of characteristic 2. The group algebra
KLQ] possesses a filtred multiplicative basis if and only if K contains a

primitive cube root of unity.

Proof. If K contains a primitive cube root of unity, say co,

let

B {1 ,u,v, uv, vu, u2, v2, u3}

where

u m + co2/ + k

v — co2/ + co/ + k.

It is easily verified that B is a filtred multiplicative basis.

Conversely, suppose that K[Q~] possesses a filtred multiplicative basis B.
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Observe that {1 +1,1+7} is a X-basis of M/M2, where again

M rad X[Q]. Also {1 + c, 1 +i+j+k}isa X-basis of M2/M3. Since

B n (M/M2) {u,i'} must be a X-basis of M mod M2, we have

u .\+(l + 0 + Vi(l +7) mod M2

v -X2( 1 + 0 + v2(l +7) mod M2

with a+ fi, ,x2, y2 e X and A+v2 + .v2Vj # 0.

Now

u • v (a*ix2 + 3' 1 y2 + a'23'i) (1 + c)

+ (x 1i'2 + a'2)'i) (1 + i +j + mod M 3

v • u (A' 1 a*2 + 3'i3 2 ~i~ A"ij'^) (1 + c)

+ (Xi.va + .v2yi) (1 +?+./' +/c) mod M3.

Therefore,

w v + v - u (xiju + AAj-i) (1 + c) mod M3 + 0 mod M3

and so w • r + r • u.

We must have uv g B n (M2\M3) since the (1 + 7+y+ /c)-coordinate of
u • r is non-zero. Similarly r • u e B n (M2\M3). But dim (M2/M3) 2 and so

B n (M2\M3) {ur, l?w}

Consider the element u2 g M2. Either it2 uv or u2 vu or w2 g M3.

But ir — (x2 + y? + A'i+iKl + c) mod M3.

Since the (1+ /+;' +/c)-coordinate of u2 is 0, we have u2 + uv, u2 + um.

Hence u2 e M3. This implies ir 0, and it follows that the quadratic
form x2 + 3+ + A-jq represents 0 non-trivially in K and w yi/x1 is a

primitive cube root of unity in K.
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