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312 L. PARIS

since
(1—a)(1—b) = (1—b) (1 —a) mod M>.

We know that (1—a)? (1—5b)% (1—a)(1—0b) forms a K-basis of M?/M?>.
Hence u-v # 0 and v+ u # 0 mod M?>. Otherwise

X1Xy = V1Va = X1Y2 + X¥; = 0

and x;y, — x,y; = 0 contrary to the fact that {u, v} gives a basis of
M/M?.

Thus uv, vu € B satisfy uv = vu mod M> and uv # 0, vu # 0 mod M3.

It follows that uv = vu. In fact more generally, if u,, u, e B\M* and
u; = u, mod M* then u, = u,. Proof: Bn M* is a basis of M* thus

U, — U, = BZ A u. This is possible only if u; — u, = 0.
ueBn Mk

§ 3. THE GROUP OF QUATERNION UNITS

Let Q be defined by generators and relations:
Q = <a b:a* = 1,b%> = a® ab = b%a> .
Seti = a,j=b,k = aband ¢c = a* Then

0 = {L ¢ i, cij, cjk ck} .

PRrROPOSITION 2. Let K be a field of characteristic 2. The group algebra
K[Q] possesses a filtred multiplicative basis if and only if K contains a
primitive cube root of unity.

Proof. If K contains a primitive cube root of unity, say o,

let
B = {1, u, v, uv, vu, u?, v*, u®},
where
u=o+ o} +k
v =i+ o + k.

It is easily verified that B is a filtred multiplicative basis.
Conversely, suppose that K[ Q] possesses a filtred multiplicative basis B.
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Observe that {l+i, 14/} is a K-basis of M/M? where again
M = rad K[Q]. Also {l+4c, 1+i+j+k} is a K-basis of M?/M?. Since
B (M/M?) = {u,t} must be a K-basis of M mod M?, we have

u = x,(14+1) + y;(1+j) mod M?,
r o= x,(1+i) + y,(14j) mod M?,

with x,, vy, X5, v, € K and x,), + x50, # 0.

Now
u-v = (N, F 1yt (140
4 (X1, +x,0) (I+i+j+k) mod M3,
reu = (N X1y X)) (1+0)
+ (xv,+ x50y (L+i4j+k) mod M?.
Therefore,

uer 4+ reou = (x4, (1+c)mod M? # 0 mod M?,

and sou-tv # v-u.
We must have ure B n(M*\M?>) since the (1+i+j+k)-coordinate of
u - v is non-zero. Similarly v - u e B n (M*\M?). But dim (M?/M?) = 2 and so

B n (MA\M?) = {uv, vu} .

Consider the element u? e M?2. Either u?> = uv or u?> = vu or u*e M>.

But u? = (x3+1y3+x,;v,) (1+¢) mod M°>.

Since the (14i4j+k)-coordinate of u? is 0, we have u? # uv, u* # vu.

Hence u? e M3. This implies u? = 0, and it follows that the quadratic
form x? + y? + x,), represents 0 non-trivially in K and w = y,/x; is a
primitive cube root of unity in K.
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