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SOME EXAMPLES OF GROUP ALGEBRAS
WITHOUT FILTRED MULTIPLICATIVE BASIS

by Luis PARIS

Let R be a finite dimensional algebra over a field K. A filtred
multiplicative basis B for R is a K-basis of R such that

MBI1) b,b'eBimpliesb-b'eBorb-b = 0,

MB2) B nrad(R) is a K-basis of rad (R), where rad (R) is the radical
of R.

In [B.-G.-R.-S.], R. Bautista, P. Gabriel, A. V. Roiter and L. Salmereon
prove that if R is of finite representation type, i.e. if there are only finitely
many isomorphism classes of indecomposable R-modules, then R possesses
a filtred multiplicative basis. In their introduction, they state: “It is not known
to us whether general group-algebras do [have filtred multiplicative bases]”.

Of course, it is well known that if K is a field of characteristic p,
then the group algebra KG of the finite group G is of finite representation
type if and only if the p-Sylow subgroups of G are cyclic. (See e.g.
[C.-R.], page 431)

‘However, if G = C, x C,, the direct product of 2 copies of a cyclic
group of order p, generated by a and b, then the set

B={a-1)®b-1)/10<ij<p-—1)}

is a filtred multiplicative basis of KG for any field K of characteristic p,
although the representation type of K[C, x C,] is infinite.

In this note we produce some less obvious examples showing that
the group algebras of p-groups over an algebraically closed field of
characteristic p do not necessarily admit a filtred multiplicative basis.

We also show that for the group of quaternion units Q, of order 8,
and K of characteristic 2, the algebra KQ admits a filtred multiplicative
basis if and only if K contains a primitive 3-rd root of unity.

This note is a condensed version of my “Travail de Dipléme” at the
University of Geneva. I am grateful to Claude Cibils and Michel Kervaire
for valuable suggestions and their encouragements during my work.
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§ 1. PRELIMINARY REMARKS

Note that if R is a finite dimensional K-algebra and B is a filtred
multiplicative basis (as defined above), then B n {rad (R)}" is a K-basis of
{rad (R)}" for all n > 1. Indeed, the set B n {rad (R)}" is linearly free over K
since B is. By hypothesis, B nrad (R) is a K-basis of rad (R) and thus
the set of products b, - ...+ b, with b, € B n rad (R) is a generator system for
{rad (R)}". But all such products b, -..-b, are either 0 or belong to
B n {rad (R)}". Hence, B n {rad (R)}" generates {rad (R)}" over K.

The case of a finite abelian group G is easy to understand:

Let

G, = <a;> X <a,> X .. X <a,>

p
be a decomposition of the p-Sylow subgroup G, of G as a direct product
of cyclic groups of orders p™, .., p™ respectively. Let G = G, x H, where
| H | is prime to p. Then,

B = {(a;—1)™ - (a,—1)" ... (a,— D)™ -h|0<m<n — 1,he H}

is a filtred multiplicative basis of 'KG for any field K of characteristic p.

If we insist that the elements of B outside rad (R) should be orthogonal
idempotents, then we have to require that K be algebraically closed, as
otherwise KH itself need not have a filtred multiplicative basis B satisfying

MB3) Ife, e e B\rad (R), e # ¢, thene®> = eand e- e = 0.

Observe that, more generally, if B, , B, are filtred multiplicative bases for
KG, and KG,, then B; x B, is a filtred multiplicative basis for K[ G, x G,].

In the next paragraphs we will examine examples of p-groups.

If G is a p-group, and K a field of characteristic p, then rad (KG)
is the augmentation ideal

rad (KG) = {), o, 91 ), o, = 0}
geG geG

Note also that in that case, a filtred multiplicative basis B for KG
necessarily contains 1. Indeed, dim, {KG/rad (KG)} = 1. If e € B is the unique
element outside rad (KG), then e? ¢ rad (KG) and therefore e* = e. But KG
is local, thus e = 1. (Alternatively, e = 1 + r with rerad (KG) and
e=¢e" =1+ = 1)

Thus for p-groups, axiom MB3) is automatically satisfied.
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§ 2. EXAMPLES WHERE THE GROUND FIELD IS IRRELEVANT

Let p be a prime number (e.g. p=2), and let n be a natural number,
n > 4.
Consider the group H,(p) defined by generators and relations:

H(p) = <a,b:a” " = 1,b” = 1,ba = a* 7" °b> .

n

The group H,(p) is a finite p-group of order p”".

ProposITION 1. Let K be an arbitrary field of characteristic p. The
group algebra K[H,(p)] does not possess any filtred multiplicative basis.

Remark. In contrast, consider the dihedral group

D2" = <r s = 1,5 = 1,sr = r s> .

Both D(2") and H,(2) are semi-direct products of Z/2""'Z by Z/2Z.
However, a straightforward calculation shows that the set B consisting
of the following elements

1,1 + s,
(r+s)f, (1+s)(r+s* for k=1,.,2"2,
r+s)' (1+s),1+s)(r+s)'(1+s) for [ =1,.,2""2_-1

is a filtred multiplicative basis of K[D(2")] for any field K of characteristic 2.
We proceed to prove Proposition 1. Let M = rad K[H,(p)]. Recall
that a, b are the generators of the defining presentation of H,(p).
LEMMA. Let L, be the set
L= {l-a(1=b*|0<k, <p",0<k,<p and k, +k, = k).

Claim: The classes mod M**' of the elements of L, form a K-basis of
Mk/Mk+1.

Proof. We show first, by induction on k, that the set
{(I—a)'(1=bF10<I< k}

is a system of K-generators of M* mod M**1!.
If g, g € H,(p), the identity

Il —g-9g=(0-g)+(1-9¢)— (1—9g)(1—g)
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implies that {(1—aq),(1—b)} is a system of K-generators of M mod M2
Suppose by induction that

(1—a)' (1B 0 < I < m)

is a K-generator system of M™mod M™% The set of products u; - u,
with u; e M, u, € M™ generates M™*! over K. Thus we have by induction,

u; = oy(1—a) + o,(1—b)mod M?* with a;,a,ekK,

B,1—a)(1—b" 'mod M™*!t with B,eK.

&
[\®]

|
M=

=0

Uy~ Uy = Z (%Bz(l_a)lﬂ (1—=by '+ asz(l_b)(l—a)l(l—b)m_l)

I=0

mod M™*? .
Now,
(1-b)(l1—a) =1—a—b + ba

=1—a— b+ ab — (ab—ba)

= (1—a)(1—b) — (ab—ba) .
But

ab — bae MP""* = M® (recalln=4),

since

ab —ba = ab —a'"?"" b = (1—a)" " ab.
It follows that
(1—b)(1—a) = (1—a)(1—>b) mod M?>
and therefore
1-b(1—-a)'(1-b""'=(0-a'1-b)""""" mod M™*2.

Consequently,

Uy " Uy = i (o, B(1—a)"t 1—=D)""" + 0,B,(1—a)  (1—=b)""'*1) mod M™*?

=0

and the set
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L= {1—a(1=b}10<k <p ', 0<k, <p}

is a system of K-generators of K[H ,(p)].

Since
|L| =p" =[H,p)| = dimg K[H,(p)],
it follows that L is a K-basis of K[ H (p)].
We have just proved that
Ly = {1—a* (1=b10 < ky <p" 1,0 <k, <p,ky + k, =k}

generates M* mod M**1,

We have to prove that L, is linearly free over K. If Y ot = 0 mod M**!

teLx

where o, € K then we can write » ot = Y PBss where Bs € K. Consequently
teLy seUL;
1>k
o, = O for all ¢ in L, because L is a K-basis of K[H,(p)]. |

We now come to the proof that K[H,(p)] has no filtred multiplicative
basis.

We proceed by contradiction. If B were such a basis, consider
{u,v} = Bn {M\M?},

the set of elements of B in M but outside M?2.

{u, v} is a K-basis of M mod M?. Also K[H,(p)] = K[u, v], the algebra
generated over K by u and .
We are going to prove:

Claim: u-v =v-u
This implies that K[ H,(p)] = K[u, v] is commutative: Contradiction.
Proof of the claim. By the lemma,
u = x1—a) + y,(1—>b) mod M?
v = x5(1—a) + y,(1—b)mod M?,

where x;, x5, y;, y, € K and x,y, — x,y, # 0.
Now,

u-v = x;x5(1—a)* + V1y(1—b)* + (X1y,+x,94) (I —a)(1—b) mod M3
v-u = xlxz(l—a)z + J/1Y2(1_b)2 + (xX1y2+x5)4) (1—a) (1—b) mod M?
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since
(1—a)(1—b) = (1—b) (1 —a) mod M>.

We know that (1—a)? (1—5b)% (1—a)(1—0b) forms a K-basis of M?/M?>.
Hence u-v # 0 and v+ u # 0 mod M?>. Otherwise

X1Xy = V1Va = X1Y2 + X¥; = 0

and x;y, — x,y; = 0 contrary to the fact that {u, v} gives a basis of
M/M?.

Thus uv, vu € B satisfy uv = vu mod M> and uv # 0, vu # 0 mod M3.

It follows that uv = vu. In fact more generally, if u,, u, e B\M* and
u; = u, mod M* then u, = u,. Proof: Bn M* is a basis of M* thus

U, — U, = BZ A u. This is possible only if u; — u, = 0.
ueBn Mk

§ 3. THE GROUP OF QUATERNION UNITS

Let Q be defined by generators and relations:
Q = <a b:a* = 1,b%> = a® ab = b%a> .
Seti = a,j=b,k = aband ¢c = a* Then

0 = {L ¢ i, cij, cjk ck} .

PRrROPOSITION 2. Let K be a field of characteristic 2. The group algebra
K[Q] possesses a filtred multiplicative basis if and only if K contains a
primitive cube root of unity.

Proof. If K contains a primitive cube root of unity, say o,

let
B = {1, u, v, uv, vu, u?, v*, u®},
where
u=o+ o} +k
v =i+ o + k.

It is easily verified that B is a filtred multiplicative basis.
Conversely, suppose that K[ Q] possesses a filtred multiplicative basis B.
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Observe that {l+i, 14/} is a K-basis of M/M? where again
M = rad K[Q]. Also {l+4c, 1+i+j+k} is a K-basis of M?/M?. Since
B (M/M?) = {u,t} must be a K-basis of M mod M?, we have

u = x,(14+1) + y;(1+j) mod M?,
r o= x,(1+i) + y,(14j) mod M?,

with x,, vy, X5, v, € K and x,), + x50, # 0.

Now
u-v = (N, F 1yt (140
4 (X1, +x,0) (I+i+j+k) mod M3,
reu = (N X1y X)) (1+0)
+ (xv,+ x50y (L+i4j+k) mod M?.
Therefore,

uer 4+ reou = (x4, (1+c)mod M? # 0 mod M?,

and sou-tv # v-u.
We must have ure B n(M*\M?>) since the (1+i+j+k)-coordinate of
u - v is non-zero. Similarly v - u e B n (M*\M?). But dim (M?/M?) = 2 and so

B n (MA\M?) = {uv, vu} .

Consider the element u? e M?2. Either u?> = uv or u?> = vu or u*e M>.

But u? = (x3+1y3+x,;v,) (1+¢) mod M°>.

Since the (14i4j+k)-coordinate of u? is 0, we have u? # uv, u* # vu.

Hence u? e M3. This implies u? = 0, and it follows that the quadratic
form x? + y? + x,), represents 0 non-trivially in K and w = y,/x; is a
primitive cube root of unity in K.
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