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SOME EXAMPLES OF GROUP ALGEBRAS

WITHOUT FILTRED MULTIPLICATIVE BASIS

by Luis Paris

Let R be a finite dimensional algebra over a field K. A filtred
multiplicative basis B for R is a X-basis of R such that

MB1) b,b' e B implies b • b' e B or b • b' 0,

MB2) B n rad (X) is a X-basis of rad (X), where rad (X) is the radical

of X.

In [B.-G.-R.-S.], R. Bautista, P. Gabriel, A. V. Roiter and L. Salmereon

prove that if X is of finite representation type, i.e. if there are only finitely

many isomorphism classes of indecomposable X-modules, then X possesses

a filtred multiplicative basis. In their introduction, they state : "It is not known
to us whether general group-algebras do [have filtred multiplicative bases] ".

Of course, it is well known that if X is a field of characteristic p,
then the group algebra KG of the finite group G is of finite representation

type if and only if the p-Sylow subgroups of G are cyclic. (See e.g.

[C.-R.], page 431.)

However, if G Cp x Cp, the direct product of 2 copies of a cyclic

group of order p, generated by a and h, then the set

B {(a-\y(b-iy\o^i,j^P- 1}

is a filtred multiplicative basis of KG for any field X of characteristic p,
although the representation type of K\Cp xCp] is infinite.

In this note we produce some less obvious examples showing that
the group algebras of p-groups over an algebraically closed field of
characteristic p do not necessarily admit a filtred multiplicative basis.

We also show that for the group of quaternion units g, of order 8,

and X of characteristic 2, the algebra KQ admits a filtred multiplicative
basis if and only if X contains a primitive 3-rd root of unity.

This note is a condensed version of my "Travail de Diplôme" at the
University of Geneva. I am grateful to Claude Cibils and Michel Kervaire
for valuable suggestions and their encouragements during my work.
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§ 1. Preliminary remarks

Note that if R is a finite dimensional K-algebra and B is a filtred
multiplicative basis (as defined above), then B n {rad (R)}n is a K-basis of
{rad (R)}n for all n ^ 1. Indeed, the set B n {rad (jR)}w is linearly free over K
since B is. By hypothesis, B n rad (K) is a K-basis of rad (K) and thus
the set of products b1 •... • bn with bte B n rad (K) is a generator system for
{rad (R)}n. But all such products bx •... • bn are either 0 or belong to
B n {rad (R)}n. Hence, B n {rad (R)}n generates {rad (R)}n over K.

The case of a finite abelian group G is easy to understand :

Let

Gp <a1> x <a2> x x <ar>

be a decomposition of the p-Sylow subgroup Gp of G as a direct product
of cyclic groups of orders pni,..., pHr respectively. Let G Gp x H, where
I H I is prime to p. Then,

B {(a1-l)wi-(a2-l)m2... (ar-l)m"-/z | 0 ^ - 1, h e H}

is a filtred multiplicative basis of KG for any field K of characteristic p.

If we insist that the elements of B outside rad (R) should be orthogonal
idempotents, then we have to require that K be algebraically closed, as

otherwise KH itself need not have a filtred multiplicative basis B satisfying

MB3) If e, é e £\rad (R), e / e\ then e2 c and e » e7 0.

Observe that, more generally, if Bl,B1 are filtred multiplicative bases for
KG1 and KG2, then x B2 is a filtred multiplicative basis for K[G! x G2].

In the next paragraphs we will examine examples of p-groups.
If G is a p-group, and K a field of characteristic p, then rad (KG)

is the augmentation ideal

rad (KG) oc9 g{£a, 0}
geG gsG

Note also that in that case, a filtred multiplicative basis B for KG
necessarily contains 1. Indeed, dimfc {KG/rad (KG)} 1. If e e B is the unique
element outside rad (KG), then e2 $ rad (KG) and therefore e2 e. But KG
is local, thus e 1. (Alternatively, e 1 + r with r e rad (KG) and

e epN 1 + H7" L)
Thus for p-groups, axiom MB3) is automatically satisfied.
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§ 2. Examples where the ground field is irrelevant

Let p be a prime number (e.g. p 2), and let n be a natural number,

n ^ 4.

Consider the group Hn(p) defined by generators and relations :

Hn{p) <a,b: ap" '1

1, bp1 a1+p"~2b>

The group Hn(p) is a finite p-group of order pn.

Proposition 1. Let K be an arbitrary field of characteristic p. The

group algebra K\_Hn(p)] does not possess any filtred multiplicative basis.

Remark. In contrast, consider the dihedral group

D(2") <r,s:r2" 1

1, s2 1, sr r~1s>

Both D(2") and Hn(2) are semi-direct products of Z/2"-1Z by Z/2Z.
However, a straightforward calculation shows that the set B consisting

of the following elements

1, 1 + s,

{r + s)k, (1-j-s) (r-bsf for k 1,...,2"~2,

(r + s)1 (1 + s), (1 + s) (r + s)/(1 + s) for 1= 1, 2"-2 - 1

is a filtred multiplicative basis of K[D(2")] for any field K of characteristic 2.

We proceed to prove Proposition 1. Let M rad K[Hn(jp)~]. Recall
that a, b are the generators of the defining presentation of Hn(p).

Lemma. Let Lk be the set

Lk {(1 — a)fcl (1 — bf21 0 ^ k1 < p"_1, 0 ^ k2 < p and k1 + k2 k)

Claim: The classes mod Mk+1 of the elements of Lk form a K-basis of
Mk/Mk + 1.

Proof. We show first, by induction on /c, that the set

{(l-a)l(l-b)k~l\0 ^l^k}
is a system of K-generators of Mk mod Mk + 1.

If g, g' e Hn(p), the identity

1 - g g' (î-g) +(1 - (l-g)(l
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implies that {(1 — a), (1 — 6)} is a system of K-generators of M mod M2.

Suppose by induction that

{(l-a)l(l-b)m~l I 0 ^m}
is a K-generator system of MmrnodMm + 1. The set of products u1-u2
with u1 e M, u2e Mm generates Mm+1 over K. Thus we have by induction,

u1 oc1(l — a) + a2(l-è) mod M2 with oc1, a2 e K
m

«2 Z fitil-a)1 mod Mm+1with ß, e
1 0

Hence

m

«1 -«2 £ (aißi(l — fl)'+1 (1 — h)m_i + a2ß,(l —b) (1 — a)' (1 — h)m~')
1 0

mod Mm + 2

Now,

(1-6) (1-a) - 1 - a - b + 6a

I — a — b + ab — (ab —ba)

(1 — a) (1 — b) — (ab — ba).

But

ab — bae Mpn~2 c M 3 (recall n^4),

since

a6 — ba — ab — a1+pn~2 b (1 — a)pn~2 ab

It follows that

(1 — 6) (1 —a) (1 — a) (1 — 6) mod M3

and therefore

(1 — 6) (1 —a)* (1 —6)m_i « (1 — a)z (1 — 6)m_i + 1 mod Mm+2

Consequently,

m

Ui-m2 £ (a1ßz(l-fl)l + 1(l-6)w-1 + a2ßz(l —a)1 (1 — 6)m_* + 1) mod Mm+2
1 0

and the set
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L {(l — a)ki (1 -b)k2 jO ^ k1 < p"'1 0 ^ k2 < p}

is a system of K-generators of K[Hn(p)~].

Since

I LI fI Hn(p) I dimx K[Hn(p)^

it follows that L is a K-basis of K[Hn(p)].

We have just proved that

Lk {(1 — afl (1 — bf2 I 0 ^ k1 <pn~1, 0 < k2 < p, k1 + k2 k}

generates Mk mod Mk+1.

We have to prove that Lk is linearly free over K. If £ octt 0 mod Mk + 1

teLk
where ate K then we can write £ att £ ß5s where ß5 e K. Consequently

teLk seULi
l>k

0Lt 0 for all t in Lk because L is a K-basis of K[Hn(p)~].

We now come to the proof that K[Hn(p)] has no filtred multiplicative
basis.

We proceed by contradiction. If B were such a basis, consider

{u, f} B n {M\M2}

the set of elements of B in M but outside M2.

{u, v) is a K-basis of M mod M2. Also K[Hn(p)] K[u, v], the algebra
generated over K by u and v.

We are going to prove :

Claim : u • v v • u

This implies that K[H„(p)l K[u, v] is commutative: Contradiction.

Proof of the claim. By the lemma,

u —- Xi(l — a) + yfl — b)modM2

v x2(l — a) + j/2(l — b) mod M2

where x1, x2, yl9 y2 e K and xty2 — x2yt ^ 0.

Now,

u-v x1x2(l — a)2+ + (1 -a) (1 mod M3

v • u Xj^x^l—a)2 + yiy2(l—b)2 + (I—a) (1 mod M3
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since

(l — a)(l—b) mod M3

We know that (1 — a)2, (1 — b)2, (1 — a) (1 — b) forms a X-basis of M2/M3.
Hence u • v / 0 and v • u ^ 0 mod M3. Otherwise

*1*2 j>lJ>2 *1^2 + *2.Vl 0

and xly2 — x2y1 0 contrary to the fact that {u, v} gives a basis of
M/M2.

Thus uv, vu e B satisfy uv vu mod M3 and uv ^ 0, vu ^ 0 mod M3.

It follows that uv vu. In fact more generally, if ux,u2e B\Mk and

u1 u2 mod Mfe then ux u2. Proof: B n Mk is a basis of Mk, thus

ul — u2 £ This is possible only if u1 — u2 0.
ueBnMk

§ 3. The group of quaternion units

Let Q be defined by generators and relations :

Q <a, b: a4 1 ,b2 a2, ab b3a>

Set i a, j b, k ab and c a2. Then

Q{1, c, i, ccj, k, ck}

Proposition 2. Let K be a field of characteristic 2. The group algebra
KLQ] possesses a filtred multiplicative basis if and only if K contains a

primitive cube root of unity.

Proof. If K contains a primitive cube root of unity, say co,

let

B {1 ,u,v, uv, vu, u2, v2, u3}

where

u m + co2/ + k

v — co2/ + co/ + k.

It is easily verified that B is a filtred multiplicative basis.

Conversely, suppose that K[Q~] possesses a filtred multiplicative basis B.
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Observe that {1 +1,1+7} is a X-basis of M/M2, where again

M rad X[Q]. Also {1 + c, 1 +i+j+k}isa X-basis of M2/M3. Since

B n (M/M2) {u,i'} must be a X-basis of M mod M2, we have

u .\+(l + 0 + Vi(l +7) mod M2

v -X2( 1 + 0 + v2(l +7) mod M2

with a+ fi, ,x2, y2 e X and A+v2 + .v2Vj # 0.

Now

u • v (a*ix2 + 3' 1 y2 + a'23'i) (1 + c)

+ (x 1i'2 + a'2)'i) (1 + i +j + mod M 3

v • u (A' 1 a*2 + 3'i3 2 ~i~ A"ij'^) (1 + c)

+ (Xi.va + .v2yi) (1 +?+./' +/c) mod M3.

Therefore,

w v + v - u (xiju + AAj-i) (1 + c) mod M3 + 0 mod M3

and so w • r + r • u.

We must have uv g B n (M2\M3) since the (1 + 7+y+ /c)-coordinate of
u • r is non-zero. Similarly r • u e B n (M2\M3). But dim (M2/M3) 2 and so

B n (M2\M3) {ur, l?w}

Consider the element u2 g M2. Either it2 uv or u2 vu or w2 g M3.

But ir — (x2 + y? + A'i+iKl + c) mod M3.

Since the (1+ /+;' +/c)-coordinate of u2 is 0, we have u2 + uv, u2 + um.

Hence u2 e M3. This implies ir 0, and it follows that the quadratic
form x2 + 3+ + A-jq represents 0 non-trivially in K and w yi/x1 is a

primitive cube root of unity in K.
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