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Let C and C, be two simple closed curves on F representing respectively
the classes C and C,, in such a way that C and C, are in a position of
minimum-intersection number.

Consider a neighborhood of the union of C and C,; obtained by taking
the union of a thin tubular neighborhood of each of these curves, and let
C, denote the collection of those boundary curves of this neighborhood which
are not null-homotopic.

Suppose first of all that C, is not empty. Then we have 5,(C,) = C,
and s,(C,) = C,. (To see this, one can represent s; (respectively s,) by an
isometry of some hyperbolic metric, and then consider the geodesics g and
g, in the classes of C and C,. The isometry preserves the geodesics union
g U g, and therefore it preserves an imbedded e-neighborhood of that subset,
and the boundary of the neighborhood). In this case, s; and s, have a
common fixed point in PMF.

Suppose now that C, is empty. We have s; o 5,(C) = C and s, © 5,(C;)
= C,, and C and C, have the property that for any element F in MEF,
we have either i(F, C) # 0 or i(F, C;) # 0.

By assumption, s, o s, is reducible. Let n be an integer s.t. the map
(s{ s,)" preserves each component of the surface F cut along the reducing
curve.

The mapping class (s, o s,)" cannot have any pseudo-Anosov component,
since if 1t had one, and if F" denotes the class of the unstable foliation
of that component, we have either i(F", C) # 0 or i(F", C,;) # 0. By the
dynamics of a pseudo-Anosov (component) map on measured foliations space,
the two classes of curves cannot be fixed by s, cs,. Therefore, s; s,
cannot have pseudo-Anosov components.

So (s; o s,)" has only finite order components.

By the same argument, (s; o s,)" cannot have a non-trivial Dehn twist
along a component of its reducing curve.

Therefore, s, o s, has only periodic components with no non-trivial Dehn
twists along the reducing curve, so it is globally periodic, i.e. of finite order,
a contradiction.

We conclude that s, o s, is pseudo-Anosov. This proves theorem 2.

5. REMARKS AND EXAMPLES

1. We can easily classify now the structure of the group generated by two
involutions:
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Given the two involutions s; and s, of M(F), the subgroup G they
generate 1s an order-2 extension of the cyclic subgroup generated by
S; o S,. The elements of G that are not in that subgroup are all conjugate
to s; or s,. If s; and s, have a common fixed point in T, the subgroup
that they generate is finite. Otherwise, it is isomorphic to the infinite
dihedral group Z, * Z,.

2. In closing, we wish to point out that all three cases of Theorem 2
do in fact occur in every genus: To see that s, s, can be of finite order
we can take s; to be an horizontal rotation as in figure 2 and s, to be a vertical
rotation as in figure 3. Since these rotations commute, s, © s, is an involution.
(This example obviously generalizes to genus greater than two.)

To see that s, os, can be reducible of infinite order, we can take s,
to be a vertical rotation as in figure 3 and let 5, = s, 0, ot, }. Now s,
1s an involution by equation (1):

(17) (52)> = syotyotytosjotyotyt = tyotytotyot, b = 1.

Moreover, s; o5, = t; ot, ' — 1 which is a reducible map of infinite order.
(Again, this example obviously generalizes to higher genera.)

To see that s; os, can be pseudo-Anosov we can make a similar
construction. Let s; be an involution. Suppose that A is a family of disjoint
nontrivial simple closed curves. Let B = s,(4). Now suppose that 4 and B
fill up F. Let t, be the product of the Dehn twists about the components
of A and ty be the corresponding product associated to B. Let s, = s,
ot,otgt. As in the reducible case just described, s, is an involution.
Furthermore, s; 0S5, = t,otg', which is a pseudo-Anosov map by an
algorithm of Long’s [6] generalizing Thurston’s algorithm described in [4].
An example of this construction of case (iii) of Theorem 2 is depicted in
figure 11, where s; is again the vertical rotation. (Again, this example easily
generalizes.)

Alternatively, one can give a nonconstructive argument as follows. Let s;

be a vertical rotation as in figure 3. Since s{(a;) = b, we know that s,
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B={b ,b ,b }
1 2 3

FIGURE 11.

is not in Fix(s;). On the other hand, Fix(s;) is clearly a closed set.
Hence, we may find an open neighborhood of a; in T U PMF, U, such that U
avoids Fix(s;). Now, we may find a pseudo-Anosov, f, both of whose fixed
points lie in U. (For example, this can be acheived by conjugating any
given pseudo-Anosov by a sufficiently high power of ¢, .) Since Fix(s,)
is a compact set which avoids the repelling fixed point of f, it follows from
the well known behavior of pseudo-Anosov maps on T u PMF that
f"(Fix(s,)) is contained in U for sufficiently large n. Choose n subject to this
condition and let s, = f"os, o f~" Finally, since Fix(s,) is equal to
f(Fix(s, )), it follows from Theorem 2 that s, o s, is pseudo-Anosov.
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