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286 J. MCCARTHY AND A. PAPADOPOULOS

4. PRODUCTS OF INVOLUTIONS

Let s; and s, be two involutions. We are interested in the type of the
element s; os,. This type will be seen to depend upon the intersection of
the two sets Fix(s;) and Fix(s,), where Fix(s;) denotes the fixed point set of
s; in the closed ball T U PMF.

THEOREM 2.

(1) s, o5, is of finite order if and only if Fix(s;) and Fix(s,) have a
common point in T.

(i) Suppose that s, s, is not of finite order. If Fix(s;) n Fix(s,) # @,
then s, o5, is reducible.

(i11) s; oS, is pseudo-Anosov if and only if Fix(s,) and Fix(s,) have
empty intersection.

Proof. (1) If s; and s, have a common fixed point in T, then s; o5,
also fixes this point and is therefore of finite order (cf. [4]).

For the converse, suppose that s;os, 1s of finite order. Then by
([2], remarque p. 67), there is a point m in Teichmiiller space such that m
is fixed by s; ¢ s,.

The mapping classes s; and s, being involutions, we have s,(m) = s,(m).

Now Teichmiiller space has a metric, the Teichmiiller metric (cf. [1]),
for which the mapping class group acts by isometries. By Teichmiiller’s
theorem, any two points in T can be joined by a unique geodesic. Each of
the mapping classes s; and s, interchanges the points m and s,(m). Therefore,
s; and s, fix the point which i1s at equal distance from m and s,(m),
on the Teichmiiller geodesic joining these points.

(11) Let F be a common fixed point of s; and s, in PMF. There exist
two positive real numbers x; and x, such that if f is an element of MF
in the class F, then s,(f) = x;. f and s,(f) = x,. f.

As s, and s, are of finite order, we have x; and x, = 1,50 s; © $,(f) = f.
By ([2], exposé¢ 9, §III et IV), either s, os, is of finite order or it is
reducible.

(ii1) Suppose that Fix(s;) n Fix(s,) is empty. By (i), s; ¢ s, is not of finite
order. Suppose that it is reducible, and let C be the element of MF
corresponding to the class of the reducing curve. We have s,(C) = s,(C).
Let C, denote the equivalence class s;(C).
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Let C and C, be two simple closed curves on F representing respectively
the classes C and C,, in such a way that C and C, are in a position of
minimum-intersection number.

Consider a neighborhood of the union of C and C,; obtained by taking
the union of a thin tubular neighborhood of each of these curves, and let
C, denote the collection of those boundary curves of this neighborhood which
are not null-homotopic.

Suppose first of all that C, is not empty. Then we have 5,(C,) = C,
and s,(C,) = C,. (To see this, one can represent s; (respectively s,) by an
isometry of some hyperbolic metric, and then consider the geodesics g and
g, in the classes of C and C,. The isometry preserves the geodesics union
g U g, and therefore it preserves an imbedded e-neighborhood of that subset,
and the boundary of the neighborhood). In this case, s; and s, have a
common fixed point in PMF.

Suppose now that C, is empty. We have s; o 5,(C) = C and s, © 5,(C;)
= C,, and C and C, have the property that for any element F in MEF,
we have either i(F, C) # 0 or i(F, C;) # 0.

By assumption, s, o s, is reducible. Let n be an integer s.t. the map
(s{ s,)" preserves each component of the surface F cut along the reducing
curve.

The mapping class (s, o s,)" cannot have any pseudo-Anosov component,
since if 1t had one, and if F" denotes the class of the unstable foliation
of that component, we have either i(F", C) # 0 or i(F", C,;) # 0. By the
dynamics of a pseudo-Anosov (component) map on measured foliations space,
the two classes of curves cannot be fixed by s, cs,. Therefore, s; s,
cannot have pseudo-Anosov components.

So (s; o s,)" has only finite order components.

By the same argument, (s; o s,)" cannot have a non-trivial Dehn twist
along a component of its reducing curve.

Therefore, s, o s, has only periodic components with no non-trivial Dehn
twists along the reducing curve, so it is globally periodic, i.e. of finite order,
a contradiction.

We conclude that s, o s, is pseudo-Anosov. This proves theorem 2.

5. REMARKS AND EXAMPLES

1. We can easily classify now the structure of the group generated by two
involutions:
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