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Tout k-uplet curviligne dans Zo, de support un point de la courbe double T
de S', est limite (pour k>=3) de k-uplets double dans X,.

ii) Tout k-uplet curviligne dans X, est limite de k-uplets curvilignes dans des
fibres X, de X/C avec M\ # Q.

iii) Hilb® £, est réduit au voisinage d’un triplet curviligne t de support un

' point-triple {M}, lorsque t & S = (Zg)ea = Zo N H.

Hilb? ¥, est réduit au voisinage d'un doublet d de support un point-
pince {P}, lorsque d & §'.

Hilb? X, est réduit au voisinage d'un doublet d de support un point

- de I', lorsque d & S

Preuves des propositions 3 et 4. 1l s’agit essentiellement, par des calculs
en coordonnées, de se ramener a I’¢tude de modeles locaux pour X,
d’abord au voisinage de la courbe double I', puis d’'un point triple M et
enfin d’'un point pince. Or cette étude pour les modeles locaux a été faite
dans [24]. Voir I’Annexe 3 pour tous les détails de calcul.

II) TRISECANTES DANS P*: LA THEORIE

Soit S une surface de P* a singularités ordinaires. Notons n son degré,
d le degré de la courbe double apparente et t le nombre de points-
triples apparents, dans une projection générique sur un P>.

On regarde le diagramme, ou les fleches sont les injections canoniques
et les dimensions sont entre parentheéses:

9  ABPP* & HiIBEP* (1)
J
Hilb3S  (6).

Le but de ce § II est de montrer la

PROPOSITION 5. Soit S une surface de P* dinvariants (n,d, 1).

Pour tout cycle Z dans AAI* P*), la formule trisécante donnant le degré
du O-cycle Z.i* [Hilb? ST est de la forme
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T(S) = an + a, <Z> + a; <z> + ot + dPn+7)

ou ay,a,,a3,% B et <y sont des constantes ne dépendant que de Z.

1°) CompPosaNTES DE Hilb? X,

a) Notons S’ la projection de S sur un P*® générique de P* S admet une
courbe double I'" avec t points-triples M, ... M, et v points-pince. En 1.3.b on
a construit un schéma relatif X/C avec X, = S et (£),qa = 5. De plus
(proposition 3), on a

(*) So=SuIMuoMPuU.uM?

ou V9 désigne le i-éme voisinage infinitésimal de V dans P*; on a
S, AP = §.

Nous allons détailler les différentes composantes du schéma (Hilb> Z),eq -

Notation 1. Notons S,; la sous-variété (localement fermée) de Hilb? P*
formée des triplets t = d U m ou

d est un doublet de P* de support un point de T,

m est un point de S — I

Soit S,, 'adhérence de S,, dans Hilb? P*.
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Notons S4 pour j = 1,2..¢ la sous-varieté de Hilb2 P* des triplets
curvilignes £ de P*, de support {M,}. Soit S; leur reéunion (disjointe).

Remarque 5. Bien sir, §2—1 et S; sont contenus dans (Hilb? Z0);eq
d’aprés la structure nilpotente méme de X, (*).

b) On ala
PROPOSITION 6.

i) (Hilb2 Xg),q estréunionde (Hilb? )4, de S,y etdes Sh(j=1,2..1).

ii) Hilb? X, est génériquement réduit le long de ces composantes.

Preuve. i) Soit t un triplet curviligne contenu dans X,. Si ¢ est contenu
dans I'hyperplan P3, comme I, n P?> = §', on a t € (Hilb? §'),.q. Si t & P>,
le support de t ne peut étre formé de trois points simples, puisque (Xp)eq = §
et ' < P3. Donc Suppt rencontre I', car en dehors de I', les faisceaux
structuraux de S’ et £, sont égaux.

Premier cas. Suppt = {a,b} avec aeI et t double en a. Si b¢Tl,
par définition, on a teS,;. Si bel, on le «bouge» en b'eS§ — I et

donc t appartient a 5—21

Deuxiéme cas. Suppt = {a} ouae!l. Sia est'un des points-triples M,
on a teS;. Si a n’est pas I'un des points M;, c’est soit un point-pince
soit un point générique de I'. Dans les deux cas, ¢ est limite de triplets
de support formé de deux points: en effet cela résulte de la proposition 4.

ii) La composante Hilb? S est génériquement réduite d’aprés les lemmes 10
et 11 de 'Annexe 2 puisque S’ = P> n’a que des singularités ordinaires.
Par ailleurs S% est génériquement réduite d’aprés la proposition 4 iii): un
triplet générique de S4 n’est pas dans H. Enfin, montrons que S,, (donc S—21)
est génériquement réduit. Soit d U m un triplet générique de S,,; ainsi le
support de d n’est pas un point triple et d ¢ H. Alors Hilb? £, est réduit
au voisinage de d par la proposition 4 iii); d’ou §,,; réduit au voisinage de
dum.

2°) CONTRIBUTION DE CES COMPOSANTES DANS T/(S)

Soit Z € A*(AI° P*) un cycle fixé. Nous allons montrer trois lemmes,
avec les notations précédentes.

LEMME 3. Le degré du O-cycle Z.i* [Hilb3 S est de la forme
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n n
an + a, (2> + aj (3)

ou ai,a, et as ne dépendent que de Z.

LEMME 4. Le degré du O-cycle Z.i*[S;] est de la forme ot ou
o ne dépend que de Z. (S, désigne la réunion disjointe des S4 pour
j=1L2.t)

LEMME 5. Le degré du O-cycle Z.i* [_.SZ] est de la forme d(Pn+v)
ou B et y ne dépendent que de Z.

a) Prouvons le lemme 3. Regardons le diagramme commutatif ou les fléches
sont les injections canoniques et les dimensions entre parentheéses:

i

9  APP* & HIRPY (12
J”L Lu

i
l

(7)  APBP3 & HiIb3IPP  (9)

L

Hilb3 S (6).

Nous voyons par examen des dimensions que Al® P* et Hilb? P? ne se coupent
pas proprement dans Hilb? P*.

Nous aurons besoin du théoréme de lintersection résiduelle [7] [17]
sous forme de la formule de Fulton-MacPherson [6], quon énoncera ainsi:

THEOREME (Fulton-MacPherson). Soit Y une sous-variété non-singuliére
de la variété nomn-singulicre X. Soit A wune sous-variété de X et
I = AnY. Considérons le diagramme commutatif ou les fleches sont les
injections canoniques:
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Si I est localement intersection compléte dans A et si
dm] =dmA+dmY —dmX +r,

alors pour tout cycle o dans Y, le cycle i*u,o dans A est égal a
jo(C,.T*0) ou C, est fixé dans AT(D).

| L’Annexe 7 montre que AI° P* et Hilb? P* se coupent schématiquement
' en AI®P3. Appliquons alors la formule de Fulton-MacPherson a
o = [Hilb? §'] dans 4'(Hilb? P3). Comme ici r = 1, on obtient

ifuyo = i* [Hilb? 7 = j,C

ou C = C,.* [Hilb? §'] avec C, fixé dans A'(AI° P°). Par suite, par la
formule des projections, on a dans A'(AI°> P%):

Z % [Hilb? §] = Z.j,C = j(j*Z.C,.i* [Hilb? §7).
Mais K = j*Z.C, appartient a A*(AI® P?) et donc par la proposition 2:
deg Z.i* [Hilb? '] = deg K.i™* [Hilb] S']

n n
an + a, (2) + a; (3)

ou a,, a, et a; sont des constantes. Le lemme 3 est donc prouve.

est de la forme

b) Prouvons le lemme 4. Pour cela nous avons besoin d’un lemme auxiliaire:

LEMME 6. Désignons par I/ Tintersection ensembliste de S% (défini
dans ce paragraphe en 1.a) et de AI® P* dans Hilb] P*.

Alors génériquement, S% et AP P* se coupent transversalement ; par suite
i* [S4] = [I'].

Remarquer que I’ est isomorphe & P> par le choix de I'axe du triplet
passant par M;.

Preuve du lemme 6. C’est un simple calcul en coordonnées, comme on en
fera beaucoup dans '’Annexe: soit &, un triplet aligné de support {M;},
d’axe transverse a P> (Uhyperplan qui contient S'). Dans un systéme inho-
mogene de coordonnées (x,y,z u) centré en M;, S’ a pour équations

xyz+ ..=0, u=0

et Axe &, est engendré par un vecteur de coordonnées (o, B, v, 8). Puisque
£, est supposé générique dans I/, on se raméne 4 a = B =y =& = 1
et I'idéal de &, est alors
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Iy = (X%, y—x,z—x, u—x).
Une carte de Hilb? P* en £, est donnée par
(a,b,c,a.,b,,¢c,,a,,b,,C5,0a5,bs3,C3)
correspondant a I'idéal voisin:

I = (x*+ax*+bx+c, y—x+a;x*+bx+cy, z—x+a,x*+byx+c,,
U—x+asx*+byx+cy).
Dans cette carte, AI° P* s’exprime par a, = a, = a; = 0 et S4 par

— d’une part ¢; = ¢, = ¢z = 0 car la courbe sur laquelle est le triplet
curviligne doit passer par 0,

— d’autre part a = b = ¢ = 0 car le support doit étre {0}. Cela termine
la démonstration du lemme 6.

Nous aurons besoin de rappeler la proposition suivante (montrée en [25]).
C’est une conséquence facile du théoreme de Leray-Hirsch, car

Axe: AIF PY — G(1, N)
est une fibration de fibre type P*.

ProPOSITION 7. Soit i un entier et Hy,H,..#; des hyperplans
de PY en position générale. Pour k =i, soit H;, la sous-variété de
AFPY formée des k-uplets alignés & avec & #,# @ pour 1 <p<i

Alors on a Pégalité dans Ay (Al* PY) des sous-espaces vectoriels

A(AFPY) et '690 Axe*A5’(G).[H]] .
i=

(On note Ay = A’ ® et G = G(I, N))

Dans le cas qui nous occupe (k=3); on a donc en fixant 5#,, #,, #5
trois hyperplans de P* en position générale, ’égalité:
AYAP PH
= Axe*43(G) @ Axe*A(G).[H,] ® Axe*44(G).[H,] ® Q[H;] .
Or il est bien connu par la décomposition de Schubert (voir par exemple [21])
que A(G(1, 4)) est donné par:
— A%G) = Z(0,4) & Z(1, 3) ou

-
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(0, 4) = droites passant par un point fixe 0 de P4,
{ (1, 3) = droites contenues dans un hyperplan H' de P* et coupant
une droite A’ de H'.
— A*G) = Z(1,4) & Z(2,3) ou
{ (1,4) = droites coupant une droite A” de P*,

(2, 3) = droites contenues dans un hyperplan H” de P4

_ AYG) = Z(2, 4) ot
(2, 4) = droites coupant un plan fixe © de P*.

Pour montrer 'assertion du lemme 4, il suffit de la montrer pour Z
décrivant une base de A3(41® P*). Mais on a (lemme 6) Z.i* [S4] = Z.[I].
Or dans la base énumérée ci-dessus de A(AI® P*), seul le premier cycle
Axe*(0, 4) a une intersection non vide avec [’. En effet,

[ Axe*(1,3).[I'] = 0 car M;¢ H'
Axe*(1,4).[H,].[IF] = 0 car M, ¢ #,

| Axe*(2,3).[H,].[] = 0 car M, ¢ #,
Axe*(2, 4).[H,].[I'] = 0 car M, ¢ #,
[H5].[I'] =0 car M;¢ H .

Notons alors o le degré d’intersection Axe*(0,4).[I’]. (On peut se
convaincre que c’est 1 par un calcul en coordonnées, mais c’est inutile pour
la suite). Cela correspond & l'unique triplet aligné &, dans P* de support

{M;} et daxe OM;. On a donc degAxe*0,4).i*[S{] =oa dou
t
deg Axe*(0, 4).i* [S3] = ot puisque [S3] = Y, [S4].

j=1
L’assertion du lemme 4 est prouvée pour Z décrivant une base de

A3(ADP P*), donc le lemme 4 est démontré.

¢) Prouvons le lemme 5. Nous aurons besoin comme en b), d’'un lemme
auxiliaire:

LEMME 7. Désignons par 1 lintersection ensembliste de 5—2: (défini ]
dans ce paragraphe en l.a)) et de AP P* dans Hilb> P*. Alors géné-
riqguement, S,; et AP’ P* se coupent transversalement; par suite i* [S,,]
= [I] dans A'(AI® P%).

La preuve du lemme 7 est un calcul en coordonnées comme le lemme 6:
voir I’Annexe 4.
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D’apres ce lemme, pour prouver le lemme 5, il suffit de montrer que pour
tout cycle Z dans A°(A°® P*), le degré du O-cycle Z.[I] est de la forme
dBn+v) ou P et y ne dépendent que de Z. Il suffit donc de le vérifier
pour Z décrivant une base de A AI® P*). Or une telle base a été explicitée
en b), comme conséquence de la proposition 7. On utilise donc les mémes
notations qu’en b). |

Il s’agit de voir que les degrés des O-cycles
[ 1) Axe*(0,4).[[1]
i) Axe*(1, 3).[[]
(iii) Axe*(1,4).[H,].[I]
iv) Axe*(2,3).[H,].[[I]
\ v) Axe*(2,4).[H,].[I]
vi) [Hs].[1]

vérifient I'assertion du lemme 5.

Montrons-le rapidement cas par cas, toujours avec les notations de b).
L’hyperplan de P* contenant la projection S’ est noté P>,

i) Les axes des triplets éléments de I sont dans P>, donc ne peuvent ren-
contrer un point fixe O de P* Le premier des degrés cherchés est donc O.

ii) Les axes des triplets de I sont dans le plan H n P? de P> et passent
par le point fixe A’ n P? de ce plan. Donc il y a d possibilités pour le choix
d’un point-double et il reste n — 2 autres possibilités pour le point simple.
Dans ce cas le degré cherché est d(n—?2).

On ne tient pas compte d’une multiplicité éventuelle, car cela ne change rien
a Iénoncé du lemme.

iii) Soit 0 = A"nP?>et P = #, n P> (ou #, est Phyperplan qui définit
le cycle H,). Les axes des triplets de I doivent passer par O et les triplets
avoir un point au moins sur P. Deux cas a distinguer:

— ou le point simple est sur P n S’ et le point-double a son support
sur I'. I y a donc nd choix possibles puisque deg I' = d;

— ou le point-double a pour support 'un des d points de PN T et il
reste n — 2 autres possibilités pour le point simple. (En plus, dans ce cas
la multiplicité est 2).

La somme est bien de toute fagon de la forme d(Bn+ 7).
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SI

Dans I'un comme Pautre cas de figure ci-dessus, les petits traits représentent
les doublets dans P*, de support T

iv) Soit P = H' nP3et P, = #,; n P> Les triplets doivent donc étre dans
P et avoir au moins un point sur la droite A = Pn P,. Il y a donc
n possibilités pour le point simple, d’ou dn possibilités pour le choix d’un
tel triplet.

v) Les axes des triplets de I doivent couper la droite fixe A = n n P3
et les triplets doivent avoir deux points sur #; et #,. Soit P; = #; n P>
Comme les triplets de I ne sont pas formés de trois points distincts, le
support {0} du point-double doit &tre ou sur P; ou sur P,. Supposons
qu’il soit sur P;; comme le degré de I' est d, cela donne d possibilités
de choix pour O. Mais alors la droite A et le point O engendrent un plan P.
La droite P n P, coupe S’ en n points dans P parmi lesquels est choisi le
troisieme point du triplet; donc il y a dn solutions et par symétrie entre
P, et P,, 2dn au total.

vi) Soit P, = #; n P3. Les triplets de I doivent avoir un point sur chacun
des trois plans P;, P,, P;; mais comme ces triplets ne sont pas simples,
la partie doublet est obligatoirement a support sur une des droites P; N P;.
Or aucune de ces droites ne coupe I'; 'intersection est donc O.

Le lemme 5 est ainsi démontré.
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d) Conclusion

Soit S une surface de P* & singularités ordinaires et £/C le schéma
relatif associé défini en 1.3.b. Posons U = C et U = C*. Nous allons voir
que les hypotheses de la proposition 1 sont satisfaites pour le schéma relatif
¥/C. :

Pour a), cela résulte de la proposition 4ii). Pour b), cela résulte de la
proposition 6 ii), chaque composante de Hilb® T, étant génériquement réduite.
Enfin le schéma X/C* est isomorphe au produit S x C* par construction méme
(remarque 3). Donc par la remarque 1, £/C* est k-plat, puisque S = P*
n’a que des singularités ordinaires. L’hypotheése c¢) de la proposition 1
est donc satisfaite.

La proposition 1 donne alors I’équivalence rationnelle dans Hilb? P*:
[Hilb? ST ~ [Hilb} Z,].
Or par la proposition 6 i), on a I’égalité des cycles:
[Hilb? £,] = [Hilb? 877 + [S;,] + [Ss].
D’ou pour n’importe quel cycle Z de A3(AI® P%), Dégalité des O-cycles:
Z.i* [Hilb? §] = Z.i* [Hilb? §7 + Z.i* [S,1] + Z.i* [S5].

Des lemmes 3, 4 et 5 résulte alors aussitot la proposition 5 que 'on cherchait
a prouver.

III) TRISECANTES DANS P#: LES CALCULS

Soit S une surface de P* d’invariants n, d, ¢t (notations du § II). On va
donner deux formules trisécantes pour S, supposée a singularités ordinaires
dans P*.

1°) TANGENTES A S RECOUPANT S ET UNE DROITE FIXEE.
Nous cherchons le degré du O-cycle
[2] . Axe*o, . i* [Hilb2 S]

ou comme d’habitude, i: A® P* ¢ Hilb? P* est I'injection canonique. Ici,
9 < AP P* est I'hypersurface des triplets alignés non simples et o, = (1, 4)
est le cycle de A%*(G(1,4)) des droites de P* coupant une droite fixe A,
D’aprés la proposition 5, ce nombre est de la forme
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