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Tout k-uplet curviligne dans Z0, de support un point de la courbe double T

de S', est limite (pour k^3) de k-uplets double dans E0 •

ii) Tout k-uplet curviligne dans Z0 est limite de k-uplets curvilignes dans des

fibres de L/C avec X # 0.

iii) Hilb3 Z0 est réduit au voisinage d'un triplet curviligne t de support un

point-triple {M}, lorsque t fi S' (£0)red n H.

Hilb2 Z0 est réduit au voisinage d'un doublet d de support un point-

pince {P}, lorsque d fi S'.

Hilb2 Z0 est réduit au voisinage d'un doublet d de support un point
de T, lorsque d fi S'.

Preuves des propositions 3 et 4. Il s'agit essentiellement, par des calculs

en coordonnées, de se ramener à l'étude de modèles locaux pour £0,
d'abord au voisinage de la courbe double T, puis d'un point triple M et

enfin d'un point pince. Or cette étude pour les modèles locaux a été faite
dans [24]. Voir l'Annexe 3 pour tous les détails de calcul.

II) Trisécantes dans P4: la théorie

Soit S une surface de P4 à singularités ordinaires. Notons n son degré,
d le degré de la courbe double apparente et t le nombre de points-
triples apparents, dans une projection générique sur un P3.

On regarde le diagramme, où les flèches sont les injections canoniques
et les dimensions sont entre parenthèses :

(9) Al3 P4 cfi Hilb3 P4 (12)

d

Hilb3 5 (6).

Le but de ce § II est de montrer la

Proposition 5. Soit S une surface de P4, d'invariants (;n,d,t).
Pour tout cycle Z dans A3(Al3 P4), la formule trisécante donnant le degré
du 0-cycle Z.i* [Hilb3 5] est de la forme
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T(S) axn + a2 + a3 + at + d(ßn + y)

où al9 a2, a3, a, ß et y sont des constantes ne dépendant que de Z.

1°) Composantes de Hilbc3 £0

a) Notons S' la projection de S sur un P3 générique de P4. S' admet une
courbe double F avec t points-triples M1 Mt et v points-pince. En I.3.b on
a construit un schéma relatif E/C avec S et (E0)red S'. De plus

(proposition 3), on a

où K(I) désigne le i-ème voisinage infinitésimal de V dans P4 ; on a

E0 n P3 S'.

Nous allons détailler les différentes composantes du schéma (Hilb3 E0)red.

Notation 1. Notons S21 la sous-variété (localement fermée) de Hilb3 P4

formée des triplets t d y m où

d est un doublet de P4 de support un point de T,

m est un point de S' — F.

Soit S2i l'adhérence de S21 dans Hilb3 P4.

(*) E0 S' u r(1) u M[2) u u M\2)
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Notons SJ3 pour j -1,2... tla sous-variété de Hilb3 P4 des triplets

curvilignes E, de P4, de support {Mj}.SoitS3 leur réunion (disjointe).

Remarque 5. Bien sûr, S21 et S3 sont contenus dans (Hilbc3 S0)red

d'après la structure nilpotente même de Z0 (*).

b) On a la

Proposition 6.

i) (Hilbc3 Z0)red est réunion de (Hilb3 S')TQd, de S21 et des SJ3 (j 1, 2 t).

ii) Hilb3 E0 est génériquement réduit le long de ces composantes.

Preuve, i) Soit t un triplet curviligne contenu dans £0. Si t est contenu

dans l'hyperplan P3, comme I0nP3 S", on a te (Hilb3 S")red. Si t 9^ P3,

le support de t ne peut être formé de trois points simples, puisque (£0)red S'

et S' cz P3. Donc Supp t rencontre T, car en dehors de T, les faisceaux

structuraux de S' et E0 sont égaux.

Premier cas. Supp t {a, b} avec aeT et t double en a. Si b $ F,

par définition, on a teS21. Si b e T, on le «bouge» en b' e S' — T et

donc t appartient à S21

Deuxième cas. Supp t {a} où a e F. Si a est l'un des points-triples Mj9
on a te S3. Si a n'est pas l'un des points Mj, c'est soit un point-pince
soit un point générique de F. Dans les deux cas, t est limite de triplets
de support formé de deux points: en effet cela résulte de la proposition 4.

ii) La composante Hilb3 S7 est génériquement réduite d'après les lemmes 10

et 11 de l'Annexe 2 puisque S' a P3 n'a que des singularités ordinaires.
Par ailleurs S | est génériquement réduite d'après la proposition 4 iii) : un

triplet générique de S{ n'est pas dans H. Enfin, montrons que S21 (donc S21

est génériquement réduit. Soit dum un triplet générique de S21; ainsi le

support de d n'est pas un point triple et d £ H. Alors Hilb2 £0 est réduit
au voisinage de d par la proposition 4 iii); d'où S21 réduit au voisinage de

dum.

2°) Contribution de ces composantes dans T(S)

Soit Z g A3(Âl3 P4) un cycle fixé. Nous allons montrer trois lemmes,
avec les notations précédentes.

Lemme 3. Le degré du 0-cycle Z .i* [Hilb3 S"] est de la forme
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a^n -F 0-2 + a3

où a1,a2 et a3 ne dépendent que de Z.

Lemme 4. Le degré du 0-cycle Z. i* [S3] est de la forme at où

a ne dépend que de Z. (S3 désigne la réunion disjointe des Sj3 pour
j= 1,2...t.)

Lemme 5. Le degré du 0-cycle Z .i* [S2i] est de la forme d(ßn + y)
où ß et y ne dépendent que de Z.

a) Prouvons le lemme 3. Regardons le diagramme commutatif où les flèches

sont les injections canoniques et les dimensions entre parenthèses :

Nous voyons par examen des dimensions que Al3 P4 et Hilb^ P3 ne se coupent

pas proprement dans Hilb3 P4.

Nous aurons besoin du théorème de l'intersection résiduelle [7] [17]
sous forme de la formule de Fulton-MacPherson [6], qu'on énoncera ainsi:

Théorème (Fulton-MacPherson). Soit Y une sous-variété non-singulière
de la variété non-singulière X. Soit A une sous-variété de X et

I A n Y. Considérons le diagramme commutatif où les flèches sont les

injections canoniques :

(9) Al3 P4 i Hilbc3 P4 (12)

t"
(7) Al3P3 <4. Hilb3 P3 (9)

t
Hilb3 5" (6).

A <4 x
t«

i c4 y
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Si I est localement intersection complète dans A et si

dim I dim A + dim Y - dim X + r

alors pour tout cycle oc dans Y, le cycle dans A est égal à

j#(Cr.i*oc) où Cr est fixé dans Ar(I).

L'Annexe 7 montre que Al3 P4 et Hilbc3 P3 se coupent schématiquement

en Al3P3. Appliquons alors la formule de Fulton-MacPherson à

a [Hilb3 S"] dans A'(Hilb3 P3). Comme ici r 1, on obtient

iX°c i*[Hilb3S"] j,C

où C CL.î* [Hilb3 S'] avec C1 fixé dans A1 (Al3 P3). Par suite, par la

formule des projections, on a dans A (Al3 P4) :

Z. i* [Hilb3 S"] Z jJfZ. Ci. f* [Hilb3 S']).

Mais K j*Z.C\ appartient à AfiAI3 P3) et donc par la proposition 2:

deg Z. i* [Hilb3 S'] deg [Hilb3 S']

est de la forme

apn + a2 ^ + a3 ^
où a1, a2 et a3 sont des constantes. Le lemme 3 est donc prouvé.

b) Prouvons le lemme 4. Pour cela nous avons besoin d'un lemme auxiliaire :

Lemme 6. Désignons par P l'intersection ensembliste de S{ (défini
dans ce paragraphe en l.a) et de Al3 P4 dans Hilb;? P4.

Alors génériquement, S{ et Al3 F4 se coupent transversalement ; par suite

P [Si] [P]
Remarquer que P est isomorphe à P3 par le choix de l'axe du triplet

passant par M-}.

Preuve du lemme 6. C'est un simple calcul en coordonnées, comme on en
fera beaucoup dans l'Annexe: soit E,0 un triplet aligné de support {M;},
d'axe transverse à P3 (l'hyperplan qui contient S'). Dans un système
inhomogène de coordonnées (x, y, z, u) centré en Mj, S' a pour équations

xyz + 0, u 0

et Axe est engendré par un vecteur de coordonnées (a, ß, y, 8). Puisque
é,o est supposé générique dans P, on se ramène äa=ß y 5 l
et l'idéal de est alors
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J0 (x3, y — x, z — x, u — x).

Une carte de Hilbf P4 en £,0 est donnée par

(a, b, c, a1,b1,c1,a2,b2,c2,a3,b3,c3)

correspondant à l'idéal voisin :

I (x3 + ax2 + bx + c, y — a + ö1x2 + 61x + c1, z — x + a2x2+ b2x + c2,

u — x + a3x2 + b3x + c3).

Dans cette carte, Al3 P4 s'exprime par a1 a2 a3 0 et S{ par

— d'une part c1 c2 c3 0 car la courbe sur laquelle est le triplet
curviligne doit passer par 0,

— d'autre part a b — c 0 car le support doit être {0}. Cela termine
la démonstration du lemme 6.

Nous aurons besoin de rappeler la proposition suivante (montrée en [25]).
C'est une conséquence facile du théorème de Leray-Hirsch, car

Axe : Alk PN G( 1, N)

est une fibration de fibre type Pfe.

Proposition 7. Soit i un entier et 34? l9 34? 2 34? f des hyperplans
de FN en position générale. Pour k ^ i, soit Ht la sous-variété de

Alk PN formée des k-uplets alignés E, avec £, n 34?
p ^ 0 pour 1 < p ^ i.

Alors on a Fégalité dans A'Q(Alk PN) des sous-espaces vectoriels

A lQ(Alk PN) et © Axe*A lQ \G). [if.]
j=o

(On note A'Q A' (g) et G G(l, N)).
z

Dans le cas qui nous occupe (k 3), on a donc en fixant 34? l9 3tf29 3#?
3

trois hyperplans de P4 en position générale, l'égalité :

A3Q{Al3 P4)

Axe*A q(G) © Axe*Ag(G). [iJJ © Axe*A *(G). [JJ2] © Q [H3]

Or il est bien connu par la décomposition de Schubert (voir par exemple [21])

que A\G( 1, 4)) est donné par:

— A3(G) Z(0, 4) © Z(l, 3) où



TRISÉCANTES DES SURFACES ALGÉBRIQUES 23

(0, 4) droites passant par un point fixe 0 de P4,

\ (1, 3) droites contenues dans un hyperplan H' de P4 et coupant

une droite A' de H'.

— A2(G) Z(l, 4) © Z(2, 3) où

(1, 4) droites coupant une droite À" de P4,

\ (2, 3) droites contenues dans un hyperplan H" de P4.

— A'(G) Z(2, 4) où

(2, 4) droites coupant un plan fixe n de P4.

Pour montrer l'assertion du lemme 4, il suffit de la montrer pour Z
décrivant une base de A3(Al3 P4). Mais on a (lemme 6) Z. i* [SJ3] Z. [J7].

Or dans la base énumérée ci-dessus de Aq(A13 T?4), seul le premier cycle

Axe*(0, 4) a une intersection non vide avec P. En effet,

Notons alors a le degré d'intersection Axe*(0,4). [J7]. (On peut se

convaincre que c'est 1 par un calcul en coordonnées, mais c'est inutile pour
la suite). Cela correspond à l'unique triplet aligné dans P4 de support

{Mj} et d'axe OMj. On a donc deg Axe*(0, 4). i* [SJ3] a d'où

deg Axe*(0, 4). i* [S3] at puisque [53] ^ [>SJ3]

j-1
L'assertion du lemme 4 est prouvée pour Z décrivant une base de

A3(Al3 P4), donc le lemme 4 est démontré.

c) Prouvons le lemme 5. Nous aurons besoin comme en b), d'un lemme
auxiliaire :

Lemme 7. Désignons par I Tintersection ensembliste de S21 (défini
dans ce paragraphe en La)) et de Al3 P4 dans Hilbc3 P4. Alors géné-

riquement, S21 et Al3 P4 se coupent transversalement ; par suite P [S21]
[/] dans A'(Al3 P4).

La preuve du lemme 7 est un calcul en coordonnées comme le lemme 6 :

voir l'Annexe 4.

Axe*(l, 3). [I7] 0 car Mj $ H'

car Mj£
car M x

car Mj$ 34?!

car Mj^ 34?!

Axe*(l, 4). [HJ [J7] 0

Axe*(2, 3). [HJ [P] 0

Axe*(2, 4). [ff2] [P] 0

[H3] [L] « 0
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D'après ce lemme, pour prouver le lemme 5, il suffit de montrer que pour
tout cycle Z dans A3((Al3 P4), le degré du 0-cycle Z. [/] est de la forme
d(ßn + y) où ß et y ne dépendent que de Z. Il suffit donc de le vérifier

pour Z décrivant une base de Aq(A13 P4). Or une telle base a été explicitée
en b), comme conséquence de la proposition 7. On utilise donc les mêmes

notations qu'en b).

Il s'agit de voir que les degrés des 0-cycles

/ i) Axe*(0, 4). [/]
l ii) Axe*(l, 3). [/]

iii) Axe*(l, 4). [tfj.17]
iiv) Axe*(2,3).[H1].[I]

\v) Axe*(2, 4). [#2] [/]
vi) [H3].[/]

vérifient l'assertion du lemme 5.

Montrons-le rapidement cas par cas, toujours avec les notations de b).

L'hyperplan de P4 contenant la projection S' est noté P3.

i) Les axes des triplets éléments de I sont dans P3, donc ne peuvent
rencontrer un point fixe 0 de P4. Le premier des degrés cherchés est donc 0.

ii) Les axes des triplets de I sont dans le plan H' n P3 de P3 et passent

par le point fixe À' n P3 de ce plan. Donc il y a d possibilités pour le choix
d'un point-double et il reste n — 2 autres possibilités pour le point simple.
Dans ce cas le degré cherché est d(n — 2).

On ne tient pas compte d'une multiplicité éventuelle, car cela ne change rien

à l'énoncé du lemme.

iii) Soit 0 A" n P3 et P x n P3 (où est l'hyperplan qui définit
le cycle H^). Les axes des triplets de / doivent passer par O et les triplets
avoir un point au moins sur P. Deux cas à distinguer :

— ou le point simple est sur P n S' et le point-double a son support
sur T. Il y a donc nd choix possibles puisque deg F d ;

— ou le point-double a pour support l'un des d points de P n F et il
reste n — 2 autres possibilités pour le point simple. (En plus, dans ce cas

la multiplicité est 2).

La somme est bien de toute façon de la forme d(ßn + y).



Dans l'un comme l'autre cas de figure ci-dessus, les petits traits représentent
les doublets dans P4, de support T.

iv) Soit P H" n P3 et P1 n P3. Les triplets doivent donc être dans

P et avoir au moins un point sur la droite À P n P1. Il y a donc

n possibilités pour le point simple, d'où dn possibilités pour le choix d'un
tel triplet.

v) Les axes des triplets de I doivent couper la droite fixe À n n P3

et les triplets doivent avoir deux points sur et j4?2. Soit Pt n P3.

Comme les triplets de I ne sont pas formés de trois points distincts, le

support {0} du point-double doit être ou sur P1 ou sur P2. Supposons

qu'il soit sur P1 ; comme le degré de F est d, cela donne d possibilités
de choix pour 0. Mais alors la droite À et le point 0 engendrent un plan P.

La droite P n P2 coupe S' en n points dans P parmi lesquels est choisi le
troisième point du triplet; donc il y a dn solutions et par symétrie entre
P1 et P2, 2dn au total.

vi) Soit Pt Jf f n P3. Les triplets de I doivent avoir un point sur chacun
des trois plans Pl9 P2, P3; mais comme ces triplets ne sont pas simples,
la partie doublet est obligatoirement à support sur une des droites Pt n P •.

Or aucune de ces droites ne coupe F ; l'intersection est donc 0.
Le lemme 5 est ainsi démontré.
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d) Conclusion

Soit S une surface de P4 à singularités ordinaires et E/C le schéma

relatif associé défini en I.3.b. Posons Ü C et U C*. Nous allons voir
que les hypothèses de la proposition 1 sont satisfaites pour le schéma relatif
Z/C.

Pour a), cela résulte de la proposition 4ii). Pour b), cela résulte de la

proposition 6 ii), chaque composante de Hilb3 X0 étant génériquement réduite.
Enfin le schéma X/C* est isomorphe au produit S x C* par construction même

(remarque 3). Donc par la remarque 1, X/C* est /c-plat, puisque S c= P4

n'a que des singularités ordinaires. L'hypothèse c) de la proposition 1

est donc satisfaite.

La proposition 1 donne alors l'équivalence rationnelle dans Hilb3 P4 :

[Hilb;? S] ~ [Hilb' Z0]

Or par la proposition 6 i), on a l'égalité des cycles :

[Hilb' Z0] [Hilb' S'] + [S^] + [S3]

D'où pour n'importe quel cycle Z de A3(Al3 P4), l'égalité des 0-cycles :

Z. i* [Hilb3 S] Z. i* [Hilb3 S"] + Z. i* [S^] + Z. i* [S3]

Des lemmes 3, 4 et 5 résulte alors aussitôt la proposition 5 que l'on cherchait
à prouver.

III) TrISÉCANTES DANS P4 : LES CALCULS

Soit S une surface de P4 d'invariants n, d, t (notations du § II). On va
donner deux formules trisécantes pour S, supposée à singularités ordinaires
dans P4.

1°) Tangentes à S recoupant S et une droite fixée.

Nous cherchons le degré du 0-cycle

[0] Axe*a2. Z* [Hilb3 S]

où comme d'habitude, i : Al3 P4 c» Hilb3 P4 est l'injection canonique. Ici,
@ a Al3 P4 est l'hypersurface des triplets alignés non simples et a2 (1, 4)

est le cycle de Z2(G(1, 4)) des droites de P4 coupant une droite fixe À.

D'après la proposition 5, ce nombre est de la forme
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