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214 H. RUMMLER

Im Gegensatz zu der durch das Gram-Schmidt-Verfahren konstruierten hängt
sie nicht von der Ordnung der Basis A ab; genauer gilt:

Satz 2. und U seien wie in Satz 1, P eine Permutationsmatrix.
Dann ist Ü UP die beste orthogonale Approximation von Ä AP.

Beweis. \\ Ä - Ü \\ \\ AP - UP \\ \\ A - U ||, da P ja als
Permutationsmatrix orthogonal ist. Gäbe es ein Ü e 0(n) mit || Ä — Ü
< \\ A — U II, so wäre ÜP* eine bessere Approximation von A als U.

Ebenso einfach sind die Beweise der folgenden Eigenschaften dieser
besten orthogonalen Approximation :

Satz 3.

(1) Die beste orthogonale Approximation einer positiv definiten symmetrischen
Matrix ist die Einheitsmatrix.

(2) Ist U die beste orthogonale Approximation von A, so ist U*
diejenige von A*.

§ 2. Die Abstandsfunktion fA(U): || A — U ||
2

Sei A g GL{n, R) fest. Um das Minimum der Abstandsfunktion fA : 0(n)
^ R> /a(U): \\ A — U II

2 zu bestimmen, haben wir oben alle kritischen
Punkte dieser Funktion bestimmt : Es sind genau diejenigen Matrizen U e 0(n),
für die A US ist mit symmetrischem S, so dass S2 A*A ist. Diese
Gleichung hat genau dann endlich viele — und zwar 2n — symmetrische
Lösungen S, wenn A*A n verschiedene Eigenwerte 0 < Xj < < X2 hat:
Es sind die Matrizen

0

0

C* ist, wobei die Spalten der orthogonalen

>0 X2/
Matrix C die entsprechenden Eigenvektoren von A*A sind. Zur Vereinfachung
verwenden wir folgende Bezeichnungen :
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I mit 0 < A-! < < X„ >

X,,/

°\
I mit si ± 1, i h •••> n >

S Se= C[e] MC* und U Ue AS'1. Dann gilt:

Satz 4. Hat A*A n verschiedene Eigenwerte, so ist fA eine Morse-

Funktion auf 0(n), und zwar hat der kritische Punkt Us den Index

(il—1) + + (ik—1), wenn eitsik — 1 ist und die restlichen

+ 1.

Beweis. Zur Untersuchung der Funktion fA dürfen wir wegen Eigenschaft

(1) des Skalarproduktes auf R"x" und wegen Satz 1 o.B.d.A.

annehmen, dass A Spositiv définit symmetrisch ist und ausserdem bereits

in Diagonalform vorliegt, also A [X,] mit den oben eingeführten Bezeichnungen.

Die kritischen Punkte von fA sind dann gerade die Matrizen

U — [e]; wobei fA in 1 das Minimum annimmt. Ferner ist SE [s] [X].

Um fA in der Nähe des kritischen Punktes Us zu untersuchen,

beschränken wir die Funktion auf die Kurven (l/eexp(tB)),eR, e Rasym-

Eine einfache Rechnung ergibt

II A- Utexp{tB) II
2 I A-[e]|| t2tr{S,B2) + o{t2),

so dass wir also die quadratische Form Q : Râsym ~

Q(B) — tr(SeB2) tr

bzw. die zugehörige symmetrische Bilinearform untersuchen müssen. Dazu

führen wir in R"sxy„ eine geeignete Basis ein:

l Bif Etj - Ejt,1 < i < j ^ n

' wobei E,j diejenige Matrix ist, die genau eine Eins in der i-ten Zeile an der

j-ten Stelle hat und sonst lauter Nullen. Dann ist 25

d.h. (Bij)1^i<j^„ ist eine Orthogonalbasis von R"sx^. Diese Basis diagonalisiert
die Form Q :
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Q(Bij,Bkl)-tr (SAjBkl)— tr([e]

^ik^jl(siK + ^jXj)— 8il8jk(£iXi + EjXj)

àikàjl(ei^i + £jXJ

da wegen i< jund k < l stets 8tfijk0 ist.
Insbesondere ist also Q(BiJ, Bkl) 0 für (i,j) * und ß(By,.By)
£i^i + s jXj^0 wegen unserer Voraussetzung Xt ^ Dabei ist ß(By, Bi})

< 0 genau dann, wenn Sj -1 ist, da wir ja die Werte X{ so numeriert
haben, dass 0 < < < Xn ist. Daraus ergibt sich sofort die angegebene
Formel für den Index.

Als nächstes wollen wir untersuchen, welche Indizes bei den kritischen
Punkten der Funktion fA auftreten. Wir nehmen dazu natürlich wieder an,
dass A*A n verschiedene Eigenwerte hat und beschränken uns ausserdem auf
den Fall det A>0 und die Untersuchung von | SO{n). Dort hat fA dann
die 2"_1 kritischen Punkte Uc für e (±1,..., ±1) mit s1 +1.
Zur Kennzeichnung dieser Punkte verwenden wir die Potenzmenge
P{1,..., n— 1}, indem wir für a e {1,..., n-1} 17.: Um setzen, wobei
s(a): (£1;..., s„) sei

mit e^: (_ ij^rdw

f—1, falls leaund g,- : - < für i 2,..., n.I+1, falls 1 £ a

Bezeichnet v(a) den Index von fA im kritischen Punkt Ua, so ist nach
Satz 4 gerade v(a) £ i. Insbesondere treten also alle Werte von 0 v((Z))

iea

n(n — 1)
bls —2— V({15auf, und zwar mit der Häufigkeit |i(v), die

durch die erzeugende Funktion

QO n-1
p(x) I H(v)xv n (1

beschrieben wird (vgl. [4]). P(x) ist aber auch das Poincaré-Polynom von
SO(rt) über Z/2 (vgl. [2]). Damit haben wir das folgende Ergebnis:

Satz 5. Hat A e GL(n, R) positive Determinante und hat A*A n
verschiedene Eigenwerte, so ist die Morse-Funktion fA : R perfekt
(Vgl. [1].)

Insbesondere gibt es also auf SO(n) keine Morse-Funktion mit weniger
kritischen Punkten.
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