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EINIGE BEMERKUNGEN {UBER DIE POLARE ZERLEGUNG
EINER REGULAREN MATRIX UND DIE GEOMETRIE
DER ORTHOGONALEN GRUPPE

von Hansklaus RUMMLER

§0. EINFUHRUNG

Bekanntlich ldsst sich jede regulare n X n-Matrix A mit reellen Koeffi-
sienten eindeutig als Produkt 4 = US schreiben, wobei U orthogonal und
I' S positiv definit symmetrisch ist (vgl. [3]). Diese sogennante polare Zerlegung
| hat eine ebenso einfache wie interessante geometrische Deutung: U ist die

beste orthogonale Approximation von A, wenn man den Raum R™"*" aller
| reellen n x n-Matrizen mit der iiblichen euklidischen Struktur versieht.

Man kann das auch so ausdriicken: Fasst man die Spalten der Matrix
A = (ay, .., a,) als Basis des R” auf, so ist U = (uy, ..., 4,) diejenige eindeutig

; n
i bestimmte Orthonormalbasis, fur die z | a; — u;ll 2 minimal ist.

j=1
Dariiber hinaus zeigt sich, dass fir festes A e GL(n,R) die Funktion
f:0m - R, fuU): = Il A— U |? Aufschliisse iiber die Geometrie von

O(n) gibt: Es ist fast immer eine perfekte Morse-Funktion.

Eine Ubertragung der Resultate auf komplexe Matrizen bereitet keine
Schwierigkeiten, aber der Einfachheit halber beschrinken wir uns hier
auf den reellen Fall; aus dem gleichen Grunde verzichten wir auch darauf,

singulire Matrizen zu betrachten.

§ 1. DIE BESTE ORTHOGONALE APPROXIMATION EINER REGULAREN MATRIX

Mit R™*" bezeichnen wir den reellen Vektorraum aller reellen n x n-
Matrizen. 1 ist die Einheitsmatrix, und A* die Transponierte der Matrix A.
Wir versehen R**" mit dem Standard-Skalarprodukt

<A, B> .= tI’ (A*B) = z AijBij’
i,j=1
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Folgende Eigenschaften dieses Skalarproduktes sind nahezu trivial :

(1) Ist U orthogonal, so sind Links- und Rechts-Multiplikation mit U
Isometrien.

(2) Das Transponieren ist eine Isometrie.
(3) R"*" ist die orthogonale direkte Summe der beiden Unterrdume der

symmetrischen bzw. antisymmetrischen Matrizen :

nXn __ nxn nXn
R™" = RY" @ RIS

sym

Sei jetzt A € GL(n, R) eine feste reguldre n x n-Matrix. Wir suchen eine
orthogonale Matrix U € O(n), fiir die der Abstand | A — U | minimal ist.
Bezeichnet T;0(n) den Tangentialraum an O(n) in U,

TyOm) = {UB; Be R 3"},

asym
so gilt: | A — U || minimal = 4 — U 1L T,0(n)
< <A —U,UB> =0 firalle BeR"X"

asym
< <U*4A —1,B> =0 fiiralle BeRl,!
< U*4 — 1eR}T
< U*4AeR..T

sym

< A =USmitSeR"*",

sym

Dabei gilt offensichtlich noch §? = A*A4. Ist umgekehrt S symmetrisch und
gilt S = A*A4,soist U = AS™! orthogonal.

Damit haben wir eine notwendige Bedingung fiir die Minimalitit des
Abstandes || A — U |: Es muss A = US sein mit einer symmetrischen
Matrix S, die die Gleichung §*> = A*A4 erfiillt. .

Als nidchstes bestimmen wir alle diese Matrizen S: Da A reguldr ist, ist
die symmetrische Matrix A*A positiv definit, und wir k6nnen ihre ver-
schiedenen Eigenwerte in der Form A%, .., A2 schreiben mit A, .., A, > 0.
Ky, .., K, seien die entsprechenden Multiplizitdten, und fiir i = 1, .., r sei

N0
A=l . e RW* Wi
0 N

Dann koénnen wir A*A4 in der Form
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A? 0
A*4 = C . C*

0o M

schreiben, wo C eine orthogonale Matrix ist, deren Spalten Eigenvektoren
¥ von A*A sind. Folglich ist
‘ s, 0
S=C . C*

0 s
| f mit S = A?, dh. S; = LU;, wobei U; orthogonal und symmetrisch ist. Fir
§ 4 = USistin diesem Falle
|A—U|2=]4]>-2<4U> +| Ul

= || 4% —2tr(A*U) +n

=A% +n— 2trS

— | A% +n—2 'Zl AtrU, .

Nun ist aber trU; < p;, wobei Gleichheit genau fir U; = 1 gilt. Damit ist
lA—U|2=4|*+n—2 zr: A, und der kleinste Wert wird genau
1 fir U, = 1,.., U, = 1 erreicht, ::1=111 fur
Ay
S=2C - c*,
: N

die einzige positiv definite symmetrische Losung der Gleichung S = A*A.
I . Damit haben wir gezeigt:

Tt

| SATz 1. Zu AeGL(n R) gibt es genau eine orthogonale Matrix
8. UcO(n), fir die der Abstand | A — U | minimal ist. Sie ist eindeutig

B bestimmt durch die polare Zerlegung A = US mit U orthogonal und S
' positiv definit symmetrisch.

iy

Wie wir bereits in der Einfilhrung bemerkt haben, kann man U als
diejenige Orthonormalbasis von R" interpretieren, die 4 am néchsten liegt.
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Im Gegensatz zu der durch das Gram-Schmidt-Verfahren konstruierten héingt
sie nicht von der Ordnung der Basis 4 ab; genauer gilt: “

SATZ 2. A und U seien wie in Satz 1, P eine Permutationsmatrix. '
Dann ist U = UP die beste orthogonale Approximation von A = AP.

Beweis. |A—U| =| AP -~ UP| = | 4 —Ul, da P ja als Per- §
mutationsmatrix orthogonal ist. Gébe es ein U e O(n) mit I A—-T| |
<||lA—-U|, so wire UP* ecine bessere Approximation von A als U. |

Ebenso einfach sind die Beweise der folgenden Eigenschaften dieser -;t
besten orthogonalen Approximation :

SATZ 3.

(1) Die beste orthogonale Approximation einer positiv definiten symmetrischen
Matrix ist die Einheitsmatrix.

(2) Ist U die beste orthogonale Approximation von A, so ist U*
diejenige von A*.

$2. DIE ABSTANDSFUNKTION f,(U): = | A — U |2

Sei A € GL(n, R) fest. Um das Minimum der Abstandsfunktion f4:0(n)
=R, f4U): = || A — U |? zu bestimmen, haben wir oben alle kritischen
Punkte dieser Funktion bestimmt: Es sind genau diejenigen Matrizen U e O(n),
fir die 4 = US ist mit symmetrischem S, so dass S2 = A*A ist. Diese
Gleichung hat genau dann endlich viele — und zwar 2" — symmetrische
Losungen S, wenn A*A n verschiedene Eigenwerte 0 < A7 < .. < A2 hat:
Es sind die Matrizen

+A, 0
S=2¢C C*,
0 4,
¥ 0
wenn A*4 = C - C* ist, wobei die Spalten der orthogonalen
0 A2

Matrix C die entsprechenden Eigenvektoren von A*A4 sind. Zur Vereinfachung
verwenden wir folgende Bezeichnungen:
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A 0
[A]: = "L mit0 < Ay < oo < Ay
O )\'11
€1 0
e]: = mitg, = +1,i = 1,..,n,
0 €

e

i

5 = 5, = C[e][A]C* und U = U, = AS™". Dann gilt:
 Satz 4. Hat A*A n verschiedene Eigenwerte, so ist f, eine Morse-
| Funktion auf O(n), und zwar hat der kritische Punkt U, den Index
¥ (,—1) + ..+ @G—1), wenn & =..=¢8

i — —1 ist und die restlichen
Ei —_ +1

i1

| Beweis. Zur Untersuchung der Funktion f, diirffen wir wegen Eigen-
A schaft (1) des Skalarproduktes auf R**" und wegen Satz 1 o.B.dA.
annchmen, dass 4 = S positiv definit symmetrisch ist und ausserdem bereits
} in Diagonalform vorliegt, also 4 = [A] mit den oben eingefiihrten Bezeich-
¥ nungen. Die kritischen Punkte von f, sind dann gerade die Matrizen
‘U, = [€], wobei f, in 1 das Minimum annimmt. Ferner ist S, = [€] [A].
| Um f, in der Nihe des kritischen Punktes U, zu untersuchen,
‘beschranken wir die Funktion auf die Kurven (Usexp(tB))teR, BeRin.
| Eine einfache Rechnung ergibt

| A— Uexp(tB) |> = | A — [e] | > — £*tx(S.B*) + o(t?),

éso dass wir also die quadratische Form Q: R — R,

Q(B) = —tr(S,B?) = tr(B*S.B)

§ bzw. die zugehorige symmetrische Bilinearform untersuchen miissen. Dazu
B fiihren wir in R7m eine geeignete Basis ein:

‘ wobei E;; diejenige Matrix ist, die genau eine Eins in der i-ten Zeile an der
§j-ten Stelle hat und sonst Jauter Nullen. Dann ist <B;;, By> = 20,0,

d.h. (By;); <i<j<n ist eine Orthogonalbasis von R7om - Diese Basis diagonalisiert
die Form Q:

AR S IS A 7 DT S



216 ' H. RUMMLER

Q(Bij » By) = — tr(SaBijBkl) = —tr([£] [}"]BijBkl)
= 0ul;(ehi+€M;),

da wegen i < j und k < [ stets 0,0 = 0 ist.

Insbesondere ist also Q(B;j, By) = 0 fiir (i,j) # (k, ), und Q(B;;, B;;)
= &M + €A; # 0 wegen unserer Voraussetzung A; # A,. Dabei ist Q(B;;, B;;)
< 0 genau dann, wenn g = —1 ist, da wir ja die Werte A; so riumeriert §
haben, dass 0 < A; < .. < A, ist. Daraus ergibt sich sofort die angegebene
Formel fiir den Index.

Als néchstes wollen wir untersuchen, welche Indizes bei den kritischen
Punkten der Funktion f, auftreten. Wir nehmen dazu natiirlich wieder an,
dass A*A n verschiedene Eigenwerte hat und beschrinken uns ausserdem auf
den Fall det 4 > 0 und die Untersuchung von f, | som) - Dort hat f, dann
die 2"~ kritischen Punkte U, fiir ¢ = (+1, .., +1) mit €, -..-g, = +1.
Zur Kennzeichnung dieser Punkte verwenden wir die Potenzmenge
P{1,.,n—1}, indem wir fiir o c {1, ..n—1}U,: = U.o setzen, wobei
gla): = (&g, ..., &,) sei

mit g,: = (— 1)@
—1, falls i—1leq
de: = ’ firi=2.,n.
i {+1 , falls i—1¢a o 4

Bezeichnet v(o) den Index von f, im kritischen Punkt U,, so ist nach
Satz 4 gerade v(o) = ) i. Insbesondere treten also alle Werte von 0 — V(@)

n(n—1)
2
‘durch die erzeugende Funktion

bis = Vv({1,..,n—1}) auf, und zwar mit der Haufigkeit p(v), die

P = 3wt =TT (1+x)

beschrieben wird (vgl. [4]). P(x) ist aber auch das Poincaré-Polynom von
SO(n) Gber Z/2 (vgl. [2]). Damit haben wir das folgende Ergebnis:

SATZ 5. Hat Ae€GLn,R) positive Determinante und hat A*A n
verschiedene Eigenwerte, so ist die Morse-Funktion f 4-80(n) - R perfekt.

(Vgl [1]) *

Insbesondere gibt es also auf SO(n) keine Morse-Funktion mit weniger
kritischen Punkten.
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§3. DIE GEODATISCHEN U.exp(tB;;)

§  Zum Abschluss wollen wir noch die weiter oben betrachteten Kurven
(Usexp(tBij)),ER etwas niher untersuchen. Man rechnet leicht B > =—B
§i und Bf; = —BJ; aus, und daraus ergibt sich

ij

exp(tB;) = 1 + B}, — cos t B} + sint B;;.

Es handelt sich also um einen Kreis vom Radius ﬁ mit dem Mittelpunkt

1 ; 0

Mi_]:l-l—BEI: . . s

Lo K
fwo auf der Diagonalen lauter Einsen und genau zwei Nullen stehen.
 Insbesondere ist also

p—n.

1 0

eXp(ﬂ:BU) = 1 + 2B£} = . N

,. )
b . |
und daraus ergibt sich A = USS, = Uexp(nB;;)exp(nB;;)S, mit exp(nB;;)S, i

B = 5., wobei g}, = e, 1818 KT ) ist.
" —g,, falls k=1i,j
Folglich ist auch U.exp(nB;;) = U, .
| U.exp(tB;;) ist minimal, d.h. es gibt keine kiirzere Verbindung zwischen

U, und U, in O(n): Um das zu zeigen, geniigt es offenbar, exp(¢B;;) in
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SO(n) zu untersuchen und zu zeigen, dass diese Kurve die kiirzeste Ver-
bindung zwischen 1 und 1 + 2B;; darstellt. Sei dazu V eine beste orthogonale
Approximation von M;;. (V ist nicht eindeutig, da M;; nicht regulér ist.)
Dann besitzt M;; die polare Zerlegung M;; = VT, wobei T symmetrisch
istund T2 = M¥M,; = M;; gilt, also
IMy=V 2= T-1|2=|T|?>-2tT + |12
= | M;||? —=2tcT + 1|2 =n—2 —2tuT + n

Numerieren wir die Standardbasis des R” in geeigneter Weise um, so ist

mit T'; € O(n—2) symmetrisch, und damit trT < n—2, wobei Gleichheit genau
fir T, = 1 gilt. Folglichist | M;—V |2 >2n — 2 — 2n + 4 = 2, und jeder
Weg in SO(n) zwischen 1 und 1 + 2B} verlduft ausserhalb der offenen

Kugel vom Radius \/5 um M;; in R"*" und ist damit mindestens so lang
wie der Kreisbogen (exp(tB;;))o<;<x -
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