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L'Enseignement Mathématiquet. 32(1986),p.

EINIGE BEMERKUNGEN ÜBER DIE POLARE ZERLEGUNG

EINER REGULÄREN MATRIX UND DIE GEOMETRI

DER ORTHOGONALEN GRUPPE

von Hansklaus Rummler

§ 0. Einführung

Bekanntlich lässt sich jede reguläre n x n-Matrix mit reellen Koeffizienten

eindeutig als Produkt A USschreiben, wobei U orthogonal und

Spositiv définit symmetrisch ist (vgl. [3]). Diese sogennante polare Zerlegung

hat eine ebenso einfache wie interessante geometrische Deutung: LMst die

beste orthogonale Approximation von wenn man den Raum R"x" aller

reellen n x n-Matrizen mit der übüchen euküdischen Struktur versieht.

Man kann das auch so ausdrücken: Fasst man die Spalten der Matnx

A (a,,-, an) als Basis des R" auf, so ist U ("i > -, diejenige eindeutig
n

bestimmte Orthonormalbasis, für die £ || a} - Uj ||
2 minimal ist.

Darüber hinaus zeigt sich, dass für festes R) die Funktion

y .Q{n)_> r fÄ(U): il A - UII
2 Aufschlüsse über die Geometrie von

0(n) gibt: Es ist fast immer eine perfekte Morse-Funktion.

Eine Übertragung der Resultate auf komplexe Matrizen bereitet keine

Schwierigkeiten, aber der Einfachheit halber beschränken wir uns hier

auf den reellen Fall; aus dem gleichen Grunde verzichten wir auch darauf,

singuläre Matrizen zu betrachten.

§ 1. Die beste orthogonale Approximation einer regulären Matrix

Mit R"x" bezeichnen wir den reellen Vektorraum aller reellen x

Matrizen. 1 ist die Einheitsmatrix, und die Transponierte der Matrix A.

Wir versehen R"x" mit dem Standard-Skalarprodukt

<A, B> :tr (A*B) £ y.
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Folgende Eigenschaften dieses Skalarproduktes sind nahezu trivial:
(1) Ist U orthogonal, so sind Links- und Rechts-Multiplikation mit U

Isometrien.

(2) Das Transponieren ist eine Isometrie.

(3) Rnx" ist die orthogonale direkte Summe der beiden Unterräume der
symmetrischen bzw. antisymmetrischen Matrizen :

|j«xn _ n«x/i /Tv pjixn-*** sym vt7 asym •

Sei jetzt A e GL(n, R) eine feste reguläre n x n-Matrix. Wir suchen eine

orthogonale Matrix U e 0(n), für die der Abstand \\ A — U \\ minimal ist.
Bezeichnet TvO(n) den Tangentialraum an 0(n) in U,

TvO(n) {ÜB; Be R^}
so gilt : II A — U II minimal => A — U 1 TvO(n)

o <A- U, UB>

o < U*A — 1, B>

O U*A - 1 6 R"ym

o U*A e Rgym"

o A US mit S e Rs"yxm".

Dabei gilt offensichtlich noch S2 A*A. Ist umgekehrt S symmetrisch und
gilt S2 A*A, so ist U AS'1 orthogonal.

Damit haben wir eine notwendige Bedingung für die Minimalität des

Abstandes || A — U || : Es muss A US sein mit einer symmetrischen
Matrix S, die die Gleichung S2 A*A erfüllt.

Als nächstes bestimmen wir alle diese Matrizen S : Da A regulär ist, ist
die symmetrische Matrix A*A positiv définit, und wir können ihre
verschiedenen Eigenwerte in der Form %l,...,X2 schreiben mit Xi,..., Xr > 0.

Pi,..., \ir seien die entsprechenden Multiplizitäten, und für i 1,..., r sei

t- °\
Ai j JeR**1".

\o xj
Dann können wir A*A in der Form

0 für alle B e R "sxy^

0 für alle ßeR"^
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^0

schreiben, wo C eine orthogonale Matrix ist, deren Spalten Eigenvektoren

von A*A sind. Folglich ist

r
scI\0 SJ

mit Sf Af,d.h.Sf XJJ,,wobeiUt orthogonal und symmetrisch ist. Für

A US ist in diesem Falle

Il A -UII2\\AII2-2 + Il C/ II
2

II AII
2

II A II
2 + n — 2trS

H ^4 II
2 +n —2 E A-jtrl/;.

i=i

Nun ist aber trl/; < |i;, wobei Gleichheit genau für 1 gilt. Damit ist

II a- UII
2 ^ II AII 2 + n -2 E und der kleinste Wert wird genau

i — 1

für üj 1,..., Ur1 erreicht, d.h. für

'Ai
sc I |

die einzige positiv definite symmetrische Lösung der Gleichung S2 — A*A.

Damit haben wir gezeigt :

Satz 1. Zu A e GUn, R) gibt es genau eine orthogonale Matrix
U e O(n), für die der Abstand | A —U||minimal ist. Sie ist eindeutig

bestimmt durch die polare Zerlegung A US mit U orthogonal und S

positiv définit symmetrisch.

Wie wir bereits in der Einführung bemerkt haben, kann man U als

diejenige Orthonormalbasis von R" interpretieren, die A am nächsten liegt.
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Im Gegensatz zu der durch das Gram-Schmidt-Verfahren konstruierten hängt
sie nicht von der Ordnung der Basis A ab; genauer gilt:

Satz 2. und U seien wie in Satz 1, P eine Permutationsmatrix.
Dann ist Ü UP die beste orthogonale Approximation von Ä AP.

Beweis. \\ Ä - Ü \\ \\ AP - UP \\ \\ A - U ||, da P ja als
Permutationsmatrix orthogonal ist. Gäbe es ein Ü e 0(n) mit || Ä — Ü
< \\ A — U II, so wäre ÜP* eine bessere Approximation von A als U.

Ebenso einfach sind die Beweise der folgenden Eigenschaften dieser
besten orthogonalen Approximation :

Satz 3.

(1) Die beste orthogonale Approximation einer positiv definiten symmetrischen
Matrix ist die Einheitsmatrix.

(2) Ist U die beste orthogonale Approximation von A, so ist U*
diejenige von A*.

§ 2. Die Abstandsfunktion fA(U): || A — U ||
2

Sei A g GL{n, R) fest. Um das Minimum der Abstandsfunktion fA : 0(n)
^ R> /a(U): \\ A — U II

2 zu bestimmen, haben wir oben alle kritischen
Punkte dieser Funktion bestimmt : Es sind genau diejenigen Matrizen U e 0(n),
für die A US ist mit symmetrischem S, so dass S2 A*A ist. Diese
Gleichung hat genau dann endlich viele — und zwar 2n — symmetrische
Lösungen S, wenn A*A n verschiedene Eigenwerte 0 < Xj < < X2 hat:
Es sind die Matrizen

0

0

C* ist, wobei die Spalten der orthogonalen

>0 X2/
Matrix C die entsprechenden Eigenvektoren von A*A sind. Zur Vereinfachung
verwenden wir folgende Bezeichnungen :
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I mit 0 < A-! < < X„ >

X,,/

°\
I mit si ± 1, i h •••> n >

S Se= C[e] MC* und U Ue AS'1. Dann gilt:

Satz 4. Hat A*A n verschiedene Eigenwerte, so ist fA eine Morse-

Funktion auf 0(n), und zwar hat der kritische Punkt Us den Index

(il—1) + + (ik—1), wenn eitsik — 1 ist und die restlichen

+ 1.

Beweis. Zur Untersuchung der Funktion fA dürfen wir wegen Eigenschaft

(1) des Skalarproduktes auf R"x" und wegen Satz 1 o.B.d.A.

annehmen, dass A Spositiv définit symmetrisch ist und ausserdem bereits

in Diagonalform vorliegt, also A [X,] mit den oben eingeführten Bezeichnungen.

Die kritischen Punkte von fA sind dann gerade die Matrizen

U — [e]; wobei fA in 1 das Minimum annimmt. Ferner ist SE [s] [X].

Um fA in der Nähe des kritischen Punktes Us zu untersuchen,

beschränken wir die Funktion auf die Kurven (l/eexp(tB)),eR, e Rasym-

Eine einfache Rechnung ergibt

II A- Utexp{tB) II
2 I A-[e]|| t2tr{S,B2) + o{t2),

so dass wir also die quadratische Form Q : Râsym ~

Q(B) — tr(SeB2) tr

bzw. die zugehörige symmetrische Bilinearform untersuchen müssen. Dazu

führen wir in R"sxy„ eine geeignete Basis ein:

l Bif Etj - Ejt,1 < i < j ^ n

' wobei E,j diejenige Matrix ist, die genau eine Eins in der i-ten Zeile an der

j-ten Stelle hat und sonst lauter Nullen. Dann ist 25

d.h. (Bij)1^i<j^„ ist eine Orthogonalbasis von R"sx^. Diese Basis diagonalisiert
die Form Q :
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Q(Bij,Bkl)-tr (SAjBkl)— tr([e]

^ik^jl(siK + ^jXj)— 8il8jk(£iXi + EjXj)

àikàjl(ei^i + £jXJ

da wegen i< jund k < l stets 8tfijk0 ist.
Insbesondere ist also Q(BiJ, Bkl) 0 für (i,j) * und ß(By,.By)
£i^i + s jXj^0 wegen unserer Voraussetzung Xt ^ Dabei ist ß(By, Bi})

< 0 genau dann, wenn Sj -1 ist, da wir ja die Werte X{ so numeriert
haben, dass 0 < < < Xn ist. Daraus ergibt sich sofort die angegebene
Formel für den Index.

Als nächstes wollen wir untersuchen, welche Indizes bei den kritischen
Punkten der Funktion fA auftreten. Wir nehmen dazu natürlich wieder an,
dass A*A n verschiedene Eigenwerte hat und beschränken uns ausserdem auf
den Fall det A>0 und die Untersuchung von | SO{n). Dort hat fA dann
die 2"_1 kritischen Punkte Uc für e (±1,..., ±1) mit s1 +1.
Zur Kennzeichnung dieser Punkte verwenden wir die Potenzmenge
P{1,..., n— 1}, indem wir für a e {1,..., n-1} 17.: Um setzen, wobei
s(a): (£1;..., s„) sei

mit e^: (_ ij^rdw

f—1, falls leaund g,- : - < für i 2,..., n.I+1, falls 1 £ a

Bezeichnet v(a) den Index von fA im kritischen Punkt Ua, so ist nach
Satz 4 gerade v(a) £ i. Insbesondere treten also alle Werte von 0 v((Z))

iea

n(n — 1)
bls —2— V({15auf, und zwar mit der Häufigkeit |i(v), die

durch die erzeugende Funktion

QO n-1
p(x) I H(v)xv n (1

beschrieben wird (vgl. [4]). P(x) ist aber auch das Poincaré-Polynom von
SO(rt) über Z/2 (vgl. [2]). Damit haben wir das folgende Ergebnis:

Satz 5. Hat A e GL(n, R) positive Determinante und hat A*A n
verschiedene Eigenwerte, so ist die Morse-Funktion fA : R perfekt
(Vgl. [1].)

Insbesondere gibt es also auf SO(n) keine Morse-Funktion mit weniger
kritischen Punkten.
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§ 3. Die Geodätischen [/Eexp(tßy)

Zum Abschluss wollen wir noch die weiter oben betrachteten Kurven

(l/£exp(tßy))lsR etwas näher untersuchen. Man rechnet leicht B%

und Bfj- Bfjaus,und daraus ergibt sich

exp(t.By) 1 + Bfj - cos t Bfj + sin t

Es handelt sich also um einen Kreis vom Radius v' 2 mit dem Mittelpunkt

"T

My 1 + Bij —

0 1

wo auf der Diagonalen lauter Einsen und genau zwei Nullen stehen.

Insbesondere ist also _T 0

Qxp(nBij) 1 + 2Bfj
-1

-1

0 1

S6.9 wobei e'k

und daraus ergibt sich A UeS£ UeQxp(nBij)cxp(nBij)S£ mit Qxp(nBij)S£

St., falls k ^ i,jk ist.
— 8fc, falls k ij

Folglich ist auch U£Qxp(nBij) U£>.

U^xpitBij) ist minimal, d.h. es gibt keine kürzere Verbindung zwischen

U£ und Ue> in 0(n): Um das zu zeigen, genügt es offenbar, exp(tB^) in
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SO(ri) zu untersuchen und zu zeigen, dass diese Kurve die kürzeste
Verbindung zwischen 1 und 1 + 2Z?y darstellt. Sei dazu V eine beste orthogonale
Approximation von MtJ. Vistnicht eindeutig, da Mu nicht regulär ist.)
Dann besitzt MtJ die polare Zerlegung wobei T symmetrisch
ist und T2 Mu gilt, also

\MtJ-V II2 r-i
II Mu

I
2

II T II

- 2trT +

2 - 2trT + II 1 |

II 1 II
2

n - 2 2trT + n

2n-2 - 2tr

Numerieren wir die Standardbasis des R" in geeigneter Weise um, so ist

T2 alsoT

mit Tj e 0(n— 2) symmetrisch, und damit trT wobei Gleichheit genau
für Tl 1 gilt. Folglich ist || Afy— V||2 ^ 2n - 2 - + 4 2, und jeder
Weg in SO(ri) zwischen 1 und 1 + 2 verläuft ausserhalb der offenen
Kugel vom Radius um Afy in R"x" und ist damit mindestens so lang
wie der Kreisbogen (expjtBy))^,^.
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