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De même on peut choisir L2 U2®U'2 telle que f2(U2) c T et

fiW'i) <= T.
On obtient alors la décomposition suivante de A :

(s®u1®u2) © (sf®u\®uf2) =r (t®f2(ui)®f^u2j)
® (rQWjQMu'j)

3. La classification

3.1. Premier cas: / 0

Soit A une représentation indécomposable du type (*) avec / 0.

En particulier :

dim E dim F n; dim V dim W n — m ; dim L1 n1 ;

dim L2 n2.

Proposition. Lune au moins des deux applications f1 ou f2 est un
isomorphisme.

Preuve. Par récurrence sur n.

Si n 1, c'est trivial.
Si n > 1, on envisage deux cas :

1) m 0, et alors fx et f2 sont des isomorphismes.

resA
2) m > 0, et on regarde V ~\ W qui est indécomposable (par le lemme)

res f2
et où dim V dim Wen.

Par hypothèse de récurrence, res (f±) — ou res (f2) — est un isomorphisme.
Alors L± 0. Et puisque fx\ L2 est un isomorphisme, fx:E

V®L2 -> W^©/i(L2) F est un isomorphisme. A isomorphisme près,
1 h

on est alors ramené à classer les représentations E E et E E.

h 1

A 1

Remarquons que si fx est inversible, E E est isomorphe à E E.

i
1 /rl

Pour les représentations du type E E, on regarde E comme /c[x]-module
fi
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OÙ l'action de x est donnée par x • vest un fc[x]-module

indécomposable (sinon il y aurait une décomposition de E en sous-espaces

stables par f2 ce qui est impossible puisque A est indecomposab e). es

donc de la forme fc[x]/(ps) où pek[x] est un polynôme irréductible unitaire.

On sait alors que, par le choix d'une base convenable, f2 peut etre mis sous

forme normale de Jordan [4], Plus explicitement, si à est le degre du

polynôme p,la matrice de la multiplication par x dans k[x]/(p*) relativement a la

base

{1 ; x ; x2 ;... ; xd~1
; p(x) ; x p(x) ; x2 p(x) ;... ;

1
; p(x) ;... ; ps 'M ;

xps'1{x)-,...-,xd-1ps'1{x)}

est la forme normale de Jordan de f2, que l'on notera Jp*.

De plus, on a les résultats suivants :

1

1) La représentation E4 Eest indécomposable.il.2) Soient Ax et A2 les représentations E zj E et E z% E respectivement.
Jp* Jpr

Alors: A1 A2op qets r.

Ces deux assertions découlent directement du fait que JpS est la matrice

de la multiplication par x d'un /c[x]-module indécomposable et univoquement

déterminé par p et s (pour les modules sur un anneau principal, voir [5]).

fi
Remarque. Les représentations du type Ez$E pour non inversible

\ Jxn
1 sont de la forme E =£ E.

1
1

On notera A* une telle représentation et Avn la représentation E E,
Jps

où n dim E s deg (p).

Conclusion

Nous avons obtenu une liste complète des représentations du type

fiE^E. Ce sont tous les Apw n dim E, p e k[x], un polynôme irréductible,

fi
unitaire, dont le degré divise n, auxquels il faut ajouter Axn
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Avant de passer aux cas suivants, il est intéressant de remarquer que toutes

les représentations examinées dans ce paragraphe sont auto-duales (isomorphes

à leur duale) :

Soit E /c[x]/(ps) et JpS: E -> E.

Chercher un isomorphisme (p, de E dans son dual, tel que cpJpS JpScp,

revient à chercher une forme bilinéaire non dégénérée, b: Ex E - /c, telle que :

b(x-q; q') b(q;x• q') pour tous qeE et q' e E

Si n est le degré de ps le produit q • q' s'écrit + + a1x + a0 dans

E, et la forme qui fait correspondre au couple (q; q') le coefficient an-1Gk
du polynôme produit a les propriétés voulues.

3.2. Deuxième cas: l 1

Pour simplifier l'écriture, on aura recours, dans ce paragraphe, à des

graphes de certaines représentations. Chacun des espaces E et E y est désigné

par une colonne de points, à gauche pour E, à droite pour E; l'ensemble

des points d'une colonne symbolisant une base de l'espace. Les applications

linéaires fx et f2 sont représentées par l'ensemble des traits reliant les points

de gauche à ceux de droite. Les traits représentant f± « montent » ou « sont

horizontaux » ceux qui représentent f2 « sont horizontaux » ou « descendent ».

Exemple.

Cette représentation a les caractéristiques suivantes :

dim E 3 dim E 4 dim Ker 0 dim Ker f2 1,

dim V dim W 1

On voit immédiatement qu'elle est somme directe de 3 sous-représentations.
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Remarque. En général, une représentation n'admet pas un graphe de ce

type, mais les cas particuliers qui vont nous intéresser s'y prêtent très bien.

Notation. On notera Bn la représentation donnée par le graphe :

n :
: n+1

Remarques.

1) Les matrices de A et f2 dans les mêmes bases que ci-dessus, sont,

respectivement :

n+1
0 0

n

et
0 0

1

n

n+ 1

2) Bn est indécomposable: pour le voir, il suffit de remarquer que la

somme des images par A et f2 d'un sous-espace de E de dimension

est toujours un sous-espace de F de dimension 5- i+1.

Soit A une représentation indécomposable donnée par

A
E V©L1©L2A W®A(Ei)©A(E2) F,

fl
avec dim £ — n, dim F n+1, dim F n — m — 2, dim W — n — m— 1,

dim L1 n1 + l, dim L2 n2 + l.

Proposition. A Bn.

Preuve. Par récurrence sur n.
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n 1 : c'est trivial.

n 2: puisque dim V n — m—2, on a nécessairement m 0 et V 0.

On en déduit encore dim W 1.

Le graphe de cette représentation s'obtient naturellement en partant d'une
base de W :

ML2)

w

fiiLi)
res /i

n > 2. On regarde F PL. Par le lemme du § 2, cette sous-représentation
res f2

est indécomposable.
Soit t dim V n — m—2, alors dim W £+1, et par récurrence, la

res/i
sous-représentation V PL est isomorphe à Bt. En particulier, Ker/^

res /2
Ker /2 0, £ n —2. Le graphe de ^4 s'obtient alors facilement de celui

de B„_2:

Lo •

F

/2CL1)

W
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3.3. Troisième cas: l ^ 2

Soit A, la représentation donnée par

E KffiLiffiLji+jF W®f2(Li)®fi(^2)
f2

dim E n, dim F n + l9 etc. avec l > 2.

Proposition. A est décomposable.

Preuve. Par récurrence sur n :

n 1 : c'est trivial.
res/!

n > 1 ' on regarde la sous-représentation 4 W.
res f2

dim V n — m — 2lt,dimW t + l.

Par récurrence, cette sous-représentation est décomposable. Et alors, par

le lemme du § 2, Aest décomposable.

8. Conclusion

Notation. On notera Cn la représentation duale de Bn. C„ admet le

graphe suivant :

S On a démontré le
M

Théorème. Soit ne N, un entier positif. Les représentations indécompo-

&
sables, EF,oùdim £ n, sont le

h
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