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200 P.-F. BURGERMEISTER

commute. Cest-a-dire: Vf; = flo et Yf, = f,0.
La somme directe de 2 représentations est définie par:

fi fi [1®f1
E3F)®EIF)=E®E 3 FOF,
fa [ [0/

ou (fi®f) (x+x) = fix)+ fix), VxeE, VYx ekE.

Les représentations sont en correspondance bijective avec les 4-modules,
ou A est une algébre de dimension finie [2]. Dans ce contexte, on peut
appliquer le théoréme de Krull-Schmidt ([3], p. 128), d’ou il découle qu’une
représentation se décompose de maniére unique (2 isomorphisme prés, et a
ordre des facteurs prés) en une somme directe de représentations indécompo-
sables. La classification s’obtient alors en dressant la liste de toutes les
représentations indécomposables (3 isomorphisme pres).

2. GENERALITES

Si

Il est clair qu'une représentation E 3 F est indécomposable si et

e fa
seulement si la représentation duale, F* =3 E*, est indécomposable. On peut

/3

1
donc se limiter 4 I’étude des représentations indécomposables A: E 33 F,
12

avec dim E < dim F.

CAS TRIVIAUX .

a) Supposons K = Ker f; n Ker f, # 0. Alors A, indécomposable, se réduit

0 0
a: K30 et, nécessairement, dim K = 1. Ecrivons k 30 la repré-
0 0

sentation ainsi obtenue et notons-la B,.

b) Supposons Im f; + Im f, = F, et soit G # 0, un supplémentaire de

" .

Im f; + Im f, dans F. 4 se réduit donc & 03 G, et de nouveau,
0

on doit avoir dim G = 1. Ecrivons 0 3 k cette représentation et notons-la
0

C, .
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¥

? B, et C, sont 2 représentations indécomposables. Pour la suite nous

| ; supposons
1) Ker fynKerf, =0

| ‘ CAS GENERAL

fi

Soit A: E 3 F, une représentation indécomposable avec dim E = n,
f2

dim F = n+l, n>1et !> 0 des entiers, 4 vérifiant les hypothéses 1 et 2
4 ci-dessus.

1 Nous allons mettre en évidence certains sous-espaces de E et de F
k' qui nous permettront d’obtenir une décomposition de A. Cette décomposition
| étant par hypothese triviale, nous pourrons en tirer, cas par cas, toutes les
¥ conclusions nécessaires a I'identification de A.

| Notons n; et n, les dimensions des noyaux de f, et f, respectivement,
“etposonsm = n;+n, et W =1Imf; N Im f, < F. Alors, dim W = n—m—1.
; En effet, dim Im f; + dimImf, = n—n; + n—n, = 2n—m. Par I’hypo-
§ thése 2, dim W = n—m—(n+1l) = n—m—1L

§  Drautre part, soit V = f7 {(W) nf3 (W) < E. Alors, dim V' > n—m—2L
‘, En effet, diim 7 {(W) = n—m—I+n; = n—n,—I, et de méme dim f5 Y(W)
I =n—n—1L Donc, dimf7'(W)+ dimf; (W)= 2n—m—2I et dim V
m—m—2l—n = n—m—2l. Posons dim V = n—m—=2l+r, 1 > 0.

res fy

Nous avons une sous-représentation, V = 33 W, avec dim V

res f,

\%

n—m—=2l+r,dm W = n—m—1.

Posons maintenant K, = Kerf; n V et k; = dim K, et soit un sous-

espace K, tel que Kerf; = K;@K'. Notons k' = dim K ; alors n,
= k,+k’, . On peut encore choisir un supplémentaire L, tel que f1 (W)

= V@K, ®L,. Soit I, = dim L, ; alors I, = n—n,—l—(mn—m—2l+r)—k’
=k, +1—r.

. De la méme maniére, on choisit une décomposition 3 (W) = V@ K,DL,.

La somme (VBK,®L,;) + (KL,®L,) est une somme directe.

| En effet, soit xe VK, ®L, n K)®L,. Alors xefi (W) nf; (W)

= V.Mais V n (K,®L,) = 0, doux = 0.

. Calculons la dimension d du sous-espace VOK | @L,GK,LDL,:

d=n—m—2l4+r+k’y+k;+1—r+k%+k,+1—r = n—r. Choisissons alors

X c E, un sous-espace de dimension r tel que

AR i R 5 S o s e

AR TNl i 38 i ¥ a3
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E=VOK|@L,®K,PL,DX .
Soit maintenant Y = f,(X) + f2(X) = F. Alors,
F=Imnf+Img = W+f2(K/1)+f2(L1)+f1(K’2)+f1(L2)+Y~

La dimension de F est inférieure ou égale 4 s, la somme des dimensions des
sous-espaces du membre de droite:

n+l<s<n—-m—I+kj +ki+l—r+ky+ky+l—r+2r = n+1.

Par conséquent :
) | resf, ) res f, | res fi )
1) K1 = f,(KY), L — fiLy), 2 > fi(KY),

res f;
L, - 1f 1(L2) ,
sont des isomorphismes.
1) dim Y = 2r.
ii) F = W f,(KD® fo(L;)® f1(KH)D fL(L,) DY .

On a obtenu la description suivante de la structure de A
E=VOK &L, OK,PL, DX,
F=WeLKDD (LD f[L(KY® fi(L,)DY,

ou VOL,®L, 3 W f2(L1)® fi(L,), K 3 f,(KY), fl(KZ) et X3Y
sont des sommands directs. A4 étant indécomposable, elle se réduit 4 'un de
ces 4 sommands.

ELIMINATION DES CAS SIMPLES

0
1) Si 4 est du type K| 3 f,(KY), elle n’est indécomposable que si
res f, " :
dim K = 1 et elle est alors isomorphe a la représentation E = E ou
1

dim E = 1. Appelons A% cette représentation indécomposable. (Cette
notation et les suivantes seront Justlﬁees au § 3). :

res f, ‘
2) De méme, si A est du type K} =3 J1(K%), elle est isomorphe 4 la
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1

représentation indécomposable E 33 E, ou dim E = 1, que nous appel-
0

lerons A7 .

7 | | ,
§3) Si A est du type X 3 Y, alors, comme dimY = 2dim X, A n'est

! f2 (
! indécomposable que si dim X = 1, dim Y = 2et Y = fi(X)® f2(X). Elle
est alors isomorphe 4 la représentation suivante, notée matriciellement:

o

!
i E 3 F (avec dim E=1, dim F=2). Nous appellerons B; cette représen-
3

()
1
tation indécomposable.

Tl ne reste plus qua considérer le cas ou A est donnée par

I f
E = VOL,®L, 3 WO fo(L1)® fillz) = F,

2

}avec dimV = n—m—2l, dimW = n—m—I, (*)
dimL, = n;+!, dimL, = ny+1.

1

§ Remarquons que dans ce cas Kerf; = K, =« VetKerf, = K, = V.

Nous allons studier ce cas en trois parties correspondant aux différentes
fivaleurs de I:1 = 0, = 1,1 > 2. Pour cela, nous utiliserons le

| 8

LEMME. Soit A une représentation comme ci-dessus. Si la Sous-repré-

res f ‘
Qisentation V 3 W est décomposable, A est décomposable.
4 res f '
res f
Preuve. Supposons V = S@®S 3 TOT = W, une décomposition
res f5

inon_ triviale. f3(S) = T, fi(S) = T'. Soient T, un supplémentaire de fi(S)
dans T et T, un supplémentaire de fi(S') dans T'. On peut choisir une
décomposition L, = U, @U telle que f1(U,) = Ty et f3(UY) = T;.
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De méme on peut choisir L, = U,pU, telle que f,(U,) = T et
LU = T.
On obtient alors la décomposition suivante de A :
(SOU,BU,) & (SOU1OUY) 3 (TS H(U,)® f1(U,))
S (T'LHUDD f(UY)

3. LA CLASSIFICATION

3.1. PREMIER cAS: [ =0

Soit 4 une représentation indécomposable du type (*¥) avec I = O.
En particulier:
dmE =dmF =n; dmV =dmW =n-m; dimL, = n,;

dlm L2 — n2 .

PROPOSITION. L’une au moins des deux applications f; ou f, est un
isomorphisme.
Preuve. Par récurrence sur n.

Sin = 1, c’est trivial.
Si n > 1, on envisage deux cas:

1) m = 0, et alors f; et f, sont des isomorphismes.

res fq
2) m>0, et on regarde V' 3 W qui est indécomposable (par le lemme)
res f, .

etoudimV = dim W < n
Par hypothése de récurrence, res (f;) — ou res (f,) — est un isomorphisme.
Alors L; = 0. Et puisque f;:L, - fi(L,) est un isomorphisme, f;:E
= V@®L, » W@ fi(L,) = F est un isomorphisme. A isomorphisme pres,

1 fi
on est alors ramené a classer les représentations E 3 E et E 3 E.
| f, 1
y o S . ]
Remarquons que si f; est inversible, E 3 E est isomorphe & E =33 E.
1 , fit

v 1 )
Pour les représentations du type E 3 E, on regarde E comme k[x]-module §B
. f2 . | ]
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