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CLASSIFICATION DES REPRESENTATIONS
DE LA DOUBLE FLECHE

par Pierre-Frangois BURGERMEISTER

: On connait depuis assez longtemps la classification des représentations
- de la double fleche. J. Dieudonné [1] I'a obtenue pour un COIps algé-
_ briquement clos, aprés avoir dressé un bref historique de la question.
" Lintérét du présent article est de donner un traitement nouveau et parti-
culierement simple du probléme. De plus, on prendra ici, comme COIpS de

base, un corps commutatif quelconque.
Cet article est une version légérement remaniee du travail de diplome

que j’ai présenté & I'Universite de Genéve. Pai bénéficié pour I’élaborer de
P'aide du professeur M. Kervaire; je tiens a lui exprimer ici mes remerciements.

1. INTRODUCTION

Soit k un corps. Une k-représentation de la double fleche est la donnée
de 2 espaces vectoriels sur k de dimensions finies, E et F, et de 2 appli-

: f
cations linéaires f; et f,, de E dans F. On note: E 3 F.
2
o fi 1 |
Deux représentations, E 3 F et E' 3 F ' sont isomorphes s’il existe
fa fa

¢:E > E et y: F — F’, des isomorphismes d’espaces vectoriels, tels que le
§ diagramme double

fi

E 3 F
f2

*l LY
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commute. Cest-a-dire: Vf; = flo et Yf, = f,0.
La somme directe de 2 représentations est définie par:

fi fi [1®f1
E3F)®EIF)=E®E 3 FOF,
fa [ [0/

ou (fi®f) (x+x) = fix)+ fix), VxeE, VYx ekE.

Les représentations sont en correspondance bijective avec les 4-modules,
ou A est une algébre de dimension finie [2]. Dans ce contexte, on peut
appliquer le théoréme de Krull-Schmidt ([3], p. 128), d’ou il découle qu’une
représentation se décompose de maniére unique (2 isomorphisme prés, et a
ordre des facteurs prés) en une somme directe de représentations indécompo-
sables. La classification s’obtient alors en dressant la liste de toutes les
représentations indécomposables (3 isomorphisme pres).

2. GENERALITES

Si

Il est clair qu'une représentation E 3 F est indécomposable si et

e fa
seulement si la représentation duale, F* =3 E*, est indécomposable. On peut

/3

1
donc se limiter 4 I’étude des représentations indécomposables A: E 33 F,
12

avec dim E < dim F.

CAS TRIVIAUX .

a) Supposons K = Ker f; n Ker f, # 0. Alors A, indécomposable, se réduit

0 0
a: K30 et, nécessairement, dim K = 1. Ecrivons k 30 la repré-
0 0

sentation ainsi obtenue et notons-la B,.

b) Supposons Im f; + Im f, = F, et soit G # 0, un supplémentaire de

" .

Im f; + Im f, dans F. 4 se réduit donc & 03 G, et de nouveau,
0

on doit avoir dim G = 1. Ecrivons 0 3 k cette représentation et notons-la
0

C, .
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¥

? B, et C, sont 2 représentations indécomposables. Pour la suite nous

| ; supposons
1) Ker fynKerf, =0

| ‘ CAS GENERAL

fi

Soit A: E 3 F, une représentation indécomposable avec dim E = n,
f2

dim F = n+l, n>1et !> 0 des entiers, 4 vérifiant les hypothéses 1 et 2
4 ci-dessus.

1 Nous allons mettre en évidence certains sous-espaces de E et de F
k' qui nous permettront d’obtenir une décomposition de A. Cette décomposition
| étant par hypothese triviale, nous pourrons en tirer, cas par cas, toutes les
¥ conclusions nécessaires a I'identification de A.

| Notons n; et n, les dimensions des noyaux de f, et f, respectivement,
“etposonsm = n;+n, et W =1Imf; N Im f, < F. Alors, dim W = n—m—1.
; En effet, dim Im f; + dimImf, = n—n; + n—n, = 2n—m. Par I’hypo-
§ thése 2, dim W = n—m—(n+1l) = n—m—1L

§  Drautre part, soit V = f7 {(W) nf3 (W) < E. Alors, dim V' > n—m—2L
‘, En effet, diim 7 {(W) = n—m—I+n; = n—n,—I, et de méme dim f5 Y(W)
I =n—n—1L Donc, dimf7'(W)+ dimf; (W)= 2n—m—2I et dim V
m—m—2l—n = n—m—2l. Posons dim V = n—m—=2l+r, 1 > 0.

res fy

Nous avons une sous-représentation, V = 33 W, avec dim V

res f,

\%

n—m—=2l+r,dm W = n—m—1.

Posons maintenant K, = Kerf; n V et k; = dim K, et soit un sous-

espace K, tel que Kerf; = K;@K'. Notons k' = dim K ; alors n,
= k,+k’, . On peut encore choisir un supplémentaire L, tel que f1 (W)

= V@K, ®L,. Soit I, = dim L, ; alors I, = n—n,—l—(mn—m—2l+r)—k’
=k, +1—r.

. De la méme maniére, on choisit une décomposition 3 (W) = V@ K,DL,.

La somme (VBK,®L,;) + (KL,®L,) est une somme directe.

| En effet, soit xe VK, ®L, n K)®L,. Alors xefi (W) nf; (W)

= V.Mais V n (K,®L,) = 0, doux = 0.

. Calculons la dimension d du sous-espace VOK | @L,GK,LDL,:

d=n—m—2l4+r+k’y+k;+1—r+k%+k,+1—r = n—r. Choisissons alors

X c E, un sous-espace de dimension r tel que

AR i R 5 S o s e

AR TNl i 38 i ¥ a3
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E=VOK|@L,®K,PL,DX .
Soit maintenant Y = f,(X) + f2(X) = F. Alors,
F=Imnf+Img = W+f2(K/1)+f2(L1)+f1(K’2)+f1(L2)+Y~

La dimension de F est inférieure ou égale 4 s, la somme des dimensions des
sous-espaces du membre de droite:

n+l<s<n—-m—I+kj +ki+l—r+ky+ky+l—r+2r = n+1.

Par conséquent :
) | resf, ) res f, | res fi )
1) K1 = f,(KY), L — fiLy), 2 > fi(KY),

res f;
L, - 1f 1(L2) ,
sont des isomorphismes.
1) dim Y = 2r.
ii) F = W f,(KD® fo(L;)® f1(KH)D fL(L,) DY .

On a obtenu la description suivante de la structure de A
E=VOK &L, OK,PL, DX,
F=WeLKDD (LD f[L(KY® fi(L,)DY,

ou VOL,®L, 3 W f2(L1)® fi(L,), K 3 f,(KY), fl(KZ) et X3Y
sont des sommands directs. A4 étant indécomposable, elle se réduit 4 'un de
ces 4 sommands.

ELIMINATION DES CAS SIMPLES

0
1) Si 4 est du type K| 3 f,(KY), elle n’est indécomposable que si
res f, " :
dim K = 1 et elle est alors isomorphe a la représentation E = E ou
1

dim E = 1. Appelons A% cette représentation indécomposable. (Cette
notation et les suivantes seront Justlﬁees au § 3). :

res f, ‘
2) De méme, si A est du type K} =3 J1(K%), elle est isomorphe 4 la
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1

représentation indécomposable E 33 E, ou dim E = 1, que nous appel-
0

lerons A7 .

7 | | ,
§3) Si A est du type X 3 Y, alors, comme dimY = 2dim X, A n'est

! f2 (
! indécomposable que si dim X = 1, dim Y = 2et Y = fi(X)® f2(X). Elle
est alors isomorphe 4 la représentation suivante, notée matriciellement:

o

!
i E 3 F (avec dim E=1, dim F=2). Nous appellerons B; cette représen-
3

()
1
tation indécomposable.

Tl ne reste plus qua considérer le cas ou A est donnée par

I f
E = VOL,®L, 3 WO fo(L1)® fillz) = F,

2

}avec dimV = n—m—2l, dimW = n—m—I, (*)
dimL, = n;+!, dimL, = ny+1.

1

§ Remarquons que dans ce cas Kerf; = K, =« VetKerf, = K, = V.

Nous allons studier ce cas en trois parties correspondant aux différentes
fivaleurs de I:1 = 0, = 1,1 > 2. Pour cela, nous utiliserons le

| 8

LEMME. Soit A une représentation comme ci-dessus. Si la Sous-repré-

res f ‘
Qisentation V 3 W est décomposable, A est décomposable.
4 res f '
res f
Preuve. Supposons V = S@®S 3 TOT = W, une décomposition
res f5

inon_ triviale. f3(S) = T, fi(S) = T'. Soient T, un supplémentaire de fi(S)
dans T et T, un supplémentaire de fi(S') dans T'. On peut choisir une
décomposition L, = U, @U telle que f1(U,) = Ty et f3(UY) = T;.
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De méme on peut choisir L, = U,pU, telle que f,(U,) = T et
LU = T.
On obtient alors la décomposition suivante de A :
(SOU,BU,) & (SOU1OUY) 3 (TS H(U,)® f1(U,))
S (T'LHUDD f(UY)

3. LA CLASSIFICATION

3.1. PREMIER cAS: [ =0

Soit 4 une représentation indécomposable du type (*¥) avec I = O.
En particulier:
dmE =dmF =n; dmV =dmW =n-m; dimL, = n,;

dlm L2 — n2 .

PROPOSITION. L’une au moins des deux applications f; ou f, est un
isomorphisme.
Preuve. Par récurrence sur n.

Sin = 1, c’est trivial.
Si n > 1, on envisage deux cas:

1) m = 0, et alors f; et f, sont des isomorphismes.

res fq
2) m>0, et on regarde V' 3 W qui est indécomposable (par le lemme)
res f, .

etoudimV = dim W < n
Par hypothése de récurrence, res (f;) — ou res (f,) — est un isomorphisme.
Alors L; = 0. Et puisque f;:L, - fi(L,) est un isomorphisme, f;:E
= V@®L, » W@ fi(L,) = F est un isomorphisme. A isomorphisme pres,

1 fi
on est alors ramené a classer les représentations E 3 E et E 3 E.
| f, 1
y o S . ]
Remarquons que si f; est inversible, E 3 E est isomorphe & E =33 E.
1 , fit

v 1 )
Pour les représentations du type E 3 E, on regarde E comme k[x]-module §B
. f2 . | ]
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d ou raction de x est donnée par x-v = f5(v), Vo€ E. E est un k[x]-module

‘indécomposable (sinon il y aurait une décomposition de E en sous-espaces
, stables par f, ce qui est impossible puisque A est indécomposable). Il est
“donc de la forme k[x]/(p) ou p € k[x] est un polyndome irréductible unitaire.
| On sait alors que, par le choix d’une base convenable, f, peut étre mis sous
I forme normale de Jordan [4]. Plus explicitement, si d est le degré du poly-
i néme p, la matrice de la multiplication par x dans k[x]/(p®) relativement ala
base

{1353 %25 5 X275 p()5 X p(x); X% PX); 3 x4 1 p(x); . PPN

x P Y(x); s x4 I T ()}

: est la forme normale de Jordan de f,, que on notera Jps -
De plus, on a les résultats suivants:

y 1
¥ 1) La représentation E 3 E est indécomposable.
Jps
; 1 1
+2) Soient A; et A, les représentations E 3 E et E 3 E respectivement.
Jps Jp"

Alors: A; = A, < p=qets=r.
~ Ces deux assertions découlent directement du fait que J, est la matrice
de 1a multiplication par x d’un k[x]-module indécomposable et univoquement
~ déterminé par p et s (pour les modules sur un anneau principal, voir [5]).

fi

Remarque. Les représentations du type E 33 E pour f, non inversible
1

¥ ’ an
§ © sont de la forme E 3 E.
1 @ 1
— 1
On notera A* une telle représentation et A7 la représentation E 3 E,
J s

p

oun = dim E = s deg (p).

CONCLUSION

Nous avons obtenu une liste compléte des représentations du type

fi

{ E ? E. Ce sont tous les A2, n = dim E, p € k[x], un polyndéme irréductible,
2

unitaire, dont le degré divise n, auxquels il faut ajouter _A_,’f )

e BT o 5557 5o 22 T2
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Avant de passer aux cas suivants, il est intéressant de remarquer que toutes
les représentations examinées dans ce paragraphe sont auto-duales (isomorphes
a leur duale):

Soit E = k[x]/(p") et J,s: E — E.

Chercher un isomorphisme ¢, de E dans son dual, tel que @J,. = J 30,
revient 4 chercher une forme bilinéaire non dégénérée, b: E x E — k, telle que:

b(x-q;q) = b(qg;x-q) pourtous geE et q€E.

Si n est le degré de p° le produit q-¢ sécrit a,_;x""'+..+a;x+a, dans
E, et la forme qui fait correspondre au couple (g; q') le coefficient a,_, €k
du polynéme produit a les propriétés voulues.

3.2. DEUXIEME cAS: [ =1

Pour simplifier Pécriture, on aura recours, dans ce paragraphe, a des
graphes de certaines représentations. Chacun des espaces E et F y est désigné
par une colonne de points, a gauche pour E, a droite pour F; I’ensemble
des points d’une colonne symbolisant une base de l'espace. Les applications
linéaires f, et f, sont représentées par I'ensemble des traits reliant les points
de gauche a ceux de droite. Les traits représentant f; « montent » ou «sont
horizontaux » ceux qui représentent f, « sont horizontaux » ou « descendent ».

Exemple.

Cette représentation a les caractéristiques suivantes:

dimE =3, dimF =4, dimKer f; =0, dimKer f, = 1,
dimV = dimW = 1.

On voit immédiatement quelle est somme directe de 3 sous-représentations.
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une représentation n’admet pas un graphe de ce

Remarque. En général,
s bien.

type mais les cas particuliers qui vont nous intéresser s’y prétent tre

1

Notation. On notera B, la représentation donnée par le graphe:

').’L.vﬁ‘x-ti'»f»m.— =SSRV, . SoiUA ..

T
[

f n: : n+1
i Remarques.
| { 1) Les matrices de f, et f, dans les mémes bases que ci-dessus, sont,
§ | respectivement:
1 1 ¢ 0..0 1
n e n
0..0 1
n n

2) B, est indécomposable: pour le voir, il suffit de remarquer que la
somme des images par f; et f, d’'un sous-espace de E de dimension
i(1<i<n) est toujours un sous-espace de F de dimension > i+ 1.

Soit A une représentation indécomposable donnée par

fi
= V@@L, ®L, 3 W@fz(L1)@f1(Lz) = F,

fa

avec dimE =n, dimF = n+1, dmV =n—m—2, dm W = n—m—1,
dile - n1+1, dim L2 = n2+1.

ProproSITION. A = B,.

Preuve. Par récurrence sur n.
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n = 1: Clest trivial.
n = 2: puisque dim V = n—m—2, on a nécessairement m = 0 et V = 0.
On en déduit encore dim W = 1.

Le graphe de cette représentation s’obtient naturellement en partant d’une
base de W':

- Ji(L2)
L,=f2 I(W) .
. W
L, = f1'(w) .
- faLy)
res fi
n > 2. On regarde V reS:’,f2 W. Par le lemme du § 2, cette sous-représentation

est indécomposable.
Soit t = dim V = n—m—2, alors dim W = t+1, et par récurrence, la

res f;
sous-représentation ¥V 33 W est isomorphe a B,. En particulier, Ker f;

res f,
= Ker f, = 0,t = n—2. Le graphe de A s’obtient alors facilement de celui

de B,_,:

AL2)

L.
folLy)
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3.3. TROISIEME CAS: | = 2

Soit A4, la représentation donnée par

fi
E=V®LBL, 3 F = W f5(Ly)® fi(L2)

2

$mE = n,dim F = n+1, etc. avec [ > 2.

PROPOSITION. A est décomposable.

Preuve. Par récurrence sur n:
'n = 1: cest trivial.

res f,
'n > 1: on regarde la sous-représentation V. 3 W.

res f,
dimV = n—m—2l=t,dim W = t+1

| Par récurrence, cette sous-représentation est décomposable. Et alors, par
I le lemme du § 2, A est décomposable.

8. CONCLUSION

| Notation. On notera C, la représentation duale de B,. C, admet le
i graphe suivant:

i i On a démontreé le

THEOREME. Soit ne N, un entier positif. Les représentations indécompo-

; 1
' sables, E3 F, ou dim E = n, sont les suivantes:

fa
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1) Tous les A2 (ou pek[x] est un polynéme irréductible, unitaire, dont
le degré divise n), et Aj. Pour cesreprésentations, F est de dimension n.
2) B,, ou F estde dimension n+1.

3) C,, ou F estdedimension n—1.
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