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L’UNICITE POUR LES PROBLEMES DE CAUCHY
LINEAIRES DU PREMIER ORDRE

par Xavier SAINT RAYMOND

Depuis une trentaine d’années, l'unicité des solutions des problémes de
Cauchy linéaires a fait I'objet d'un grand nombre de publications. Bien vite,
les études successives sont devenues trés techniques et difficiles a comparer.
Pour remédier & cette situation, dans un livre publié récemment, Zuily [28]
donne des démonstrations détaillées d’'un grand nombre de résultats; par
ailleurs, Alinhac [2] a décrit sans démonstration I'ensemble de la théorie
en groupant les théorémes suivant les différentes classes de problémes traités.

C'est dans ce méme esprit que nous proposons ici une étude détaillée
de la question pour les problémes de Cauchy du premier ordre. Nous avons
choisi de nous restreindre au premier ordre pour les deux raisons suivantes:
d’une part le probléme reste alors suffisamment simple pour que nous
puissions donner des preuves complétes des résultats énonces, et d’autre part,
une telle étude fait déja apparaitre les critéres d’unicité que l'on rencontre
lorsqu’on traite les problémes de Cauchy généraux.

En effet, si nous ne présentons pas ici les résultats les plus généraux
obtenus sur lunicité de Cauchy (Calderon [6], Hormander [9, th. 8.9.1]-
Lerner [13], Alinhac [1], Robbiano [19];, Lerner [12], Saint Raymond [20],
Lerner et Robbiano [14]), nos théorémes en donnent des prolongements
dans le cas du premier ordre; ainsi, nous mettons en évidence I'importance
pour l'unicité de Cauchy des conditions suivantes:

1. Conditions de crochet (ou de structure) analogues aux hypothéses du
théoréme de Calderén [6] ou a la principale normalit¢é d’Hormander
[9, chap. 8]; ainsi, le théoréme 1.2 peut étre considéré comme une extension
du théoréme de Calderéon pour le premier ordre, et réciproquement, le
théoréme 1.1 étend Alinhac [1, th. 1] et Robbiano [19].

2. Conditions de convexit¢ du genre de la pseudo-convexité d’Hormander
[9, chap. 8]; 1a encore, nos résultats étendent les théoremes généraux clas-
siques de l'ordre m: le théoréme 5.2 non seulement contient Hormander
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[9, th. 8.9.1] dans le cas du premier ordre, mais prouve également I'unicité
dans des situations ou on ne peut espérer obtenir d’inégalité de Carleman
(cas pseudo-concave); quant au théoréme 5.3, il étend Alinhac [1, th. 2]
et Saint Raymond [20]. ‘

3. Conditions sur le terme d’ordre inférieur, abordées au chapitre 6.

Pour limiter la complexité technique des démonstrations, nous avons
choisi, outre le cadre du premier ordre, de ne traiter que le cas des
coefficients C®, et de n’étudier P'unicité que parmi les solutions classiques
(Cest-a-dire de classe C'); pour la méme raison, nous ne nous sommes
intéressés essentiellement qu’a l'unicité stable (pour un sens précis de cette
expression, voir le paragraphe 1.1, 'énoncé des théorémes et la remarque 4
du paragraphe 1.4). Grice a ce choix, notre texte ne fait appel a des
démonstrations extérieures que pour utiliser des résultats généraux bien
connus en analyse (théoréme de Borel, cf. Hérmander [11, th. 1.2.6],
théoréme d’extension de Whitney [26], etc.). D’autres travaux sur le premier
ordre sortent du cadre que nous venons de définir; il s’agit notamment de
Zachmanoglou [27], Baouendi et Goulaouic [4], Cardoso et Hounie [7],
Baouendi et Tréves [5].

Les résultats présentés ici ne sont pour la plupart que de 1égéres amé-
liorations de résultats déja connus: ainsi le théoréme 1.1 améliore les
résultats d’Alinhac [1, th. 1] et de Robbiano [19], tandis que le théoréme 1.2
ameliore les résultats de Strauss et Tréves [24]. Ces raffinements ont pour
essentiel mérite de mieux permettre la comparaison des théorémes entre eux.
Les methodes utilisées dans les démonstrations sont classiques: inégalités
de Carleman pour I'unicité, et construction de contre-exemples a base
d’optique géométrique et de recollement.

Le théoréme 4.2 doit cependant étre mis & part car cest un résultat
entiérement nouveau. Bien qu’il s’agisse d’une construction de contre-exemple
ressemblant aux constructions standard, c’est-i-dire du type décrit dans le
chapitre 2, nous voudrions en souligner ici les caractéres spécifiques.

Comme un seul changement de signe de la fonction b ne suffit pas
a faire perdre I'unicité, c’est bien 'accumulation de ces changements de signe
qui nous permet de construire le contre-exemple. Il nous faut donc recoller
des fonctions u, dont le comportement n’est bien connu qu’au voisinage
des changements de signe. Ainsi, d’'une part les valeurs de 9, nous sont
imposees (dans la construction standard, il est important de pouvoir choisir
ces valeurs d’'une maniére appropriée), et d’autre part, nous ne possédons pas
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de développement limité du type (2.1) commun a tous les u,, formule qui
joue un role central pour le recollement au paragraphe 2.3. A ces difficultés
g’ajoute le fait que nous devons choisir les paramétres Ay tellement grands
que l'on m'a plus 2y ~ .1 (contrairement 3 la situation standard ou 2y
est une puissance de k), ce qui a pour effet de multiplier les contraintes

sur ces paramétres (car lim Ay # lim A4 14, €0 général).

k= k—

L’originalit¢ du théoréme réside donc dans I'assouplissement des tech-
niques de recollement des fonctions u,, la partie optique géométrique €tant
réduite au choix trivial de la phase B(f) + 1y: Cest exactement le contraire
de la méthode décrite au chapitre 2 ou Pétape délicate est la construction
de la phase (paragraphe 2.2), le reste (paragraphes 2.3 et 2.4) étant standard
(cf. Alinhac et Zuily [3], et Alinhac [1]).

Enfin, nous tenons & remercier C. Zuily pour les discussions que nous
avons eues, tout particuliérement pour la mise au point du lemme 3.3,
ainsi que pour avoir bien voulu relire ces notes; nous lui en sommes tres

reconnaissant.

CHAPITRE 1: NOTATIONS ET RESULTATS PRINCIPAUX

1.1. COMMENT FORMULER LE PROBLEME

Nous nous plagons au voisinage d'un point x, € R"; I'une des coor-
données dans R” est le temps, mais avant de I'écrire explicitement, nous
considérerons que c’est une fonction donnee ¢ € C*(R") a valeurs reelles
telle que do(x,) # O (afin de pouvoir la prendre comme coordonnée pres
de xg).

On étudie un « phénoméne physique » représenté par une fonction
ue CY(R") a valeurs complexes qui est connue dans le passé (u(x) = Uo(X)
si @(x) < 9(xo)) et qui satisfait une équation d’évolution Lu + cou = f,

n

avec L = 2 afx) 0;0u0; = 0/0x;et lesa;e C ©(R") sont & valeurs complexes

j=1
ainsi que le terme d’ordre zéro co € C*(R"). Ici, uq(x) et f(x) sont des

données du probléme.

Nous nous intéressons a lunicité de la solution d’un tel probléme
indépendamment de son existence, ou plutot a 'unicité locale en x,: €tant
données deux solutions u, et u, du probléme, coincident-elles dans tout un

R D e T .
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voisinage de x,? Comme tout est linéaire, cette question nous conduit
(en posant v=u; —u,) a I'’étude du noyau de I’application linéaire associée: de

Lv 4+ cov =0
ux) =0 si @x) < @xo),

peut-on déduire que v = 0 dans tout un voisinage de x, ?

A Texception des résultats cités au chapitre 6, nous rechercherons essen-
tiellement une propriété d’unicité « stable » dans le sens suivant: sous les
hypothéses des théorémes d’unicité (cf. théoréme 1.2), la propriété d’unicité
demeurera si 'on modifie le terme d’ordre zéro co, ou si 'on se place en
un point voisin de x, sur la surface d’équation @(x) = @(x,). Ce point de vue
explique que nous ne fassions pas mention du théoréme d’Holmgren, ni de
théorémes analogues; cela donne en outre a nos réciproques la forme que
Pon trouvera typiquement énoncée au théoréme 1.1 ci-dessous.

1.2. NATURE DES HYPOTHESES

Nous introduisons maintenant les objets algébriques sur lesquels nous
désirons « lire » la réponse a la question que nous avons posée. Ces objets
sont construits a partir de la fonction temps ¢ et de Popérateur L, et
reflétent leurs propriétés pres de x,. Nous supposerons tout au long de ces
notes que L est non dégénéré en x,, Cest-d-dire que ) |afxy)|* # 0.

=1

Commengons par une définition: Le probléme est ditj caractéristique si
Lo(x,) = 0. Cette définition est indépendante de la fonction ¢ pourvu que
cette derniére définisse les mémes demi-espaces du passé et du futur. Les
chapitres 2, 3 et 4 sont consacrés a I’étude du probléme non caractéristique,
tandis que le probléme caractéristique est abordé au chapitre 5. °

Nous allons construire maintenant ’objet qui permettra principalement la
discussion de l'unicité: I'algébre de Lie % associée au champ L. Par cette
expression, nous désignons I’ensemble des combinaisons linéaires a coefficients
réels des champs réels X = Re L, Y = Im L et de tous leurs commutateurs:
[X,Y] = XY — YX, [ X, [X, Y]] etc. En chaque point x, ces combinaisons
linéaires forment un sous-espace vectoriel de T,R" dont la dimension est
appelée rang de lalgebre de Lie £ au point x et que nous noterons
rg #(x). Comme L est non dégénéré en x,, on a rg ¥(x) € {l, .., n} pour
tout x voisin de x,, mais le rang de £ n’a aucune raison d’étre constant
lorsqu’on passe d’un point & un point voisin.
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A cette algébre de Lie sont associ€es des variétés appelées variétés
intégrales de #. La variété ¥~ sera une telle variété si pour tout xe ¥,
Pespace vectoriel T,¥ coincide avec le sous-espace de T,R" défini par Z.
L’existence de variétés intégrales de .# n’est pas automatique, et nous devrons
la supposer pour obtenir certains résultats. Nous introduisons donc deux
conditions « techniques » destinées & nous fournir de telles variétés intégrales,
ou des variétés se comportant un peu comme des variétés intégrales.

Nous dirons que la propriété (R) est vérifiée dans 'ouvert Q si par tout
point de Q passe une vari¢té intégrale de £; Sussmann [25] a donné des
conditions nécessaires et suffisantes pour que cette propriété soit verifiee;
rappelons que cest classiquement le cas dans chacune des deux situations
suivantes (qui constituent des critéres aisément vérifiables sur un champ L
donné):

1. Lorsque le rang de % est constant dans Q (théoréme « de Frobenius »,
cf. Sternberg [23, p. 132]).

2. Lorsque les coefficients a; de L sont analytiques dans Q (théoréme de
Nagano [16]).
Nous dirons que L vérifie la condition (P) dans @ = Q §’il existe des

coordonnées locales (y, f) e R* ! x R,unouvertvde R*~'etunnombre T > 0
tels que ® = v x ]—T, T[ < Q, que L s’écrive

L = a(y,t)[0,+ib(y,8)+0,] avec a#0 dans v x ]-T,T[,
et que pour tout yew, il existe un vecteur unitaire d(y) e R" ! tel que
b(y,t) = | b(y,t)|d(y) pourtout te]-T,T[.

Cette condition (P) a été introduite par Nirenberg et Treves [17] pour
étudier la résolubilité locale de L, et ces auteurs ont montré que si (M, 1)
était un autre choix de coordonnées locales tel que

L = omn, 1) [0, +iB(M,7): d,], P & valeurs dans R"" !,

I'existence d’un vecteur d(y) tel que b(y, t) = | b(y, t) | d(y) est équivalente a
'existence d’un vecteur &(n) tel que B(n, t) = | B(n, T) | 6(n). Nous verrons au
paragraphe 1.5 comment trouver a partir d’'un champ L non dégénéré des
coordonnées locales dans lesquelles L = a(d,+ib - 0,), b & valeurs dans R" ™1,
si bien que par cette propriété d’invariance, la condition (P) est aisément
vérifiable sur un champ L donné.

Le lecteur remarquera que si L vérifie la condition (P) dans ®, alors
1g ¥ < 2 dans @; cependant, la condition (P) dit plus que cela: elle implique
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Iexistence de variétés de dimension 1 ou 2 le long desquelles le champ L
reste tangent (sans quiil s’agisse de variétés intégrales de %) ainsi qu’une
condition de signe sur les coefficients de L.

1.3. ENONCE DES RESULTATS PRINCIPAUX

Munis de ces notations, nous pouvons énoncer les principales réponses
apportées a la question posée en 1.1.

THEOREME 1.1. Posons S5 = {xeR"|o(x) = ¢(x,) et rg L(x) > 3}.
Si le probléme est non caractéristique et si x,e€ S5, alors pour tout voi-
sinage Q de x,, il existe © < Q avec ®©NS;# O, ueCw) et
ae C®w) tels que -

(L+co+a)u(x) =0 dans o,

(11) Suppu' = 0, = {xe®| o) > o(x)}, et
Suppa < o, .

Moralement, ce théoréme signifie que pour avoir la propriété d’unicité,
il est nécessaire que rg ¥ < 3 sur la surface d’¢quation @(x) = @(x,). Cette
condition est également suffisante lorsque nous faisons I'une des deux hypo-
théses « techniques » introduites au paragraphe précédent :

THEOREME 1.2. Posons S; = {x e R"| 9(x) = @(x,) et r1g L(x) > 3},
supposons que le probléme est non caractéristique et que x, ¢ S;; supposons
encore quil existe un voisinage Q de x, tel que Pune des deux hypothéses
« techniques » suivantes soit vérifiée : soit L wvérifie la condition (R) dans Q,
soit L vérifie la condition (P) dans Q, = {xeQ|o(x) > ¢o(xq)}. Alors,
pour tout voisinage ® de Xx, et toute ue CYw) solution.du systéme

(L+co)u(x) =0 dans o, et
(1.2)

ux) =0 dans - = {xe®|o() < 0(x)},

la fonction u s’annule au voisinage de x,.

1.4. COMMENTAIRES SUR LES THEOREMES

‘1. Comme nous le verrons au paragraphe 2.1, le théoréme 1.1 s’applique
essentiellement aux opérateurs de la forme
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L = 0, + i[t"0, +t*0,,], ky # ky, 0 = t.

Ce théoréme a été démontré dans le cadre plus général des opérateurs
d’ordre m quelconque par Alinhac [1] et Robbiano [19] sous la condition
k, = 0.

2. Le théoréme 1.2 sapplique aux deux opérateurs suivants definis
dans R?:

L(R) = at + lt(t+y) ay et L(P) = at + ie_llt2 aya o=t,

le premier vérifiant la condition (R), mais pas la condition (P), et recipro-
quement pour le second. Ce théoréme 1.2 est dii a Strauss et Treves [24]
qui Pont démontré d’une part sous la condition rg #(x,) = 2 dans R? (cas
particulier de la condition (R)) et d’autre part en supposant que L vérifie
la condition (P) dans tout un voisinage Q de x,.

3. Le théoréme 1.2 devient faux si nous supprimons les hypotheéses
« techniques » ou méme si nous supposons seulement que L vérifie la condition
(R) dans Q,; nous montrerons en effet au chapitre 4 que l'opérateur

.1 :
L=20,+ie smzay si t>0,

L =20, ' si t<0

ne posséde pas la propriété d’unicité par rapport a ¢ = 0 pourvu que l'on
ajoute un terme d’ordre inférieur, bien que rg & = 2 pour t > 0.

4. Dans I’énoncé du théoréme 1.1, il convient de remarquer que I'ouvert ®
ne contient pas nécessairement le point x,; le théoréme 1.1 signifie donc
ceci: sl nous ne savons pas toujours construire une solution de (1.1) au
voisinage de x,, nous savons du moins le faire au voisinage de x; pour
un point x, arbitrairement proche de x, sur la surface d’équation @(x)
= 0(xo). En revanche, lorsque les hypotheses du théoréme 1.2 sont vérifiées
en Xx,, elles le sont en tout point suffisamment proche de x, sur la surface
d’équation @(x) = @(x,), et la conclusion s’applique quel que soit le terme
d’ordre inférieur; le théoréme 1.2 est donc bien une réciproque du théo-
reme 1.1. Cette remarque correspond a la propriété d’unicité « stable »
dont nous avons parlé au paragraphe 1.1.

5. Les hypotheses du théoréme 1.2 sous la condition (R) sont équivalentes
au groupe d’hypothéses suivant: le probléme est non caractéristique, et il
existe un voisinage de x, ou rg ¥ < 2 et ou la propriété (Q) introduite
par Nirenberg et Tréves [17] est vérifiée (cette propriété (Q) peut s’énoncer
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de la fagon suivante: par tout point x € Q tel que rg £(x) = 1 passe une
variété intégrale de .#). Sous la condition (P), nous pourrions omettre
I'hypothése x, ¢ S5 (car (P) dans Q, = S; N Q = @), mais nous préférons
considérer ce groupe d’hypothéses comme I'hypothése x, ¢ S; 4 laquelle nous
avons rajouté une hypothése « technique ».

6. Plan de I'ensemble. Nous exposerons les techniques de construction de
contre-exemples 4 I'unicité dans le chapitre 2 que nous consacrons & démontrer
le théoréme 1.1. Symétriquement, le chapitre 3 contiendra la démonstration
du théoréme 1.2 comme illustration des méthodes développées pour obtenir
l'unicité. Par ces deux théorémes, nous avons « génériquement » répondu a
la question posée; nous avons cependant écarté trois problémes marginaux
qui feront I'objet des chapitres suivants: au chapitre 4, nous étudierons
sur un modele la situation lorsque rg ¥ < 2 mais que les hypothéses
« techniques » ne sont pas vérifiées; au chapitre 5, nous étudierons le pro-
bléme caractéristique; au chapitre 6 enfin, nous étudierons l'influence du
terme d’ordre zéro, c,.

1.5. CHOIX DES COORDONNEES POUR LES PROBLEMES NON CARACTERISTIQUES

Dans ce paragraphe, nous donnons pour les problémes non caractéris-
tiques (étudiés aux chapitres 2, 3 et 4) un choix de coordonnées permettant
d’ecrire sous une forme canonique lopérateur a étudier.

LEMME 1.3. Supposons que le probléme soit non caractéristique; alors il
existe prés de x, un systéme de coordonnées (»,)eR" ! x R tel que:

1. x, = (0,0)

2. 9(x) — @(xg) =t

3. L+ co=alyt)[o,+iby,1)- 0,+c(y, )]

ou a:R">C b:R">R"' et c:R"—>C sont des fonctions C® au

voisinage de (0,0) et a(y,t) # 0 au voisinage de (0, 0).

Démonstration. Commengons par choisir des coordonnées X1, . X, telles
que xo = (0,...,0) et x, = @(x) — @(x,); comme le probléme est non carac-
teristique, nous savons que a,(0, ..., 0) # 0; on peut donc écrire

L+ ¢y = a,x) [6,, + nil (0 (x)+iB;(x)) 8; + cl(x):,
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ou les a;(x) et les B;(x) sont a valeurs réelles. Pour k=1,.,n— 1, soit
y(x) la solution du systéme

yk(x,9 0) = Xk
n—1
a,,yk + 'Zl Otjajyk = 0 .
=
. Y a(y, 1)
Si de plus nous posons #(x) = x,, comme la matrice jacobienne I

admet l'unité pour déterminant en (0, .., 0), nous pouvons utiliser (y,?)
comme nouvelles coordonnées locales; nous obtenons que L + ¢, = (Lt)J,
+ Y(LyWd,, + ¢, est de la forme 3, d’ou le lemme.

CHAPITRE 2: CONSTRUCTION D’UN CONTRE-EXEMPLE

Dans ce chapitre, nous proposons une démonstration du théoréme 1.1.
La méthode utilisée pour obtenir ce résultat est désormais classique; elle a
été mise au point successivement par Cohen [8], Pli§ [18], Hormander [10],
Alinhac-Zuily [3]. Ici, nous suivrons de trés prés la démonstration du théo-
réme 1 d’Alinhac [1] (qui, pour le premier ordre, est un cas particulier du
théoréme 2.2 ci-dessous avec k;, = Oet k, = 1).

La technique consiste a choisir une suite de valeurs positives 8, tendant
vers 0, puis a construire par les méthodes de l'optique géométrique des
fonctions u,, pour ¢(x) voisin de @(x,) + 9., qui soient approximativement
dans le noyau de L + ¢,: c’est ce que nous faisons en 2.2. Puis on ajuste
la taille de ces fonctions afin de pouvoir les recoller pour obtenir une
solution u définie au voisinage de x, et telle que u et a = — (L+c¢y)u/u
soient régulieres: c’est I'opération effectuée en 2.3, les derniéres vérifications
etant reportées en 2.4.

Afin de limiter la complexité de la construction, il convient de choisir un
bon systéme de coordonnées. C’est ce par quoi nous commengons.

2.1. NOUVEAU CHOIX DE COORDONNEES

Plagons-nous dans les hypothéses du théoréme 1.1 et fixons le voisinage Q.
Grace au lemme 1.3, nous pouvons déja trouver des coordonnées locales
(»nt)eR"! x R dans Q (quitte a restreindre ce dernier) telles que
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1. xo = (0, 0)

2. 0(%) — @(xp) = ¢
3. L+cy=0,+ ib(y,t)- d, + ¢(y, t) & un facteur non nul pres.

De plus, en utilisant Phypothése x,€ S, on peut trouver un point
X3 = (y3,0) € Q tel que rg Z(x3) = 3. Nous pouvons alors écrire notre opé-
rateur L + c, sous une forme encore plus précise que celle donnée par le
point 3. ci-dessus, comme le montre le lemme suivant.

LEMME 2.1.  Supposons que L + ¢y = 0, + ib(y, t) - O, + c(y,t) et que
18 L(x3) > 3 pour un point x3€8 = R"™ ! x {0}. Alors, pour tout voi-
sinage Q de x5, il existe un point x,€Q NS, un voisinage ® de X,
et des entiers k, >0 et ky >0 tels que b(y,t) = t*b,(y, 1) et bi(y, 1)
= b:1,0) + *by(y,1) dans ® avec (b1(x;), ba(x,)) linéairement inde-
pendants.

Démonstration. On peut déja supposer que Q est suffisamment petit pour
que le rang de . reste supérieur ou égal 4 3 dans Q n S.

Soit k; =inf{k >0|3IxeQn S:0¢{b(x) # 0}. Alors k, < o0 car
1g Z(x3) = 3. Soit donc x; un point de Q A S tel que 0F b(x;) # 0, et soit
® < Q un voisinage de x, tel que 0¥ b(x) # 0 pour tout xe ® M S. Dans w,
on a b(y, t) = t* by(y, t) avec b,(x) # O si x € S.

Soit maintenant k, = inf{k > 0|3Ixecw  §: 0 by(x) et by(x) soient
linéairement indépendants}. Alors k, < oo car 18 L(x;) = 3. On peut donc
écrire dans , by(y, t) = by(y, 0) + tb,(y, 1) et il existe un point X,e@N S
tel que by(x,) et b,(x,) soient lindairement indépendants.

Ce lemme nous permettra donc de déduire le théoréme 1.1 du théoréme
suivant (que nous démontrerons aux paragraphes 2.2, 2.3 et 2.4).

THEOREME 2.2. Supposons que L + Co = 0; + ib(y, 1)+ 0, + ¢y, t), que
bR XxR->R"™! ¢f ¢c:R"™! xR C sont des fonctions C*® dans
un voisinage Q de xy, = (y,,0) et qu’il existe des entiers k, > 0 et
k; >0 tels que b(y,t) = %' b,(y, 1) et bi(y, 1) = by(y,0) + ¥ by(y, 1)
dans Q avec (by(xo), by(xo)) linéairement indépendants. Alors il existe un
voisinage ® de x,,ueC®w) et ac C*(w) vérifiant (1.1).

2.2. OPTIQUE GEOMETRIQUE

Nous dirons que w e B®(R” x R ) si w(x, 8) est une fonction continue sur
R" x [0, o, indéfiniment dérivable en x pour 6 > 0 et dont les dérivées
restent bornées quand § tend vers 0.
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PROPOSITION 2.3. Sous les hypothéses du théoréme 2.2, il existe au vOi-
sinage de (yo,0,0) deux fonctions @ -et BeC?R" ' xRxR) -telles que
Re ¢(y,t,8) = — Sk ke = 11— §)2 B(y, 8~ 1(t—9), § pour d&>0

(2.1)
B(J’ana 0) = BO >0

et telles que pour toute fonction Y€ B*(R""*xR,), il existe une fonction
w(y, s, €) € B°(R"" ! xR xR, ) telle que w(y,0, 0)=1 et
Vae N VveN, 35, ,: pour 0<8<3,, et

pour (y, 8 %(t—38)) dans un voisinage fixe de (¥o,0)
(22) ) (indépendant de o et V)

| 0*[(L+co)hfh] | < 28"

\

o ON a pOSé:

(23) h(y, t, d)
= w(y, 572(—38), 8% exp [—87 P y(», 8) + 37T 0y, 1, 8)]

(dans (2.2), 0 désigne la dérivation d'ordre o par rapport a y et t)

Démonstration : en trois parties.

1. Construction de ¢ et de B. Choisissons 1, € R"™* tel que by(xo) - Mo = 0
et by(x)* Mo < O (ce qui est possible grace a ’hypothese d’indépendance).
Il existe alors une fonction C*® a valeurs réelles \; telle que

i bl(ya 8) ' ay\ljl(ya 8) =0
ay\|11(}70>0) = To

et on pose:

\I"Z(y: L, 8) = J‘ b(y> 7") * 6y\l/1(ya 6)611‘ s
(P(y, L, 6) = \VZ(ya t: 8) + l‘*"l(ya 8) .

On calcule alors que:

\1]2(.}}3 85 6) = 0 s
at‘l’Z(ya 85 6) = b(ya 8) ‘ ay\ljl(ya 6) = 0 par ChOiX de \bl 5 et

0tVa(y, ¢, 8) = 0:b(p, 1) - O,01(y, d)
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= | ket 7 1by(y, 0) + (k, +hy )T (3, 1) + FrR0,b,(y, t)] * 0,V4(y, 6)

= | =kt 718by(y, 8) + (ky+ky)tFr 2T p(y, £) 4 kTR 0,b5(y, t):l * 0,\4(y, 6)

¢ =1 t ki+ka—1
_ 6’“+"2‘1[—k1 <g> a9, 8) + (ky +ky) (g) b3,

£\ K1tk
+ 0 (g) 0:b(y, t)] * 0,4(y, 9) -

Par la formule de Taylor avec reste intégral, on obtient donc

Re 9y, £,8) = a3, 1, 8) = —87271(t—8)* B(y, 87 (t—8), §)

ou
1
By, o, 8) = J (9—1)[—k1(1+90)’“_1bz(y, 0)
0
+ (ki +ky) (1460) k27 1p,(y, §(1 +00))
+ 3(14+00)**2 9,b,(y, 8(1 +90)):| - 0,4 (y, 8)do
. : 1 N
ce qui donne (2.1) puisque PB(yy,0,0) = — 7 kyby(¥9,0)ne > 0 griace a
notre choix de n,.
Notons que )
L(P(ya (A 8) = - i8k1+k2_1(t—8)2b(y9 t) * ayB(ys 8_l(t——6)9 6)
par (2.1), et si on pose s = & %(t—3),
L[37* " (), 1,8)] = — i87'sb(y, 1) - 3,B(, 8s, 3) .

2. Construction de w. Définissons Iopérateur M par la relation (Mw/w)
= ((L+co)h/h) ot h est donnée par (2.3); on calcule alors que

Mw = 87?[0w+eNw], avec Nw = iB-dw + Cw,

ou B et C sont des fonctions de I'espace B®(R"" ' xR xR, ) définies par:
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B(y, s, €) = &°b(y, €°+¢%),
C(y7 S, 8) = - lb(y> 83 +865) * ayY(ya 83) - iezszb(ys 83 +86S) * ayB(ya 8333 83)
+ €3¢(y, e3+¢%) .

r . . . _1 o
Définissons une suite de fonctions w; de I'espace B*(R” xRxR,)
par les formules (toutes ces fonctions sont bien définies sur un meéme
domaine)

wo(y, s,€) =1,

Wj+1(ys S, 8) = J1 - ij(y’ r, S)dra pour .] = 0.
0
Une solution de (2.2)-(2.3) est alors obtenue formellement en posant
w = Y &'w;. Choisissons donc une fonction de troncature, c’est-a-dire une
fonction x € C*(R) telle que x = 1 sur [0,1], x = 0 sur [2, +oo[ et
v(€) € [0, 1] pour € € [0, + co[. Nous posons
W(ya S, 8) = Z SjXO\'jg)wj(ya Sy 8) s

iz0

et nous allons prouver dans la troisiéme partie de cette démonstration
quil existe une suite de réels positifs A; telle que cette formule définisse
une fonction w de lespace B®(R" ! x Rx R, ) qui vérifie de plus (2.2)-(2.3).

3. Construction de la suite \;. Nous allons montrer qu’il suffit que la suite
A; croisse assez vite pour que l'on ait les deux propriétés précédentes.
Nous pouvons déja imposer que A;,; > 2A; de sorte que pour tout & > 0 fixe,
les y(\jg) soient tous égaux a4 1 ou a O sauf au plus 'un d’entre eux.

Soient k un voisinage compact de y,,so > 0 et g, > 0 tels que les
fonctions w; soient bien définies dans K = k X [—so, So] X [0, &]. Pour
obtenir que we B®(R""*xRxR,), il suffit d’imposer pour tout JeN,

Ay > (J+1)sup {| Dw(y, 5, 8)| | (s, e)e K, |a| <J et j<J+ 1}

ou D* désigne la dérivation d’ordre o en y et s. En effet, si (A;.;)"*
< € S ()\‘J)_ln

J

W(ya S, 8) = .20 8j"‘)j(ya S, 8) + 3H1X(7VJ+ 18)WJ+ 1(y> S, 8)
j=

doncsiO < o] <J,(hysy) t <e<(y) Let(s ek,

J+1

|Daw(y9 S, 8)' < z 8|Dawj(y: S, 8)' < 1‘

ji=1
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Il en résulte que we B®(R" " * xR xR, ) car w est continue sur K comme
somme d’une série uniformément convergente de fonctions continues sur K.
On a w(y,0,0) = 1, et si on a choisi le compact K assez petit, on
. 1 . .
a aussi [w| > 7 dans K (un tel compact K pourra étre choisi aprés coup,
une fois que les A; auront été fixés); il en résulte que |(D'w)/w| reste
inférieur a 2 pour £ < (M)~ ' Comme on peut écrire D*(Nw;/w) comme une
somme (algébrique) comportant au plus (Jof+1)! x 2 termes de la forme
L(DENw;)/w] [(D"*w)/w] ... [(D"=w)/w] (avec a=B+47v;+...+ 7 par la for-
mule de Leibniz), on obtient une majoration

| D*(Nw;/w) | < (e +1)! 2112 sup {| DPNw; | | B < o}
pourvu que € < (}Vlal)—l' Si donc nous demandons pour tout J que

Ay > (J+D)!127* 2 sup {| D*Nw{(y, s, ¢) | | (1, s, e) e K, | o | < J
et j<J+ 1}, |

alors pour (A;, ;) ! <e < (A) Y,
Mw = ¢'~?° [NWJ(I_X()“J+18)) + Nwyy18x(\y418)]

dou | DY Mw/w)| < 2¢’7° pour |a|<J (et (Ayjpy) P <e<(A,) ! et
(3, 5, €) € K). Cette majoration étant obtenue pour tout J, on peut remplacer
la condition (A, ;)" ! <e << (M) *pare < (A,) L

Pour aae N" et ve N fixés, on obtient, en posant J = 6(1+|a|) + 3v,
que pour (y, s, e)e Kete < (A,)" 1,

| 0((L+co)h/h)| = | e~ 5D Mw/w) | < 2e% = 28".

2.3. AJUSTEMENT DES FONCTIONS

Nous posons .
_ 3. . 1 2
& = k™34 I = & — &y | ~ k77 et mp = -0 + - Oy
4 -3 3
Puis nous considérons les fonctions hy(y, t) = h(y, t, §,) définies par (2.3);
ces fonctions vérifient (2.2) pour k suffisamment grand et te18,,,, &, _4[
pourvu que &, >, tende vers O lorsque k tend vers Iinfini, ce qui est bien
3
le cas puisque 8, %[, ~ 7 k=14,

'd

En vue de poser u = h, + I, pour t voisin de m, et de montrer que
a = — (L+co)u/u est C*, il nous faut déterminer le lieu d’équation h, , ,
= — Iy (qui est contenu dans le lieu d’équation | h, ., | = | & |).
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PROPOSITION 2.4. Sous les hypothéses précédentes, il existe un voisinage Y
de y,, une fonction ye B°R""'xR,) 4 valeurs réelles telle que
v(y,0) > 0 pour yeY, et trois suites de fonctions e, € C°(R"™ 1), fi
et g€ C°(R"'xR) a valeurs réelles telles que les fonctions (Y, t)
= h(y,t,8,) définies en (2.3) (avec la fonction Y ci-dessus) vérifient

h/hiv1 = €XP [fxtigil avec

lim (SUP | filys mi) |> =0,

k— o Y

(24) A

2

Bok®
et 0. fdy,t) > sur Y X 1841, 0L
(25) { pour tout o€ N, il existe C, et v, € N tels que sur
' Y x 100s1, 8L 1 °Fu0, D] < Cke et | 0%y, 1) | < Cok™;

{ |3, D] = | b5 D] =t = my + &)

' (26) et ey) = o(ly) (pour k—o0).

Démonstration. Posons
Oy, 1) = 8547 0(y, 1, 8) et wi(y, 1) = w(y, 85 2(t—8x), 8"%);

les constructions s’effectuent en trois temps.

1. Construction de vy. Nous allons choisir la fonction y de telle sorte que

Log | h(y, m;) | — Log | s 1 (0, i) | = 0,

du moins si on néglige I'influence de w dans la formule (2.3). Nous posons donc

I(y) = Re oy, m;) — Re @y, (v, my)
4 1
= [B(J’, 0,0) + 0(1)] [— 55{5 12 + 55,;51 l,%jl (pour k— o0)

d’aprés (2.1), et donc si on a choisi Y de telle fagon que B(y,0,0) > 0
pour y € Y (ce qui est possible grace a (2.1)),

1 _ 3
Ik(y) ~ = 5 B(y’ 0, 0)6k > ll% ~ E B(ya 07 O)k1/4 pour A Y.

Remarquons que de méme, pour tout o € N* 71,

| 0* L) | < CkM*.

&

v

3
P 3
i
i
B
\
«§
is

k—1
Nous posons alors, pour k, assez grand, y,(y) = — ), I;(y); nous avons:
j=ko
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3 3
’Yk(y) ~ _2—6 B(ya 09 0)k5/4 = % B(ya 03 0)81:5/3 s et

| v, () | < C,6;,°° pourtout oeN""1,

et il existe donc une fonction ye B®(R""!xR,) telle que pour tout
3
k> ko, 1) = 8710, 8) et que ¥(y,0) = 5 B(», 0,0) > 0 pour ye Y.

2. Construction des suites f, et g,. Comme 6, 2 [, tend vers 0 quand k
tend vers l'infini, la fonction w fournie par la proposition 2.3 vérifie

2.7) 1im< sup |wk(y,t)—1|>=0;

k-0 \Y X16k+1,8k-1[

nous utiliserons donc la détermination principale du logarithme de w, qui
possede les mémes propriétés de régularité que w; nous posons

fr = ReLogw, — ReLog w1 + ¥ — Yi+1 + Re @ — Re @4

g = Im Logw, — Im Logwy .y + Im ¢, — Im @4 .

Nous avons donc (cf. (2.3)) hi/h,+; = exp [ fr+1ig:], et grace au choix de y

et a (2.7) nous obtenons la premiére moitié de (2.4) soit lim <sup | fuly, m) | )
Y

k— o0
= 0. De plus, il est facile de vérifier (2.5) sur les formules ci-dessus défi-
nissant f, et g;.

3. Construction de la suite e,. Compte tenu de ce qui précéde, il ne nous
reste plus qua montrer la minoration de 0,f, (deuxiéme moitié de (2.4))
et (2.6). Mais (2.6) découle de (2.4) parce que | i, (3, t) | = | h(y, t) | équivaut

3
a fi(y,t) = 0 et que k%I, <~ ) k”“) tend vers D'infini avec k.

En reprenant I'expression de f, ci-dessus, calculons-en la dérivée par
rapport a t

0fx = 6k_2 Re (Owi/wy) — 8k_+21 Re (OsWi+1/Wi+1)
+ 0, Re o, — 0, Re @ 4 -

Les deux premiers termes sont O3, %) lorsque k tend vers linfini (cf. (2.7));
pour estimer les deux autres, on écrit, grace a (2.1)

§1k17k2 9. Re @(y, 1, 8) = — 2(t—B)B(y, 5~ 1(t—$5), )
— 5t —8)*0,B(y, 8~ 1(t—3), 5)
< — Bo(t—9)
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pourvu que |y — yo |, 8 *(t—0J) et & soient suffisamment petits. On obtient
donc

0.f1(y, 1) = ﬁosk_s(sk_t) + BOSk—fl(t"—Sk+1) + O(Sk_z)
> Bodi 3B—0ks1) + Bot—8kr1) Bii1—8x %) + 0@ ?)
=

By 5L + OB 5Lk™Y) + 08,2  (pour k—o0).

3 | .
Enfin, 8; °h ~  k? et 8, % = k" d'oi (2.4) puis (26)

Maintenant que nous avons circonscrit le lieu ou u s’annule (par (2.6)),
il faut nous assurer que (L+c,)u sannule suffisamment en ce méme lieu
pour que (L+4co)ufu soit réguliére. Pour cela, nous devons modifier les
fonctions h; .

PROPOSITION 2.5. Sous les hypothéses précédentes, il existe un voisinage Y
de y,, un entier ko et trois suites de fonctions u,€ C°(Y X 16,41, 0;—1D
a valeurs complexes et F, et Gpe C®(Y X 10z41,0kl) d valeurs réelles tels
que si l'on pose

rk(y s t) = (L+CO )uk(yn t)/ uk(y) t)
vy ) = iy, Dfver 10, 1)

on ait v, = exp [F,+iG,], et r,, F, et G, possédent les propriétés
suivantes pour k = kg:

r(y,t) et ro .0y, t) sont «plates» sur t = my, + ey)
(2.8) . "o
(ce qui signifie que toutes leurs dérivées s’y annulent ) ;
pour tout o€ N" et tout veN,
(29) _
lim sup | K'0*ri(y, t)] | = 0
k=0 \Y X180k +1,0k-1[
F k(y, mk+ek(y)) =0
2.10 k?
(2.10) et 0. Fy, 1) = ISO3 sur Y X 18,11, 6

(2.11) { pour tout ae N", il existe C, et v,eN tels que sur
Yx 141, SL I F3, 0] < Gk et |Gy, 1) | < ke

Démonstration : en deux parties.

1. Construction de la suite u,. Nous choisissons les fonctions u,(y, t) par la
formule u, = h(1+¢,) avec
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8k(y> t) = 8()’5 lk_ l(t_ak): 8la:)

ou la fonction &(y, 1, 8) est 4 choisir. Pour obtenir (2.8), il faudra que pour
tout a e N”,

OFLUL+colm/h] + o[ Ley/(1+2,)] = 0

surt = my, + ey) et sur t = m,_; + e,_,(y). Si nous demandons de plus a
la fonction ¢ de s’annuler sur les fermés ®, et ¥, définis ci-dessous, ces
conditions sont encore équivalentes a la suite d’équations suivante:

pour toutj > 1 et tout k > k,,
dley,1,8) = ©; () sur
2.12) O = {09 |ye .8 = 5, et © = I; {m+e(y)—5,)
01e(y, 7, 8) = {; () sur
Vo= {0,%0)|ye¥,8 = 8, ot v = I (my_, +e,_,()—5,)}

ou les fonctions @; () et V; «(y) s’expriment en fonction des dérivées de
(L+co)h/hy et sont donc a décroissance rapide en k ainsi que toutes leurs
deérivées grice a (2.2). Nous demanderons aussi & la fonction ¢ de vérifier

213 { pour tout [ > 0 et tout j > 0, ainsi que pourj =1 =0,
(2.13) et pour tout k > ko, 0105 6(y,7,8) = 0 sur @, et ¥, et

(2.14) 05€(»,7,0) =0 pourtout [>0.

11 existe une fonction € € C*(R* "1 x R x R) vérifiant (2.12), (2.13) et (2.14):
elle nous est fournie par le théoréme d’extension de Whitney [26] appliqué
au fermé

{0,,)eR"' xR x R[5 = O}u(u @k)u<u Tk).
k

kZko Zko

Les conditions de compatibilité requises pour pouvoir utiliser ce théoréme
sont trivialement vérifiées puisque les fonctions ©;,x €t ;. sont & décrois-
sance rapide en k ainsi que leurs dérivées, et que [ 1(mk+e,,(y)—8k)

1
= — % + O(k™ ) et lk_l(mk—l +ek—1(y)_8k) = 3 + O(k™") (pour k— c0).
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T
A

e

{6=0} -

+

_2/3
///
/ k+1 (Dk

FIGURE 2.1.
Le fermé auquel on applique le théoréme de Whitney.

\§\§
N
X

2. Construction des suites F, et G,. Les équations (2.12) ont été choisies
| pour que r, et r,, soient plates sur ¢t = my, + e(y): la propriéte (2.8) est
}  donc acquise. De la condition (2.14) nous tirons que pour tout oe N" et
{ toutveN,
| 15 hm( sup |kva°‘ek|> =0,
: k= \Y X]8k+1,08k-1l
f % et par conséquent, on obtient (2.9) en utilisant (2.2) et la formule

o°ri = O[(L+co)m/m] + o[ Lew/1+&)] -
4 L’estimation (2.15) permet aussi d’utiliser la détermination principale du
logarithme de 1 + €; nous posons donc:

F, = f, + ReLog(14+¢) — ReLog(14+¢,4,)
G, =g, + ImLog(1+¢,) — ImLog(14+¢&.+1).
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Nous avons alors v, = exp [F,+iG,], et F, et G, vérifient (2.10) et (2.11)

grace a ces formules qui les définissent et 4 (2.4), (2.5), (2.6), (2.13) (=1=0)
et (2.15).

24. CONSTRUCTION DES FONCTIONS # ET a

Par un calcul élémentaire nous voyons que pour y e Y et k assez grand,
3 3 .
Ops1 < O — 7 b <my + efy) < 8., + 1 l+1 < 8. Nous choisissons alors
une fonction 4 valeurs réelles X € C(R) telle que

x(t) =1 pour zte [—3/4,3/4],
suppx < [—1,1] et x(t)e[0,1] pour te[—1,1];

puis avec x,(1) = x(I; (t—8&;)) nous posons

3 u(y, 1) = k;k XDy, 1) pour (y,)eY x ]0,8,[,
u(y,t) = 0 pour (y,t)eY x 1—64,, 0]
a(ya t) = - (L+CO)u(y9 t)/u(ya t) pour u(ya t) # 0 ’
aly,t) = 0 pour u(y,t) = 0.

lukﬂl——L\

____,_/;,/"‘-4. TroTcatures _\_R_
3

3
&+1 D} 5, _Zlk D} my + efy) D} Sevr + Zlk+l D{ 6,

FiGure 2.2.
Profils des fonctions u, et Ug+g POUTr L€ [0,44,6,].
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‘ Régularité de la fonction u. Remarquons d’abord qu’une telle fonction u
est C°. En effet, pour t > 0, u est somme d’au plus deux termes non nuls
- qui sont des fonctions C*®, et u est donc C* dans Y X 10, &,[; pour voir
que u est C* au voisinage de t = 0, il suffit de montrer que pour tout

o e N,
>=0.

Or tous les éléments ayant servi a la construction de u, se comportent
comme des puissances de k ainsi que leurs dérivées; on peut donc écrire

0" (Xt )

(2.16) lim ( sup

k=00 \Y X18k+ 1,0k -1

| 0%(xattr) | < C k" exp (—vx+Re @) .

. 3
Mais — 7,(y) ~ — % B(y, 0, 0)k>/4, et

4
| Re ¢ | < 3 8¢ 212 B(y, 0,0) < kM*B(y, 0, 0)

pour k suffisamment grand et ye Y; comme [(y,0,0) >0 pour yeY,
cela donne (2.16).

Détermination des supports des fonctions u et a. D’apres (2.10), nous
savons que | vy, t) | < 1 pour t € [0, 41, m+e(y)[, et comme dans ce méme
domaine u = .y + Yk, SOIt U = uy (1 4+%0;), on en déduit que u ne
sannule pas; on démontrerait de méme que u ne s’annule pas pour
te Imesq+ers+1(y), 0x+ 1], ni donc dans le domaine

| D={00eY x1-8,,8,[1t>0 et t #m + efy) pour tout k > ko)

qui est dense dans Y x [0, §,[; il en résulte que suppu = Y x [0, 0oL
{ et par deéfinition de a, on a supp a < supp u. Pour obtenir (1.1), il ne nous
§ reste plus qu’a montrer que a est C* dans Y x ]—§,,, &,[-

| Régularité de la fonction a. Dans le domaine D défini ci-dessus, u # 0
}  donc la fonction a est définie par la formule a = — (L+cq)u/u; il en résulte

§ que aest C* dans D. Pour ¢ voisin de m; + e(y), 4 = u,,, + u,, donc pour

] Uty +uw #0,a = —(Ltcou/u = — (Fys 1Upr 1 +1e) [ (Ups 1+ )3 en
 particulier, ‘

a = — (rese1+r0)/(1+0;) si t<m + ey) (<] v <1)
a= — (10 )+ si o t>m + ay) (= lvg ! <1).
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Dans la premiére de ces deux formules, le numérateur est plat sur
L = m + ey) 4 cause de (2.8), et le dénominateur vérifie

Bok®

1 >1— || >
1400 > 1~ o] > 22

(my+ e(y) — t)

F
d’apres (2.10) et en utilisant I'inégalité ef < 1 + ry pour F € [ -2, 0]. L’expres-

sion (11 +7.0;,)/(1+v,) définit donc une fonction plate sur t = m, + ely),
et comme il en est de méme pour Iautre expression, nous avons obtenu
que, méme si u s’annule en certains points de t = my + ey) (ce qui
entraine que a = 0 par définition de a), la fonction a est C*® dans
Y x ]0,5,[.

Pour montrer que a est C® pour ¢ voisin de 0, il nous faut estimer
les dérivées de a sur Y x [6x+1, 6] lorsque k tend vers Iinfini. Pour cela,
nous €tudions a successivement sur les quatre intervalles schématisés sur la
figure 2.2.

3
L SurDyp = {008, <t<3§, _Zlk},ona
k? 3 B
Fk(y’ t) < BO3 (5"—2 lk—mk—ek(y)) £ — 5_00 k1/4

pour k assez grand d’aprés (2.10). En utilisant aussi (2.11), on obtient que
pour tout a € N” et tout ve N,

lim (sup]k"@“v“) =0.
k= 1
Dy

Sur Di, u et a sont données par les formules u = u,,, + Yk €t
a = — (L+cy)u/u, ot ' *

t—39
a = — l:(L+CO)uk+1 + X L+co)uy, + 11 X’( ] k) uk:'/u

k

(-3
= — (rk+1 + [Xkrk + Ity ( ] k)] Uk)/(l + kak)-
k

On en déduit, 4 l'aide de I’estimation précédente et de (2.9) que pour tout
a e N”,

lim(supla"al) =0.
k- 1 '

k
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2. Sur D2 = {3, 1) & — %lk <t <m+ ey)), on a Fi(y,t) <0 d’apres
(2.10) dou |v, | < 1. Comme u = W4y + U 7 0, on peut alors écrire
a = — (Lt+coufu = — (Trrrthor 1 +7) [ (e 1 + %)

= — (rpe1+r0n) /(1 +v),

et toutes les dérivées d’une telle expression peuvent étre estimées par des
sommes de puissances de k avec des coefficients de la forme (0%ry+ y) /A +v).
Mais grace a (2.10)

2

o1 Bok
11+l =21—|vnl= mln{E,BTOZ—(mk+ek(y)— )}

F
car ef <% pour Fe]—oo, —1] et e <1 + 4 pour Fe[—2,0], et le
théoréme des accroissements finis donne pour (y, t) € D}
| (aark(+ 1)(ya t)) / (mk+ek(y)_t)v |
< sup {| amHirk(+1)(y: nl1(t)eDy et |B]<vV}

puisque 74 est plate sur t = my + e(y) (cf. (2.8)). On obtient donc en
utilisant (2.9) que pour tout o € N”,

k 2

lim (suplé“al) = 0.

3
3. Sur D ={nt)|m + ely) <t <84y + i le+1} on procéde comme

sur D? en échangeant les roles de u, et u,,,, et donc en utilisant v, * 4 la
place de v,.

3 B
4. Sur Df = {(n, 1) | 8ks1 + Zlk“ <t < 8} on procéde comme sur Dj

en échangeant les roles de u; et u;. 4.

CHAPITRE 3: TECHNIQUES D’UNICITE

Dans ce chapitre, nous allons montrer comment prouver certaines iné-
galités de Carleman, et comment les utiliser pour obtenir I'unicité de Cauchy.

En guise d’exemple, nous donnons une démonstration compléte pour le cas
elliptique (3.1).

%
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Pour démontrer le théoréme 1.2, nous suivrons le schéma proposé par
Strauss et Tréves [24] sauf au paragraphe 3.2 ou nous nous inspirons de
Zuily [28]. Il faut dans la démonstration distinguer les étapes suivantes:
tout d’abord une étape purement locale ou nous établissons un lemme
technique copié sur le cas elliptique (3.2); puis nous effectuons par deux
fois un passage du local au global afin d’obtenir le théoréme 1.2 sous la
condition (R) d’abord dans R? (3.3), puis dans R" (3.4); enfin, c’est de nouveau
en « globalisant » le résultat donné par le lemme du paragraphe 3.2 que
nous obtenons le théoréme 1.2 sous la condition (P) (3.5).

3.1. LE PROBLEME ELLIPTIQUE

Un champ L de R? est dit elliptique en x, si les champs réels
X = ReL et Y = Im L sont linéairement indépendants en x,. Pour toute
fonction ¢ telle que do(x,) # 0, le probléme associé 4 un champ elliptique
est non caractéristique. Le champ L sera dit elliptique dans un ouvert Q
de R? §’il est elliptique en chacun de ses points.

THEOREME 3.1. Soit L un champ elliptique en un point x, € R?. Alors,
pour tout voisinage ® de Xx, et toute uc CYw) solution du systéme

(3.1) { (L+cou(x) = 0 dans o et

ux) =0 dans o_ = {xeo]|o(x) < o(xy)},
la fonction u sannule au voisinage de x,.

Démonstration. Posons

12 et P(x) = — (V(x)—g)?

pour un g, > 0 que nous choisirons ultérieurement. Remarquons que pour
tout 0 < € < gy, K, = {xe o, | V(x) < €} est un compact tel que x, soit
un point intérieur de K, U o_ .

Le point clé de la démonstration, que nous établirons plus loin, est
I'obtention de I'inégalité suivante (dite inégalite de Carleman): il existe des
constantes T, < o0 et C < oo, et un opérateur R (du premier ordre) tels
que Vv € C}(R?) avec supp v < K, , VT > 1o,

U(x) = o(x) = 0xo) + | x — Xo

(3.2) je"z“l’ lv|2<C Je‘z“l' | (L+co)v | (|Rv|+v]) .
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Montrons pour le moment comment obtenir l'unicité & partir d’'une telle

et ¢, étant fixées de telle maniére que 0 < &,

inégalité. Des valeurs &;
©(R?) telle que

< g, < gy, NOUS choisissons une fonction de troncature y € C
y = 1sur K, etsuppy N0+ < K,,:

{o(x) = @lxo)}

. | LS ’\ ‘
\\&xéfea?z%\g\\\\

v =0

FIGURE 3.1.
Le support de y et les compacts K, K, et K.,.

Soit u une solution du systéme (3.1); formons v = yu le produit de u
par y:ve C}(R? et suppv = K,,, donc on peut appliquer I'inégalité (3.2)
a v. Mais d’une part

eZt(sz—ao)2 j‘ l u I 2 < J' e—ZT‘P I u I 2
Kaz Kaz

ZJ e_Zt\PIvIZSJ‘ e—?.r‘l’|v|29
KSZ Kso

et dautre part, (L+co)v = x(L+co)u + [L, x]u = (Ly)u = 0 sur K,,, dou

JK e” 2 [ (L+co)v | (Ro|+|vl) = j e > | (L+co)v | (Rl +|vl)

Kgo\Ke,

< 821(81—80)2 J‘ | (L+ CO)U | (|RU| + |Ul) s
K¢,

A R AT G T OENE ) b i s 715 70 e
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L’inégalité (3.2) donne donc pour © > 1,

j | u |2 < Ce?re2—e1) 2e0—s1—22) f | (L+co)v | (IRv|+]v]),
Kez KE

(1]

et comme (e,—¢,) (2e0—e; —¢€,) < 0, il suffit de laisser t tendre vers I'infini
pour savoir que u = 0 dans K, donc au voisinage de x,.

Démonstration de l'inégalité (3.2). Comme d\i(xy) = do(x,) # Oet que L
est elliptique en x,, le probléme (avec ) est non caractéristique et nous
pouvons d’aprés le lemme 1.3 trouver des coordonnées (y,f)eR x R
telles que

L. Xo = (Oa O)a

2. ¥(x) =t
3. L+ ¢y =0, + ib(y, )0, + c(y, t) & un facteur non nul pres.

Comme L est elliptique en x,, nous supposerons que b(0,0) > O (sinon,
changer y en —y), et prendrons g, suffisamment petit pour que b > 6 > 0
dans K, .

En vue d’écrire w = e **v, posons L, = e "¥(L4cy)e™, et ¢ = ¢, + ic,
ou c¢; et c, sont a valeurs réelles; d’aprés les points 2 et 3 ci-dessus,
on calcule que:

IJ,t - at i 21:(1"""80) + lb ay + cl + iCZ = M + lN 01‘1

M = at + iCZ
N — b ay + 1(2T(t—80)—cl) .

Dans le découpage ci-dessus, nous avons seéparé la partie autoadjointe
de la partie anti-autoadjointe pour pouvoir effectuer des intégrations par
parties. En effet, pour w € C}(R?) avec supp w = K

€0

1 — 1 — | Nw |2 1 —
Re | — LwWwNw = Re | — MwNw + > Re | — MwNw
ib ib b ib

puisque b > 0 dans K, ; puis
2 Re f Mw(Nw/ib) = J | w]28,[(2t(t—eo)—cy)/b] — f | w2d,c,

par intégrations par parties. On obtient donc:




PROBLEMES DE CAUCHY | _ 27
j w122 (b—(t— )b}/ — [o,03-+ dey/B)])

1 _
< 2ReJ‘€LTwNw i 2J|Ltw| | Nw/b | .
i

Choisissons donc g, assez petit pour que | (t—€0)0b | < 8/2 dans K,
puis 7, suffisamment grand pour que | ,c, + Ofcy/b) | < 0To/(2 sup b?) dans

K.,; alors, pour T > 1o €t Co = 4 sup b?/3,

CTOJIWIZ JlLtWIINW/b'I-

Enfin, pour v € C}(R?) avec supp v = K,,, posons w = e~ "Yp, et reportons
cette expression dans I'inégalité précédente; on obtient:

C .
je—w 0|2 < —nge—m' [Ltcol| | @y—icy/b|

+ C, Je‘”" | (L+co)v| | 2(t—eo)v/b|

d’ou I'inégalité (3.2) si nous posons
R =0, —icy/b et C = max {Co/To, Cosup | 2t—go)/b |} -

Remarques. 11 existe pour les champs elliptiques des inégalités de
Carleman meilleures que Iinégalité (3.2); nous avons fait ce choix parce que
ce résultat sétend a des champs non elliptiques comme nous le verrons
plus loin. L’introduction du facteur 1/b dans les intégrales a pour but de

remplacer Jb&,wayw qui nécessite des calculs pour étre estimée, par Ja,wayw

dont la partie imaginaire est nulle; c’est 1a que nous utilisons Pellipticité de L.
Dans le prochain paragraphe, nous allons montrer qu'un tel calcul est encore
possible sous des hypothéses plus faibles sur L. Avant cela, donnons un
corollaire du théoréme 3.1.

COROLLAIRE 3.2. Soit Q un ouvert connexe de R? dans lequel
le champ L est elliptique. Si ue C{Q) vérifie (L+cou(x) = 0 dans Q
et sSannule dans un ouvert non vide ® < Q, alors u est nulle dans Q.

Démonstration. Notons F = supp u et supposons que F # F.

Alors il existe x, eF\F Comme x, €, il existe une boule ouverte
centrée en Xx,, B(xg, 8), qui soit contenue dans Q. Comme Xx, ¢ F il existe
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un point x; € B(xq, 8/2) tel que x,¢ F. Soit alors & = sup {r|B(x;, )
NF = (@}; on a 0<¢g< 82 puisque F est fermé et que x,€ F, donc

B(x;,€) = B(xq,0) = Q. De plus, par compacité il existe x, € F n B(x, €).
Soit @(x) = | x — x; |%; alors u est nulle dans {xeQ|o(x) < &’}

= B(x,,€) puisque B(x,,&) n F = () par définition de €; or le probléme
est elliptique en x, et do(x,) = 2(x,—x;) # 0, donc par le théoreme 3.1,
u = 0 au voisinage de x,, ce qui contredit le fait que x,€ F = supp u.

Cette contradiction prouve que le support de u est a la fois ouvert et
fermé. Mais supp u # Q puisque ® # () est contenu dans le complémentaire
de ce support. Comme Q est connexe, c’est que supp u = Q.

3.2. UN LEMME TECHNIQUE

Pour préparer la démonstration du théoréme 1.2, nous donnons main-
tenant un résultat d’unicité dans R? copié sur le résultat précédent, mais
sous des hypotheses plus faibles.

LemMMeE 3.3. Soient 0:R >R et b:R?>—> R deux fonctions C*.
Supposons quil existe un voisinage convexe ® de (yo,0(yo)) tel que b
soit positive sur ®, = {(),)ew|t = 0()} et byy,ty) >0 pour un
to tel que (yo,to)€w,. Alors pour toute ue C'(®) solution du systéme

ou +ibou+ cu =0 dans o, et
(33)
u=20 dans o_ = {(y,)eo|t < 0(y)}
la fonction u sannule au voisinage de (o, 8(yo)). .

Démonstration. Elle sera trés semblable a celle du théoréme 3.1. Pour
commencer, nous allons choisir un poids | fabriqué de telle maniére que
I'opérateur n = N/b soit encore bien défini.

Si b(yo,0(yo)) > 0, nous sommes dans le cas elliptique, et le résultat
découle du théoréme 3.1; nous supposerons donc tout au long de cette
démonstration que b(y,, 0(yo)) = 0. Le t, de I'hypothése vérifie donc
to > 0(yo), et il existe un voisinage de (yo,to) contenu dans o, tel que
b > 6 > 0 dans ce voisinage (et nous supposerons & < 1 dans la suite);
nous pouvons méme choisir ce voisinage de la forme
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Iyo—o, yo+al X Jto—0a, to+of .

Nous posons alors

t

(34) V(. 1) = 0—o)* + J b(y, s) (to + o —s)ds .

6(»)

Alors, pour tout 0 < ¢ < o3, K, = {xen, | Y(x) < g} est un compact
tel que x, soit un point intérieur de K, L ®_, ce qui nous permettra de
déduire Tunicité de linégalité de Carleman (3.5) comme dans la démons-

tration du théoréme 3.1.

Soit 0 < g, < a?8 que nous fixerons plus loin. En vue d’écrire

t
w = vexp (—t\l/ + J c(y, s)ds), posons

to

L = [exp(—rxl;+ Jt oy, s)ds):| [6,+»ib6y+c] I:exp('cql— Jt c(y, s)d )]

to

t

Grace a (3.4), et en posant J 0,c(y, s)ds = c1(y, 1) + icy(y, 8) ou ¢y et ¢,

to

sont a valeurs réelles, on calcule que:

L, = [0,+tb(to+o—t)—c] + ib[0,+1d,W—(cs +ic;)] + ¢
=M+ iN =M + ibn

ol nous avons séparé la partie autoadjointe de la partie anti-autoadjointe:

0 o
M=—+ith— —i
o + ith oy ibc,
{
| n = 5}—;‘— it(to+a—t) — ic, .

Alors, pour w € C}(R?) avec suppw < K,
1 — 1. — (1 —
Re ?Ltwnw = Re ?Mwnw + |b|nw|? = Re | - Mwnw
i
puisque b > 0 dans K, ; puis,

2 Re JMW(W/i) = — JI w20 (t(to+a—18)+c,) — JI w | 20,(thd y —bc; )
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par intégrations par parties. On obtient donc

J | w12 [o(1—0,(ba, ) +(3,(be; ) —3/(c,))]

1
<2Rej—,L1wnw<2f|L1w| | nw | .
i

I nous faut maintenant distinguer deux cas. Pour cela, posons
Bo = sup {t > 6(yo) | Vs € [6(3), t], b(yo, ) = 0}; alors 8(y,) < 0, < to. Si
O = 6(yo), alors pour tout voisinage de (y,, 6(y,)) on peut trouver un
€ > 0 tel que K, soit contenu dans ce voisinage; en revanche, si 0, > 0(y,),
alors Y est nulle sur Ky = {yo} x [0(yo), 0o, €t C’est seulement pour tout
voisinage de K, qu’on peut trouver un & > 0 tel que K, soit contenu
dans ce voisinage. Cette distinction de cas nous permet d’écrire :

1. Si 8y = 6(ye), calculons 0, par la formule (3.4):

t

oV = 2(y—y,) + j 0,b(y, 8) (to +a—3s)ds + O'(¥)b(y, 6()) (to + —6(»))

8(»)

et donc b()’o: 9()’0)) = 6y‘l’()’o, 9()’0)) = 0; dou ay(bay‘*ll)(yo’ 9()’0)) =0, ce
qui fait qu’on peut trouver g, assez petit pour que | 0,(bo, V) | < 1/2 dans K, .

2. Si 8y > 6(yo), alors b est nulle sur K,, et comme b est positive dans
®,, O,b est également nulle dans {y,} x ]0(y,), 8,], donc dans K,; dou
0y(bd,y) = 0 dans K,, ce qui fait qu'on peut trouver g, assez petit pour
que | 9,(bd,¥) | < 1/2 dans K, .

Le nombre g, > 0 étant choisi, oublions maintenant cette distinction des
deux cas, et choisissons 1, suffisamment grand pour que | d,(bc;) — d,c, |
< To/4 dans K, _; alors, pour T > 1, ‘

§J|w|2<2f|LTwl|nw|.

Enfin, pour v € C*(R?) avec supp v = K,,, posons

t

w = vexp(—ty + f c(y, s)ds)

t

et reportons cette expression dans I'inégalité précédente; on obtient :
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Je—zw e2Refe) 412 < %Je—m e2Refe | 9.0 + ibd,v + cv| | 0,0 + ¢qv]|

+ 8 Je‘z““ e2Refe | a0 + b0, + cv | | (@, +i(to+a—1) | .

Tl existe donc une constante C telle que pour toute v € C'(R?) avecsupp v = K,
et tout T = T,

(3.5) Je‘z“" lv|2<C Je""‘" | 8 + b0, + cv | (10,04 c1|+v]) -

3.3. UNICITE EN DIMENSION DEUX SOUS LA CONDITION (R)

Nous continuons en donnant une version faible du théoréme 1.2 sous la
condition (R) lorsque I’espace est R2.

THEOREME 3.4. Supposons que 18 L(x,) = 2 en un point Xx€ R%
Si le probléme est non caractéristique (en x, ), alors pour tout voisinage ®
de x, ettoute ue CY(w) solution du systéme

{ (L+co)u(x) = 0 dans o et

(3.6) ux) =0 dans o_ = {xeo|ox) < 0(xy)},

la fonction u sannule au voisinage de x.

Démonstration. D’aprés le lemme 1.3, nous pouvons prendre sur R?
des coordonnées (y, t) telles que:

1. xO — (0, O),
2. 9(x) — @(xo) =,
3. L+ ¢y = 0, + ib(y,t) 0, + c(y, t) & un facteur non nul preés.

St b(0, 0) # 0, nous sommes dans le cas elliptique et le résultat découle
du théoréme 3.1. Sinon, par ’hypothése rg #(x,) = 2, il existe k > 0 tel que }
0% b(0, 0) # 0 tandis que 87 b(0,0) = O pour j < k. Alors, par le théoréme |
de préparation de Malgrange (cf. Hoérmander [11, th. 7.5.5]), il existe, |
pour (y,£)e]1—Y,Y[x]—T,T[ avec Y >0 et T > 0, une factorisation |

b(y, t) = a(y, 1) (t*+ a1 (N1 + ... + ag())
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avec a, dy, ..., 4, des fonctions C® a valeurs réelles telles que .a(y, t) # 0
dans ]-Y, Y[ x]-T, T[, et ai{0) = 0 pour j = 0,..,k — 1. Nous allons
maintenant découper le domaine ]—Y, Y[ x]—T, T[ en petits morceaux
pour pouvoir appliquer le lemme 3.3; ce découpage nous est donné par le
lemme suivant:

LEMME 3.5. Dans la situation décrite ci-dessus, il existe une suite d’in-
tervalles ouverts disjoints (I;),y dont la réunion est dense dans ]—Y, Y[,
et pour chaque i€N, un nombre fini de fonctions C®6;;:I, >R tels
que pour tout yel;:

1. ji <j2=0; ;00 < 6, ;,0),
2. by, 1) = 0«13 telque t = 6, ;().

Démonstration du lemme. Avec les notations précédentes, posons
P, 1) =t + a0 + o + ag(y)

qui est un polyndme en ¢ & coefficients réels et réguliers en y.

Soit O Touvert de ]—7Y, Y[ tel que P(y, t) posséde k racines complexes
distinctes en ¢ pour y € O,; notons ¢, lintérieur du complémentaire de O,
dans ]—Y, Y[. Si O est vide, c’est que O, est dense dans ]—Y, Y[ et
nous arrétons la notre construction; sinon P(y,t) posséde au plus k — 1
racines complexes distinctes en t pour y € ¢;,. Nous définissons alors 0, _,
comme l'ouvert de ) tel que P(y,t) posséde exactement k — 1 racines

complexes distinctes en t pour ye Op_,, puis O,_, comme Iintérieur du
k
complementaire de ¢, dans O,. Et ainsi de suite; I'ouvert U O; est

j=1
alors dense dans ]—Y, Y[. Nous appelons (I;);.y les composantes connexes
des ouverts 0;. .

Dans chaque intervalle I;, les racines en ¢ de P(y, t) sont de multiplicité
constante, et par le théoreme des fonctions implicites, elles sont donc fonc-
tions C® de y; de plus, P étant a coefficients réels, O est racine si et
seulement si O est racine, et donc, toujours a cause de la multiplicité
constante, les racines réelles et distinctes restent réelles et distinctes quand y
décrit I;. Ces racines réelles sont donc représentées par des fonctions

C*9; ;:I; —» R vérifiant 1. et 2.

Démonstration du théoréme 3.4 (fin). Soit u € C*(®) une solution du pro-
bléme (3.6). Supposons qu’elle soit non nulle en un point de ]—Y, Y[ x 0, T[;
alors elle est non nulle dans tout un voisinage de ce point, et donc il
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existe un point (yo, fo) € SUpp # avec y, € I; pour un i e N. L’intervalle I;
étant ouvert, il existe aussi ¢ > 0 tel que [yo—¢& yo+e] < I;.

Posons Y(y, t) = t + to(y—Yo)’e” 2 ot considérons les paraboles P, d’équa-
tions Y(y, ) = 1. La fonction u est nulle en dessous de la parabole P,
puisque P, < {t<0}, mais P, coupe le support de u et P, n {t=0}
c I, x [0, T[. Par compacité, il existe donc un point (y;,t;) € supp u
A (I, x [0, TD) tel que u = 0 dans {(3, ) € ® | U(y, ) < Y0y, 1)} Nous distin-
guerons alors deux cas:

1. Sib(y,,t;) # 0, le probléme est elliptique en (y;, t;) et d(y;,t;) #0;
donc par le théoréme 3.1, u = 0 au voisinage de (y;,t;) ce qui contredit
le fait que (y;, t;) € Supp u.

2. Si b(y,,t;) =0, par le lemme 3.5 il existe j tel que t; = 0; ;(y1)-
En outre, le lemme 3.5 permet d’affirmer que

0 Q= {(yel, x R|6;;_4(y) <t <0 ;(y)} est un ouvert connexe;
B. b ne s’annule paé dans Q, donc L est elliptique dans Q

Comme u s’annule dans {(y, t) € © | V(y, £) < V(y1, t,)}, elle sannule dans
Pintersection de ce domaine avec ©, qui est une partie ouverte non vide
de Q. Par le corollaire 3.2, u est nulle dans (.

De méme, la fonction b ne s’annule pas dans {(y,t)el; x R[8; ;(y)
<t<0;;+1()}, et on peut donc supposer, quitte a changer y en —y,
que b est strictement positive dans ce domaine. Il existe donc un voisinage
convexe w de (y,, t;) tel que b soit positive sur w, = {(y, )ew|t > 0, ;()},
strictement positive en un point (y;,t,)€w,, et tel que u = 0 dans

_={(t)ewl|t <6;;(»} Tout cela nous permet alors d’utiliser le
lemme 3.3 au point (y,, t;): nous obtenons u = 0 au voisinage de (y;, t;),
ce qui contredit le fait que (y,, ;) € supp u.

TTT7] U
(vo- to) }hsupp u—»{ / I//////
TN > = {t=9i.,(}’)}
P, Q
= (}’0,0) ‘—{t=0}—> _______ I S——
K 3 — =0 ;00 '
P, ; \
g ~ Les paraboles P, et P,,. Cas 2.

FIGURE 3.2.
Les paraboles P..
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3.4. DEMONSTRATION DU THEOREME 1.2 SOUS LA CONDITION (R)

Dans ce paragraphe, I'espace est R, n entier quelconque.

Commengons par expliciter les hypothéses du théoréme 1.2 sous la
condition (R); le probléme étant non caractéristique, nous pouvons choisir
(lemme 1.3) des coordonnées locales (y, t) telles que:

1' Xo = (07 O)a

2. 0(x) — 9(xo) = ¢,
3. L+c¢o =0, +ib(y,1)-9, + c(y, t) & un facteur non nul prés.

L’intersection de I'ouvert » avec le domaine dans lequel la propriété (R)
est vérifiée contient un voisinage de (0,0) de la forme v x ]—T, T[ ou
T > 0 et v est un voisinage de 0 dans R"™! suffisamment petit pour que
gL <2sur§S = {(y0eR"|yev}. Onarg.¥ > 1 sur S puisque 9, € Z,
ce qui entralne encore que:

1. Pour un point (y,,0)e S tel que rg L(yy,0) = 1, la variété intégrale
passant par (y,, 0) est {y,} x 1—T, TT[. |

2. Pour un point (y,,0)€ S tel que rg L(y,,0) = 2, si la courbe y = §
est la trace sur S de la variété intégrale passant par (y,, 0), cette derniére
esty x 1T, TI.

Comme la réunion des traces sur § des variétés intégrales de & est égale
a § par la propriété (R), la réunion des variétés intégrales de .# coupant S
est égale au voisinage v x ]— T, T[ tout entier.

Soit u € C'(®) une solution du probléme (1.2), et supposons qu’il existe un
point (yo, o) €v x 0, T[ tel que u(y,, ty) # 0. Ce point (y,, t,) est donc
situ¢ sur une variété intégrale de ¥ coupant S. Si (y,,?,) est sur une
varieté integrale de dimension 1, c’est que b(y,, t) = O pour tout t € ]— T, TJ,
et u vérifie donc I'équation \

atu(yO: t) + C(.VO) t) u(yOa t) = 0 pour tE]-—T, T[

ou y, n’est plus qu'un paramétre; la théorie des équations différentielles
ordinaires nous permet de conclure que u(yy,t) = 0 pour t € ]0, T[, ce qui
contredit le fait que u(y,, ty) # 0.

Il s’ensuit donc que (yo,t,) est sur une variété intégrale de ¥ de
dimension 2 que nous noterons ¥". Utilisons (z, t) comme coordonnées sur ¥~
ou z est I'abscisse curviligne sur ¥" N S, et désignons par z, I'abscisse du
point (yo,t,) dans les coordonnées (z,t). Alors il existe € > 0 tel que
[zo—¢, zo+€] x ]—T, T[ soit contenu dans ¥". Comme dans la démons-
tration du théoréme 3.4, nous posons (z,t) = ¢ + to(z—z,)*> €2 et intro-
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~ duisons les paraboles P, d’équations V(z, t) = t. Nous obtenons ainsi un
d point (z;,t;) du support de la trace de u sur ¥ tel que u =0 dans

{z,t) eV |z, 1) < U(z, , t;)}. Or le probléme (pour \/) est non caractéristique
en (z,,1;) et 18 L2y, 1) = 2 puisque nous sommes sur une variété inte-
grale de ¥ de dimension 2. Nous pouvons donc appliquer le théoréme 3.4
pour conclure que u est nulle au voisinage de (z;,t;) sur ¥, ce qui
contredit le fait que (z;,t;) est un point du support de la trace de u
sur 7.

Nous avons donc obtenu que u = Odansv x ]—=T, T L.

35, DEMONSTRATION DU THEOREME 1.2 SOUS LA CONDITION (P)

Comme le probléme est non caractéristique, nous pouvons faire usage du
lemme 1.3 pour trouver des coordonnées locales (y, ) e R"™! x R, un voisi-
nage v de 0 dans R*~ ' et un nombre T' > 0 tels que

1. xo = (0,0),

2. o(x) — olxo) = 1,

3. L+ ¢y =0, + ib(y, 1)+ 0, + c(y, t) dans v x ]—T, T[ a un facteur non
nul pres,

4. v x 1-T, TL € o n Q.

Soit u € CY(w) une solution du probléme (1.2) et supposons quil existe
Vo, to) €0 x 10, T[ tel que u(yo, o) # 0. Si on avait b(y,,t) = 0 pour tout
t €10, to[, équation se réduirait a une équation différentielle ordinaire, ce
qui conduirait & une contradiction.

Tl existe donc t, €10, to[ tel que b(yo,t;) # 0. Il existe aussi tout un
voisinage de y, tel que b(y, t;) # 0 pour y dans ce voisinage, par continuiteé,
et le vecteur '

d(y) = by, 1) /1 b(y, t1) |

est bien défini et régulier au voisinage de y,; par conséquent, le champ reel
d(y) - 0, admet en y, une courbe intégrale que nous noterons .

Comme la condition (P) est vérifice dans v x ]O, T[, nous avons
b(y,t) = | b(y, t) | d(y) pour tout (y,t) ey x ]0, T[, et donc le champ L est
tangent & vy x JO, T[; nous pouvons désormais nous restreindre a

§ VX 1—T, T[ qui contient le point (yo,t,) ou u ne s’annule pas et sur
§ lequel nous prenons comme coordonnées le couple (z,t) ou z est 'abscisse

curviligne sur y associée au champ d(y):0,; z, désignera l'abscisse du
point (yo, o).

25T i SR T S -
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- Par continuitg, il existe un &€ > 0 suffisamment petit pour que le probléme
restreint 4 y x ]— T, T[ se présente de la fagon suivante:

Lo ¥ = Jzo—¢,2o+e[x]—T, T[cyx]-T, T[;

2. u(z, ty) # O pour z€Jzo—¢, zo+¢[;

3. L4co=20,+ibz,8)9, + c(z,t) dans ¥, = Jzo—¢, zo+€[ [0, T[;
4. b(z,t) > 0 dans 7", (par la condition (P)).

Comme dans la démonstration du théoréme 3.4, introduisons la fonction
V(z, 1) = t + to(z—20)* €% et les paraboles P, d’équations (z, ) = 1. Nous
obtenons ainsi un point (z,,t,) du support de la trace de u sur ¥ "
tel que t, < toetu = Odans {(z,t)e ¥ | Y(z, ) < U(z,, t,)}.

Comme tout a T'heure, si on avait b(z,,t) = 0 pour tout telt,, T,
on prouverait que u(z,,t,) = 0 ce qui contredit le point 2 ci-dessus. Il
existe donc t; € Jt,, T[ tel que b(z,, t;) > 0. Nous distinguons alors deux cas
de figure:

) ' Zy—2Zg \ 2 z—1zq )\ 2
1. Sit, > 0, posons 0(z) = t, + ¢, . — to . (en sorte que

t 2 8(z) < Y(z, ) = Y (22, t,)). Nous pouvons alors trouver un voisinage
convexe w de (z,,t,) contenant (z,,t;) (ou b>0) tel que b soit positive
dans w, = {(z,)ew|t > 0(z)} et u = 0 dans w_ = {(z,)ew|t < 0(z)}.
Par le lemme 3.3 nous en déduisons que u = 0 au voisinage de (z,,t,)
ce qui contredit le fait que (z,,t,) est un point du support de la trace
de u sur ¥, .

2. Sit, = 0, posons 6(z) = 0. Nous pouvons alors trouver un voisinage
2 > P

convexe w de (z,,t,) possédant les mémes propriétés que dans le cas

précédent, d’ou la méme conclusion.

CHAPITRE 4: ETUDE D’UN MODELE DANS R2

Lorsque nous supprimons les hypothéses « techniques », le théoréme 1.2
devient faux; c’est ce que montre I'un des premiers contre-exemples a
I'unicité de Cauchy historiquement construits: le contre-exemple de Cohen [8].
Plut6t que d’en répéter la construction, que le lecteur trouvera par exemple
dans Hormander [9, th. 8.9.2], nous avons préféré étudier de facon assez
précise un modéle dans R? (ce qui assure que rg ¥ < 2) qui fournit des
contre-exemples ou le champ L est complétement explicite; c’est 'objet de ce
chapitre.
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; Pour traiter le probléme non caractéristique général dans R?, nous savons
: daprés le lemme 1.3 quil suffit d’étudier le champ L = 8, + ib(y, ) 0,
b ou b est a valeurs réelles. Nous allons examiner ici le cas ou la fonction b
est indépendante de y, c’est-a-dire que L prend la forme

L =0, + ib) 0, .

Pour un tel modéle, la condition (R) dans un voisinage de lorigine
entraine la condition (P) dans un ouvert (., Q étant un autre voisinage
de lorigine, si bien que le théoréme 1.2 sénonce plus simplement de la
facon suivante: s’il existe un nombre T > 0 tel que b(f) ne change pas
de signe dans Iintervalle J0, T[, alors il y a unicité (au sens de la conclusion

du théoréme 1.2, et pour tout terme ¢ d’ordre zero).
Dans le lemme ci-dessous (que nous ne démontrons pas car nous ne

P'utiliserons pas), nous analysons la condition précédente.

t
LEMME 4.1. Soient b:R — R une fonction C* et B(t) =J b(s)ds.
0

Alors il est équivalent de dire:
(i) VT > 0,b change de signe dans Pintervalle 10, TT.
(ii) Il existe une suite de réels O, décroissante et tendant vers 0 telle

que pour tout k = 1,

{ Ve € [8es 15 8k—11s (—1)FB(E) = (— 1BQ), et
(—D¥BE) — B(6k+1)) > 0.

Dans cette situation, nous allons montrer que I'on peut modifier le terme
d’ordre zéro c en sorte que l'opérateur L + ¢ ne posséde pas la propriété
d’unicité, & condition toutefois de faire ’hypothése supplémentaire que la suite
(—1)¥(B(8;)— B(8;+1)) ne tend pas trop vite vers zéro.

THEOREME 4.2. Soient b:R - R et c¢:R?* - C deux fonctions C%;

t
posons B(t) = j b(s)ds, et supposons qu’il existe une suite de réels o,
0

décroissante et tendant vers 0, et un réel e, > 0 tels que si I'on pose
&+, = exp[—ex '] pour tout k=1 on ait

{ Vt e [8kr1, 8k—11, (—1B@) = (—1'B(1), et
(—1)k(B(5k)"B(5k+1)) = €.
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Alors il existe un voisinage ® de (0,0) dans R% ueC®w) et ae C®w)
tels que

[0, +ib(t) 0,+c(y, ) +a(y, )] u(y,t) = 0 dans o,
(4.1) suppu = o, = {(),t)ew|t =0}, et
suppa C o, .

Exemple. Le lecteur vérifiera facilement que la fonction

b(t) = e Y sin(1/t) pour t >0,
b(t) = 0 pour <0

satisfait les hypothéses du théoréme (on prendra 8, = 1/km).

La démonstration du théoréme 4.2 s’effectue en deux étapes: d’abord nous
construisons cing suites de paramétres A, m;, px, qi, Y: possédant de
bonnes propriétés asymptotiques; la deuxiéme étape, plus standard, utilise
ces parametres pour construire les fonctions u et a par une technique de
recollement analogue & la méthode de Cohen [8] (cf. aussi les calculs du
paragraphe 2.4).

PROPOSITION 4.3.  Sous les hypothéses du théoréme 4.2, il existe cing suites
de réels positifs N, my, pr, Q. et 7y, telles que

Op+1 < Pr < My, < q < Oy,

1
Vie [Okr1, il (— 1)k(B(t) _'B(mk)) < - 5 = 1)k(B(mk) —B(y+1 ))

(4.2) 7 )
et (—1)Bt)—B(E,)) < — g(_l)k(B(Bk)—B(8k+l)) "
1
et Vte[qy, 8], (—1)(B(t)—B(m)) > 3 (—D)¥B(my)—B(8+1)) -
[ — e+ (— 1*A(B(m, ) — B(Sy))]
(4.3)
= [—Yir1+(— 1)k+17‘vk+1(B(mk)—B(5k+1))] .
(44) m Logh, lim Log (P —8x+1) : lim Log (8, —qx) _0.

k>0 Yk _k—>oo )‘k(B(ak)—"B(5k+1)) k= Ye+1
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[ Log (A +Ax+1) . Log (P —Ok+1)
lim = lim
k~a (Mt 7"k+1)(B(mk)—B(5k+1)) k— oo (?‘k+)“k+1)(B(mk)—B(6k+1))

(45) |
Log (8x—4gx)

= h =0
T T s 1) (Blm)— BGer 1))

Démonstration : en quatre parties.

1. Construction de la suite A,. Nous choisissons X, = & 3. on peut alors
écrire
Log Ay 4 < —3 Log g+

S — =—382L0g8 =38, d,Ol‘l
M | B(i) — B(Bx+1) | Er > & k ket 1 k

. LOg }\‘k+ 1
46 lim =0
(4.6) ko 0 Xk(B(Sk)—B(5k+ 1 ))

En outre, comme €2, > e, 3 (car ¥ > ex = (¢9)® = €°%°),

4.7) Mer1 = 2 0.

2. Construction des suites m;, p, et q,. En utilisant (4.7), nous pouvons

gcrire

1 A

0<=-—=
2 k+1

(— 1)k(B(8k) —B(0;+1 )) < (= l)k(B(Sk) —B(0 4+ 1 ))

et donc, par le théoréme de la valeur intermédiaire, nous obtenons Iexis-
tence d’un point m, € 10, 1, Ox[ tel que
1 A

(4.8) (= 1f(B(my) ~ B@er1)) = 55
k+1

(~ D(B®)—~ BlBs1)
Nous posons ensuite:
Pr = Sup {p > &4y |Vt €84 ,. Pl
(= DB~ BG- ) < 5 (— D{Blm) — B®y:1)}
q, = inf {q < &, |Vt e [q, 6,1,
(= DB~ Be. 1) > 5 (— D{Bom)— BG,.1)} -

La propriété (4.2) se déduit facilement de cette définition et de (4.8). Nous
aurons en outre besoin d’estimations sur p, — 0,4, et &, — q;. Or B(p;)

— B(®;4,) = E(B(mk)—B(Skﬂ)); par le théoréme des accroissements finis,

il existe donc 0, € 16, , 1, pi[ tel que
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(D — — O+ 1) (6, —'(B(mk) B(8k+1))

et comme b est bornée au voisinage de 0, on obtient pour un C > 0

(Px—0+1) = C(— l)k(B(mk)_B(8k+1)) .

En multipliant cette inégalité par A, et en utilisant (4.8) il vient

C
7»k+1(Pk—5k+1)/5( 1 M(B(8¢) — B3y + 1)) -

On procéde de la méme fagon pour estimer §, — g,; A ayant été choisi
de telle sorte que (— 1)“Ay(B(8;) — B(3, + 1)) tende vers I'infini avec k, on a donc

49) { pour k suffisamment grand
‘ | Log (px—8k+1) | < Log Xy, et | Log (8c—qx) | < Log Ay .

3. Construction de la suite y,. Pour construire Yr nous prenons la pro-
priété (4.3) comme définition, c’est-a-dire que nous posons ‘

Y1 = 0, puis pour k > 1
Yev1 = Ve — (_l)k}\‘k(B(mk)_B(ak)) + (=D, I(B(mk)_B(8k+1))'
De (4.7) et (4.8) nous tirons

1
(= DYB(my)— B(8;.+1)) < 1 (= DYB(@)—B(8;+,)), dou
3
(— l)k(B(6k) — B(m, )) = 4 (— l)k(B(Sk) — B(0 + 4 )) ,  puis

3
— (= 1)AyBlm; )~ B(Sy)) = 5(_1)k7‘k+ 1(Bm) — B(3y+.1)) .

En reportant cette estimation dans la définition de v,, on obtient
1
(4.10) Ye+1 2= Vi + 5 (— 1A+ 1(B(my) — B(8y 4 1)) .
4. Calcul des limites (4.4) et (4.5). De (4.8) et (4.10) nous tirons que

1 1
Ye+1 = 5 (— 1)kkk+ 1(B(mk)'_B(6k+1)) = 4 [ — l)k}\‘k(B(Bk)_B(ak+1)) 5

d’ou
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Log M+ s < 4 Log M+ 1
Yi+1 h (— 1)k7‘k(B(8k) — B(8y+1 ))

Gréce a (4.6), nous en déduisons que

. Log A
lim

k»o Yk

= 0.

De plus, en utilisant (4.9) nous pouvons écrire

Log (px—0k+1) Log M+ 1
MdBG)— B0+ 1)) | | MBG)—BGi+1)) |
Log (8, —qx) < Log M+ s
Ye+1 Yk+1

d’ou (4.4) en utilisant (4.6) et le résultat précedent.
Gréce a (4.7) et (4.9) on a

Log (Ae+Ax+1) Log A+ 1(1 +0(1))
e+ 2g1) (B(mk)—B(8k+ 1)) T M l(B(mk)_B(8k+ 1)) ’
l Log (px—8x+1) Log Ay
(At 1) (B(mk)—B(6k+1)) h M+ I(B(mk)—B(6k+1)) ’

Log (8, —4dx) Log A+
(At 1) (B(mk)—B(8k+1)) h M+ 1(B(mk)_B(8k+1)) ’

puis d’apres (4.8),
Log Ay 1 2Log gy

M+ 1(B(mk) —B(64+1 )) xk(B(Sk) —B(0 + 1 )) ’

ce qui implique (4.5) en utilisant (4.6).

Démonstration du théoréme 4.2. Etant donnée une fonction ¥ e C*(R)
vérifiant: 0 <y < 1, = O sur ]—o0,0] et x = 1 sur [1, + o[, nous défi-
nissons dans ® = R x ]— o0, §;[ les fonctions suivantes:

u(y, ) = exp [ —vi+(—1)*A(B()— B(3) + i)’)] .

‘ t—6k+1 t_B
Pilt) = x(————) et f) = ( <,
¢ Pr—Ok+1 Vit x Q5 — Oy ,

3 uo(y, t) = @Oy, 1) + ViOuge 4 1(y, 1) pour te€ 041, 0],
uo(y,t) = 0 pour t<0,
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3 ao(y, 1) = (Ouuo(y, ) +1b(t) Oyuo(y, D)/uo(y, 1)  si  uo(y,2) # 0,

aO(y> t) = 0 Si uO(y9 t) = 09
t

a.(y, t) = b(t) J d,¢(y, s)ds pour t >0,
0

a(y,t) =0 pour t<0.

Puis enfin nous posons

a(y,t) = —ag(y, ) + ia,(y, t), et

u(y, t) = ug(y, t) exp [— f c(y, S)ds} .

t

0

t
Comme exp |:— J‘ c(y, s)ds} est C” et non nulle, il suffit, pour montrer que a
0

et u sont solutions du probléme (4.1), d’établir les quatre points suivants:
1. La fonction u, est C* dans ®. La fonction u, est clairement C® pour
t > 0 ainsi que pour t < 0. Pour conclure au voisinage de t = 0, il faut
estimer les dérivées de u, pour les petites valeurs de ¢.

Comme (—1)B()—B()) < 0 et (—1*"Y(B(t)—B(8;+1)) < 0 pour
t € [x+1, 0kl €t que @i(t) = 1 pour t € [py, 8], on peut écrire les estimations
suivantes:

| 0%(@u) | < ), CoMfle™  pour telp,,8], et

B<a

| " (Watges1) | < Z CBy(Sk—Qk)_M Mﬁh e TRt

B+y<a

pour  te 841, 0]

ou les constantes Cy et Cp, ne dépendent que de a, de X et de b, mais
pas de k. Or le logarithme de chacun de ces termes vaut

LogCBJrIBILong_l] of

k Yr

LogCs + | B|Logh, — v = vk[

Log Cg, — |y Log (Bx—qx) + | Bl Log Aisy1 — Yist
Log Cgy Log (3 k—Qk) Log Ay
= Tk+1 — —1

| v | + Bl ————

k+1 Ye+1 Ye+1

et tend vers —oo lorsque k tend vers Iinfini grice a (4.4); donc les
quantités de départ tendent vers O.
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Reste 4 estimer le terme [ @ (u(y, t)] pour t €[Sy, pil; dans ce

domaine, (—1)%(B()—B(8;)) < — —;—(— 1)(B(8;) —B(8;+1)) d’aprés (4.2), d'ou

I’estimation
I aa((pkuk) |
7
< ; Y Coypr—8k+1) " JP exp [— Yi — g(_l)k)"k(B(8k)_B(6k+1)):|a
+y<a

ou les constantes Cg, ne dépendent que de o, de y et de b, mais pas de k;
comme ci-dessus, on calcule le logarithme des termes de cette somme

Log Cy, — | v | Log (py—0x+1) + | Bl Log Ay

[+ § e 56 | < e g 0)~ B

X |:
et cette expression tend a son tour vers —oo lorsque k tend vers l'infini
grace a (4.4). Nous avons donc démontré:

Log CB.,

Yk

8 Log (pr— 0k +1) Log A, }
—1
| "m(B(ak)—B(sm)) ' 1P

Y

lim ( sup | 0®uy(y, t) |> =0.

k= \RX[dk+1,0x]

2. Le support de a est contenu dans suppu, = {(y,t)e®|t = 0}. Pour
t€[0,41, 0], posons v, = u/u,, . En utilisant (4.3), on peut écrire:

(4.11) 0y, 1) = exp[(— 1 Me+Ner 1) (B(O)— Blmy) +iy)] .

Pourt e [8:4,pi], onagriced (4.2) | v | < 1, et comme ug = uy (14 Qu0p),
on a u, # 0. De méme pour t e [q;, 6,1, | v, | > 1 et uy = w1+ /v,) # O.

Enfin, pour t € [p;, ¢,], o = w, + w11, et doncu, = 0 équivauta v, = —1,
ce qui entraine d’aprés (4.11) que
exp [(— D he+2Mer)iv] = — 1,

. { n+1)n
soitye<d—
xk'+ 7\'k+1

={nHenlt >0}
Par définition de a,, supp a, = supp u,, et par définition de a,, supp a,
<{(,t)ew|t = 0}, dou finalement supp a = supp u,.

ne Z} ; cet ensemble étant discret, on obtient que supp u,
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3. La fonction a, est C* dans . Pour tout k, on a du, + ib d,u, = 0,
et donc pour t € [py, qil, g = e + W4y = ag = g + ib d,uy = 0; pour
t € [qi+15Pils o # 0 donc ay = (0ug+ibd,uy)/u, est une fonction C®. Il
en résulte que la fonction a, est C* dans les domaines d’équations ¢t > 0
ett < 0.

Pour conclure au voisinage de ¢ = 0, il faut estimer les dérivées de a,
pour t €[4, Pi] €t t € [qy, 8] (ao est nulle en dehors de ces intervalles).

Pour t € [8; 41, Pils | v | < 1, et on peut écrire

_ (0 +1b0,) (P + 1) Wy .
ap = . = ,  ou
Qi + U4 L+ x;
_ 1 o E= 041
Wiy, 1) = (D=0 +1) " X | ——=—— | vy, 1) et
Pr—Or+1

X¥: 1) = Qut)vu(y, 1) -

Pour montrer que les dérivées de cette expression tendent vers 0 lorsque k
tend vers I'infini, il suffit de montrer qu’il en est ainsi pour les fonctions
w; et x;,. En utilisant (4.2) et (4.11), on obtient les majorations

| w | < D) CBy(pk_6k+l)_1_|Y|(}"k+7\‘k+1)m|

B+y<a

1
cXp |: ) (—l)ko\'k+7\'k+1) (B(mk)_B(6k+1))j| )

| %%, | < Z CBy(pk_8k+1)-|Y|0“k+7\’k+1)lm

Bty<a
1
exp [— 5(—1)k()\‘k+7\'k+1) (B(mk)—B(5k+1))J,

ou les constantes Cy, ne dépendent que de a, de x et de b, mais pas de k.
Comme tout a I’heure, on montre que ces expressions tendent vers 0 en
calculant leurs logarithmes et en utilisant (4.5). Nous obtenons donc

lim< sup |6°‘a0|) = 0.

k=00 \RX[8k+1,pKl]

On montre de méme a laide de (4.2), (4.11) et (4.5) que
lim < sup | 0%a, [) =0.
k= oo \RX[gx, 8]

4. La fonction a; est C® dans ®. Pour obtenir cette derniére propriété,
il suffit de remarquer que toutes les dérivées de la fonction b tendent vers O
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| fglorsque t> 0 tend vers 0. En effet, comme b(5;) = 0 pour tout k, nous
_obtenons par application répétée du théoreme de Rolle que pour tous j
ot k entiers positifs, il existe un point 04 € 18,4 ;, il tel que 0{b(64) = 0;
la limite annoncée en résulte.

CHAPITRE 5: LE PROBLEME CARACTERISTIQUE

Dans ce chapitre, nous donnons deux résultats: un d’unicité, I'autre de
non-unicite.
Au paragraphe 5.1, nous regardons ce qui subsiste du théoreme 1.2
lorsque nous supprimons I'hypothése que le probléme est non caractéristique.
Le résultat d’unicité (théoréme 5.2) découlera d’un theoreme sur la géométrie
] du support d’une solution (théoréme 5.1) qui est di a Bony (cf. Sjostrand
. [22, th. 8.7] qui en donne une extension aux équations d’ordres supérieurs).
| Puis au paragraphe suivant (5.2) nous construisons un contre-exemple a
Punicité sous la condition que le rang de % est constant. Ce dernier
résultat est di a Saint Raymond [21, th. 2.9].

5.1. RESULTAT D’UNICITE LORSQUE 1g % < 2

Plagons-nous dans les hypothéses du théoréme 1.2, mais sans nous donner
de fonction ¢ ni supposer que le probléme est non caractéristique. Cela
signifie que nous sommes dans I'un des deux cas suivants:

1. L vérifie la condition (R) dans un ouvert Q ou rg. % <2 (cf. 1.2).
2. L vérifie 1a condition (P) dans un ouvert Q (cf. 1.2).

- Donnons-nous de plus une solution u € CY(Q) de I'équation (L+cq)u(x)
; . = 0 dans Q. Alors, pour paraphraser le théoréme 1.2, chaque fois que I’'on
- trouvera X, € Q et ¢ € C*(Q) a valeurs réelles tels qu’il existe un voisinage
g © o de x, avec

xo € (Supp un®) < o, = {xe® | o(x) > 9(x0)} ,

‘?; on pourra affirmer que le probléme en x, est caractéristique, c’est-a-dire que
Lo(xo) = 0 ou encore que X@(xy) = Yo(xo) = 0.(si X=Re L et Y=Im L). 3
"; Cette remarque nous donne une relation entre les champs réels X et Y !

ot le fermé F = supp u dont nous allons analyser les consequences dans le i
prochain théoréme.
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Avant de Iénoncer, rappelons quun champ réel X (éventuellement
degénére) défini dans un ouvert Q vérifie toujours la propriété (R). En effet,
pour les points x ou X s’annule, {x} est une variété intégrale, et dans
Pouvert ou X ne s’annule pas, le rang est constamment ¢gal a 1 d’ou la
propriété gréce au théoréme de Frobenius (cf. 1.2). Si X = = ajx) 9;, nous
noterons e“x, la solution x(f) du systéme différentiel ordinaire su1vant

x5(t) = ax())
x(0) =

Si X =0 en x,, €¥x, reste egal 4 x,, tandis que si X # 0 en x,,
e*x, décrit la courbe intégrale de X passant par x,.

THEOREME 5.1. Soient X wun champ réel défini dans un ouvert Q
de R", et F c Q une partie fermée dans Q. Supposons que pour tout
Xo €Q et toute @€ C®(Q) d valeurs réelles,

[3o ouvertde Q:xoeFnoc o, = {xcn|px) > ¢(x)}]

= Xo(xy) =

Alors, pour tout compact K de Q, il existe &> 0 tel que

Xo€FNK e |t|<e=e%x,eF.

Démonstration. Pour un compact K fixé, choisissons un voisinage
compact W de K (c’est-a-dire KCW W compact de Q); il existe alors
€ > 0 ne dépendant que de K, de W et de X tel que pour x,€K
et te]—eg, e[, ¢*x, soit bien défini et reste dans W: par la suite,
chaque € que nous choisirons sera plus petit que le precedent et ne dépendra
que de K, W, X et F. .

Pour tout x, € K, le systéme |

0,0(t, x) + Xo(t, x) =
(5.1)

@0, x) = | x — xo|*
admet une solution ¢ (dépendant de x,) définie dans ]—e,,e,[ x W
pour un g, > 0. La dérivée par rapport a t de ¢(t, ¢”*x,) est nulle & cause
de I'¢équation (5.1), d’ou @(t, ¢*x,) = @(0, x,) = 0. Puis dérivons la fonction
@(t) = 0;0(t, ¢*x,); nous obtenons (en utilisant (5.1)):
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o'(t) = (0,[a.0(t 0] + X [0;0(t 0)]) [ x=etrsy

= [Xa ’aj] O, X) | x=erxxy = Z ajak(etxxo)(Pk(t)
: K=1

dou @) = 0 puisque c’est vérifi€ en ¢ = 0. Comme 00, x) = | x — X0 |2
il existe un g5 > O tel que si xoe K, xe Wet|t] < &,

1
(5.2) o(t, x) = 5 | x — e%xy|2.

Pour x, € F n K, nous avons 0 = inf ¢(0,x) < inf (0, x) et donc
xeFnW xeFnoW

cette inégalité reste vraie lorsque | £ | < € pour un € > 0. Pour toutt € ] —¢, €[
fixé, il existe donc un point x, € F n W ou o(t, x) atteint sa borne inférieure,
soit

x, € (FaW) « (W), = {xe W ot x) > olt, x)} -

En utilisant ’hypothése du théoréme on obtient X¢(t, x,) = 0, et en utilisant
Péquation (5.1), 0,0(t, x,) = 0. Nous avons donc pour tous |t]| < & et
|s] <,

0((t—S)2) = (p(ta xt) — (P(S, xt) < (p(ta xt) - (P(S’ xs) < (P(t> xs) - (P(S, xs)
— 0((t—9))

. douo(t, x,) = 00, xo) = 0.Par (5.2) nous en déduisons que pour xo € F N K

B oct|t]| <ege¥x, = x,€F.

Pour pouvoir tirer les conséquences pour l'unicité de ce théoréme, il
nous faut introduire un nouvel objet géométrique.

Si L vérifie la condition (P) dans un voisinage Q d’un point x, € R"
choisissons des coordonnées (lemme 1.3) dans lesquelles L s’écrit 0, + ib - 0,
a un facteur non nul pres, et notons ¥, la courbe intégrale du champ réel 0,
passant par x,. Si le rang de £ reste égal a 1 au voisinage de x, sur
Y"1, nous dirons que ¥, est la «feuille de ¥ passant par x,». Si au
contraire on peut trouver des points de ¥"; arbitrairement proches de x,
ou le rang de % est égal & 2, nous savons par la propriété (P) qu’il
existe une variété ¥”, de dimension 2 contenant ¥"; et a laquelle le champ L
reste tangent au voisinage de x,; dans ce deuxiéme cas, nous dirons que
7, est la «feuille de ¥ passant par x,» (on remarquera que ¥, n’est
pas nécessairement une variété intégrale de %, et que dans les deux cas

la feuille de ¥ passant par x, est une notion géométrique indépendante des
coordonnées choisies).

—
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De méme, pour n’énoncer qu’un seul théoréme, si L vérifie la condition (R)
dans un voisinage Q d’un point x, € R”, nous appellerons « feuille de &
passant par x, » la variété intégrale de ¥ passant par x,.

Dans I'énoncé suivant, ¥~ désigne la feuille de ¥ passant par x,.

THEOREME 5.2. Supposons qu’il existe un voisinage Q de xo tel que
Pon se trouve dans l'une des deux situations suivantes -

1. L vérifie la condition (R) et 12 ¥ <2 dans Q.
2. L vérifie la condition (P) dans Q.

Si de plus, pour tout voisinage ® de x,,
Voodo, ={xenlox) > olx))},

alors pour tout voisinage ® de x, et toute ue CYw) solution du systéme

(5.3) { (L4+cou(x) = 0 dans o, et

ux) =0 dans o = {xew| P(x) < @(xo)} ,
la fonction u s’annule au voisinage de x,.

Démonstration. Soit u € C'(w) une solution du probléme (5.3); supposons
que x, € supp u. Nous allons montrer qu’il existe alors un voisinage de x,
sur ¥ entiérement contenu dans supp u. En utilisant ensuite ’hypothése
sur 7~ du théoreme, nous en déduisons qu’il existe des points x € supp u
tels que @(x) < @(xy) ce qui contredit le fait que u = 0 dans @_. Clest
donc que x, ¢ supp u, c’est-a-dire que u = 0 au voisinage de x,.

Montrons donc que si x, € supp u, il existe un voisinage de x, sur ¥~
entierement contenu dans supp u. Le champ L étant non dégénéré, nous
pouvons trouver (lemme 1.3) des coordonnées locales (y, t) telles que

1. x, = (0,0), : *

2. L+cy=0,+ib(y,t): 0, + c(y, t) & un facteur non nul pres.

Comme (L+cq)u(x) = 0 dans o, nous pouvons affirmer grice au théoréme 1.2
que les hypothéses du théoréme 5.1 sont vérifiées dans @ avec F = supp u

et chacun des deux champs réels X = 0, et Y = b(y, t) - 0,. Nous devons
alors distinguer deux cas:

1. Sidim v = 1, il suffit d’éppliquer le theoréme 5.1 avec X et K = {x,}
pour obtenir un voisinage de x, sur ¥~ entiérement contenu dans supp wu.

2. Sidim 7" = 2, nous pouvons trouver un voisinage de x, inclus dans ®
qui soit de la forme {(y,t)eR"| |y| <38 et |[t| < T} pour un & > 0
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§ etun T > 0 avec b(y, T) # 0 pour tout y tel que |y | < 8 (sinon, changer ¢t
: ien —1t). Prenons alors sur ¥ les coordonnées (z,t) ou z est I'abscisse
| ~ curviligne associée au champ b(y, T)-d,;, on notera z, I’abscisse de xg.
8 11 existe alors un o > 0 tel que K = [zo—a, zo+a] x [—T, T] soit un
voisinage compact de x, dans ¥~ contenu dans le voisinage précédent.

Dans ces conditions, tout point de K est dans le support de u; en effet,
§  (20,0) = X, € supp u par hypothése, puis étant donné (z, ) € K, on obtient par
l rutilisation répétée du théoréme 5.1 avec tantdt X, tantot Y, que

(z,t) = et~ DXz TX(z) 0)esuppu n K.

Remarque. Le théoréme de Bony (théoréme 5.1 ci-dessus) permet aussi de
 démontrer des théorémes d’unicité globale. A titre d’exemple, énongons le
résultat pour un probléme mi-local, mi-global: dans

Q= {yeR |y +* <2},

considérons le champ

1
=0, +ie?*to, si y<-—1,
L=0, si y=z-—1.

Alors, pour tout voisinage @ de (0, 0) et toute u € C'(Q) solution du systéme

{ (L+coJu(x) = 0 dans Q et
ux) =0 dans o_ = {yt)eonlt <0},

la fonction u s’annule au voisinage de (0, 0).
(On remarquera que ce probléme ne posséde pas la propriété d’unicité
locale; en effet, dans @ = {(y,©) e R* | y* 4 t* < 1}, la fonction

0

y 1
u(y,t)=exp<-—J CO(Z,t)dZ—?> si t>0,
uy,t) =0 st t<0,

est C®, solution de (L+co)u(x) = 0 dans o, et vérifie suppu = o,
= {(y,)ew]|t = 0})

- 5.2. CONTRE-EXEMPLE A L’UNICITE LORSQUE LE RANG DE % EST CONSTANT

B vvwig 7y T

i Lorsque le rang de % est constant, le champ L vérifie la condition (R)
' d’aprés le théoréme de Frobenius (cf. 1.2). Dans ’énoncé suivant, ¥~ désigne
la variété intégrale de % passant par x,.
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THEOREME 5.3.  Supposons qu’il existe un voisinage Q de x, tel que le
rang de & soit constant dans Q et que

VnQcQ, ={xeQ|e(x) = ox)} .

Alors il existe un voisinage © de Xo, € C(w) et aeC®w) tels que

(L+co+ayu(x) = 0 dans o,
(54) Vnocsuppu c o, = {xeo|ok) > @x,)}, et
VaeN", 0% a(xy) = 0 (a est « plate » en Xo) .

De plus, si ¢, = 0, on peut choisir a = 0.

Démonstration. Le rang de % étant constant, on peut trouver des coor-
données locales dans un voisinage o de x, qui redressent les variétés intégrales
de %, ou plus précisément, des coordonnées x — (x', x", x,) avec

= (X150 X,) €6 X" = (Xpp 1, X, ), telles que:

xl
1. x, = (0,0,0)
2. do(xo) = (0,0, 1).
3.

Les variétés intégrales de ¥ ont pour équations x” — Cte, x, = Cte
(en particulier, ¥~ a pour équation x” = 0, X, = 0).

Dans ce qui va suivre, nous aurons éventuellement besoin de réduire le
voisinage ®. Le nombre d’étapes étant fini, et les propriétés obtenues restant
vraies si on réduit le voisinage, nous utiliserons toujours la méme lettre ®
sans préciser les modifications de ce dernier.

Comme L reste tangent aux variétés intégrales de %, nous avons L{i(x) = 0
dans o si Y(x) = x> — | x” | % Posons

5 s Ug(x) = exp(—I/\ll(x)) si xeo et Yx) >0, et
(5:3) upx) =0 si xeo et Yx)<O0.

Alors uy € C*(0), Lug(x) = O dans wet ¥ n o < supp uo puisque uy(x’, 0, €)
>0 pour tout x' et tout & >0 tels que (x,0,¢)ew. Pour voir que
Supp Uy < ., il faut exprimer ¢ dans les coordonnées (x/, x”, Xp)-

Par le théoréme des fonctions implicites (cf. le point 2 ci-dessus), il existe
une fonction @oe C*(R"™1) telle que @(x) > ¢(xy) équivaut dans ® a
Xn + ©o(X', x") = 0. L’hypothése sur ¥~ du théoréme nous indique que
®o(x’, 0) > 0 dans o (cf. le point 3 ci-dessus), donc par développement
de Taylor en x” a lordre zéro, @y(x’,x") > —C | x"| dans ® pour une
constante C < oo(C>0). Si donc on a choisi ® assez petit pour que
| x"| < C™3 dans o,

}
iz
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ug0) # 0= Y(x) > 0= x, > | X" [P = x, + @olx, ) > 0= 0(x) > 0

B8 d'ou supp up < @ .
E Nous avons donc donné une solution du probléme (5.4) lorsque ¢y = O.
8 Sinon, le champ L étant non dégénéré, choisissons (lemme 1.3) des coor-

| données (y, t) telles que
g2 1 x, = (0,0)
;.ﬁi 2. L+ ¢y = 0, +ib(y, )+ 0, + c(y, t) & un facteur non nul pres.

Pour tout j € N, posons alors

biy) = 0{b(»,0) et cy) = 0{c(0),

§ 4 puis par récurrence,

; vo(y) = 0,
; (5.6)

Jj
Uj+1(}’) = = kZO Cl}:bk(J’)‘ ayvj——k(y) — cj()’) pour j=0.

Par le théoréme de Borel (cf Hormander [11, th. 1.2.6]), il existe une
} fonction v e C*(o) telle que 9/ v(y, 0) = v;(y). Par (5.6), nous obtenons que la
f fonction |

ay, 1) = — (0(y, O)+ib(y, ) » D,0(y, D) +c(¥, 1)

| est plate en (0, 0).
;  La fonction u(x) = €"®u,(x), ol u, est donnée par (5.5) et v par ce qui
-~ précede est alors solution du probleme (5.4).

Remarques. 1) Pour une discussion du réle du terme d’ordre Z€ro, on
¥4 sc reportera au chapitre suivant.

4§ 2 On notera que par les théorémes 5.2 et 5.3 nous avons completement
B Y ¢lucidé la question de l'unicité pour les problémes caractéristiques de rang
constant. En effet, distinguons les deux situations suivantes:

o — Le rang de % est inférieur ou égal a 2. La condition nécessaire et
suffisante pour qu’il y ait unicité (pour toute perturbation a plate en x,)
est alors que la variété intégrale de ¥ passant par x, ne reste pas loca-
lement dans {@(x) = ¢(x,)} (C’est nécessaire par le théoreme 5.3, et suffisant
par le théoréme 5.2).

| B — Le rang de & est supérieur ou égal a 3. Alors il n’y a jamais
unicité « stable ». En effet, deux cas peuvent se produire: s’il existe des
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points arbitrairement proches de x, dans S = {x e R"| ¢(x) = ¢(x,)} ou le
probléme n’est pas caractéristique, nous pouvons appliquer le théoréme 1.1;
si le probléme est caractéristique en tous les points de S, c’est que la
variété intégrale de ¥ passant par x, reste localement dans S, et nous
pouvons appliquer le théoréme 5.3.

CHAPITRE 6: ROLE DU TERME D’ORDRE ZERO

Aux théorémes 1.1, 2.2, 4.2 et 5.3, nous avons di modifier le terme
d’ordre zéro pour montrer qu’il n’y avait pas unicité de Cauchy. Il est alors
naturel de se demander si de tels problémes possédent tout de méme la
propri¢té d’unicité pour certains termes d’ordre zéro. La réponse a cette
question est positive comme nous le verrons ci-dessous.

Cependant, le role du terme d’ordre zéro est encore mal connu. Nous
nous bornerons ici a énoncer deux remarques qui suggérent la nature des
conditions a imposer. La premiére d’entre elles (théoréme 6.1) est diie a
Lewy [15].

Avant d’énoncer le premier théoréme, rappelons que la résolubilité locale
d’un champ complexe non dégénére a été étudiée par Nirenberg et Tréves [17],
et que sous les hypotheéses du théoréme 2.2, ainsi que sous les hypothéses

du théoréme 5.3 si rg &£ > 3, le champ L n’est localement résoluble en aucun -

point d’'un voisinage de x,; de méme, les hypothéses des théorémes 1.1 et 4.2
entrainent qu’il existe de nombreux points voisins de x, ou L n’est pas
localement résoluble. Il en résulte qu’il existe des fonctions C*® ¢ telles que
I'équation Lv — ¢ = 0 ne posséde pas de solution v au voisinage de ces
points.

THEOREME 6.1. Soit A [(c,) [Pensemble des points de R" au voisinage
desquels léquation Lv(x) + co(x) = 0 ne posséde pas de solution ve C’.
S’il existe un voisinage Q de x, tel que

N eo) 2 Q1 = {xe Q| o(x) = 9(xo)} ,
alors pour tout voisinage ® de x, et toute ue Cl(w) solution du systéme

(6.1) { (L+co)u(x) = 0 dans o et

ux) =0 dans o- = {xeo|ox) < ®(xo)} 5

la fonction u sannule au voisinage de x, .
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Démonstration. Soit u € Ci(w) une solution du probléme (6.1). Supposons
quelle n’est pas nulle dans ® N Q. Alors, comme u(x) = 0 dans o_,
il existe un ouvert contenu dans ® N Q, ou u ne prend pas la valeur 0; cet
ouvert contient donc un point x; € .47;(co) et une boule o, de centre
x,:u(x) # 0 pour tout x € ®;. Dans ®;, on peut alors écrire u(x) = '™
pour une fonction v e Ci(®,). Or (6.1) implique que Lo(x) + co(x) = 0 dans
®,, ce qui contredit le fait que x; € A i(co). Donc u = 0 dans @ N Q.

Dans le théoréme suivant, nous nous plagons résolument dans une
situation ot 'on a déja montré quil n’y avait pas unicité pour un terme
dordre zéro donné c¢, (situation fournie par exemple par I'un des théo-
rémes 1.1, 2.2, 42 ou 5.3), et nous cherchons pour quels autres termes
d’ordre zéro ¢ lopérateur L + ¢ ne posséde toujours pas la propriété
d’unicité.

Pour un fermé F, nous noterons C/(F) 'ensemble des fonctions v € Cj(lg )
possédant la propriété suivante: pour tout x € F et tout multi-indice de
longueur inférieureo a j, il existe un voisinage o, de x tel que 0% v reste
bornée dans o, N F.

THEOREME 6.2. Supposons quil existe un voisinage ® de Xx, et
des fonctions uy € C(0) et coe C®(w) tels que

{ (L+colug(x) = 0 dans o, et
Xo €ESUPP Uy < ®, = {xe®| Q(x) = (xo)} -

Si d{: plus Péquation Lv(x) + c(x) — co(x) = 0 posséde une solution
ve Ci(supp u,), alors il existe une fonction ue Clw) telle que

(L+cu(x) = 0 dans o, et
Xo ESUPP U C M .

Démonstration. 11 suffit de prendre u(x) = e"@ugy(x).

Application. Comme illustration de ce dernier théoréme, reprenons un
probléme abordé au chapitre 5.

Supposons qu’il existe un voisinage Q d’'un point x, € R" dans lequel
| le champ L vérifie la condition (P) et % est de rang constant. Deux
exemples d’une telle situation sont fournis par le cas ou L est un champ réel
| (non dégénéré en x,) et le cas ot X = Re L et Y = Im L sont linéairement
indépendants en x, et commutent au voisinage de x,([X, Y] =0).
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Notons ¥~ la variété intégrale de ¥ passant par x,; alors, en ras-
semblant les résultats des théorémes 5.2, 5.3 et 6.2, et en rappelant que
sous la condition (P), L est localement résoluble (cf. Nirenberg et Tréves [17]),
on s’aper¢oit quon a démontré I'équivalence des deux propriétés suivantes:

1. Unicité locale en x,: pour tout voisinage o de x,,

ue Clw),
(L+co)u(x) = 0 dans o, et = u = 0 au voisinage de x, .
ux) = 0dans o_ = {xea|o(x) < o(xy)}

2. Pour tout voisinage © de x5, ¥ no ¢ 0, = {xc0| k) > ©(x0)}.

(1]
[2]
[3]

[4]
[5]

[6]

[7]
[&]

[9]
[10]

[11]
[12]
[13]
[14]
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