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L'UNICITÉ POUR LES PROBLÈMES DE CAUCHY

LINÉAIRES DU PREMIER ORDRE

par Xavier Saint Raymond

Depuis une trentaine d'années, l'unicité des solutions des problèmes de

Cauchy linéaires a fait l'objet d'un grand nombre de publications. Bien vite,

les études successives sont devenues très techniques et difficiles à comparer.

Pour remédier à cette situation, dans un livre publié récemment, Zuily [28]

donne des démonstrations détaillées d'un grand nombre de résultats, par

ailleurs, Alinhac [2] a décrit sans démonstration l'ensemble de la théorie

en groupant les théorèmes suivant les différentes classes de problèmes traités.

C'est dans ce même esprit que nous proposons ici une étude détaillée

de la question pour les problèmes de Cauchy du premier ordre. Nous avons

choisi de nous restreindre au premier ordre pour les deux raisons suivantes :

d'une part le problème reste alors suffisamment simple pour que nous

puissions donner des preuves complètes des résultats énoncés, et d'autre part,

une telle étude fait déjà apparaître les critères d'unicité que l'on rencontre

lorsqu'on traite les problèmes de Cauchy généraux.

En effet, si nous ne présentons pas ici les résultats les plus généraux

obtenus sur l'unicité de Cauchy (Calderôn [6], Hörmander [9, th. 8.9.1]-

Lerner [13], Alinhac [1], Robbiano [19], Lerner [12], Saint Raymond [20],
Lerner et Robbiano [14]), nos théorèmes en donnent des prolongements
dans le cas du premier ordre; ainsi, nous mettons en évidence l'importance

pour l'unicité de Cauchy des conditions suivantes :

1. Conditions de crochet (ou de structure) analogues aux hypothèses du

théorème de Calderôn [6] ou à la principale normalité d'Hörmander

[9, chap. 8]; ainsi, le théorème 1.2 peut être considéré comme une extension

du théorème de Calderôn pour le premier ordre, et réciproquement, le

théorème 1.1 étend Alinhac [1, th. 1] et Robbiano [19].

2. Conditions de convexité du genre de la pseudo-convexité d'Hörmander
[9, chap. 8]; là encore, nos résultats étendent les théorèmes généraux
classiques de l'ordre m: le théorème 5.2 non seulement contient Hörmander
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[9, th. 8.9.1] dans le cas du premier ordre, mais prouve également l'unicité
dans des situations où on ne peut espérer obtenir d'inégalité de Carleman
(cas pseudo-concave); quant au théorème 5.3, il étend Alinhac [1, th. 2]
et Saint Raymond [20].

3. Conditions sur le terme d'ordre inférieur, abordées au chapitre 6.

Pour limiter la complexité technique des démonstrations, nous avons
choisi, outre le cadre du premier ordre, de ne traiter que le cas des
coefficients C et de n étudier l'unicité que parmi les solutions classiques
(cest-à-dire de classe C1); pour la même raison, nous ne nous sommes
intéressés essentiellement qu'à l'unicité stable (pour un sens précis de cette
expression, voir le paragraphe 1.1, l'énoncé des théorèmes et la remarque 4
du paragraphe 1.4). Grâce à ce choix, notre texte ne fait appel à des
démonstrations extérieures que pour utiliser des résultats généraux bien
connus en analyse (théorème de Borel, cf. Hörmander [11, th. 1.2.6],
théorème d extension de Whitney [26], etc.). D'autres travaux sur le premier
ordre sortent du cadre que nous venons de définir; il s'agit notamment de
Zachmanoglou [27], Baouendi et Goulaouic [4], Cardoso et Hounie [7],
Baouendi et Trêves [5].

Les résultats présentés ici ne sont pour la plupart que de légères
améliorations de résultats déjà connus: ainsi le théorème 1.1 améliore les
résultats d'Alinhac [1, th. 1] et de Robbiano [19], tandis que le théorème 1.2
améliore les résultats de Strauss et Trêves [24]. Ces raffinements ont pour
essentiel mérite de mieux permettre la comparaison des théorèmes entre eux.
Les méthodes utilisées dans les démonstrations sont classiques: inégalités
de Carleman pour l'unicité, et construction de contre-exemples à base
d'optique géométrique et de recollement.

Le théorème 4.2 doit cependant être mis à part car c'est* un résultat
entièrement nouveau. Bien qu'il s'agisse d'une construction de contre-exemple
ressemblant aux constructions standard, c'est-à-dire du type décrit dans le
chapitre 2, nous voudrions en souligner ici les caractères spécifiques.

Comme un seul changement de signe de la fonction b ne suffit pas
a faire perdre 1 unicité, c est bien 1 accumulation de ces changements de signe
qui nous permet de construire le contre-exemple. Il nous faut donc recoller
des fonctions uk dont le comportement n'est bien connu qu'au voisinage
des changements de signe. Ainsi, d'une part les valeurs de nous sont
imposées (dans la construction standard, il est important de pouvoir choisir
ces valeurs d'une manière appropriée), et d'autre part, nous ne possédons pas
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de développement limité du type (2.1) commun à tous les uk, formule qu

joue un rôle central pour le recollement au paragraphe 2.3. A ces difficulté

s'ajoute le fait que nous devons choisir les paramètres K tellement grands

que l'on n'a plus L, ~ **+1 (contrairement à la situation standard oui,
est une puissance de k),cequi a pour effet de multiplier les contraintes

sur ces paramètres (car lim Xkak# lim en general).
k —* 00 * 00 -

L'originalité du théorème réside donc dans l'assouplissement des

techniques de recollement des fonctions uk, la partie optique géométrique étant

réduite au choix trivial de la phase B(t) + c'est exactement le contraire

de la méthode décrite au chapitre 2 où l'étape délicate est la construction

de la phase (paragraphe 2.2), le reste (paragraphes 2.3 et 2.4) étant standard

(cf. Alinhac et Zuily [3], et Alinhac [1]).

F ri fin, nous tenons à remercier C. Zuily pour les discussions que nous

avons eues, tout particulièrement pour la mise au point du lemme 3.3,

ainsi que pour avoir bien voulu relire ces notes; nous lui en sommes très

reconnaissant.

Chapitre 1: Notations et résultats principaux

1.1. Comment formuler le problème

Nous nous plaçons au voisinage d'un point eR" ; l'une des

coordonnées dans R" est le temps, mais avant de l'écrire explicitement, nous

considérerons que c'est une fonction donnée <p e C00(R") à valeurs réelles

telle que d<p(x0) + 0 (afin de pouvoir la prendre comme coordonnée près

de x0).
On étudie un «phénomène physique» représenté par une fonction

u e CHR") à valeurs complexes qui est connue dans le passé (u(x) u0(x)

si <p(x) < cp(x0)) et qui satisfait une équation d'évolution Lu + c0u f,
avec L £ apc) d} où djd/dx] et les a} e CNR") sont à valeurs complexes

ainsi que le terme d'ordre zéro c0 e Cco(R"). Ici, Uq(x) et f(x) sont des

données du problème.
Nous nous intéressons à l'unicité de la solution d'un tel problème

indépendamment de son existence, ou plutôt à 1 unicité locale en x0. étant

données deux solutions u1 et u2 du problème, coïncident-elles dans tout un
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voisinage de x0? Comme tout est linéaire, cette question nous conduit
(en posant v u1 — u2) à, l'étude du noyau de l'application linéaire associée: de

Lv + c0v 0

v(x) 0 si cp(x) ^ cp(xoh

peut-on déduire que v 0 dans tout un voisinage de x0
A l'exception des résultats cités au chapitre 6, nous rechercherons

essentiellement une propriété d'unicité « stable » dans le sens suivant : sous les

hypothèses des théorèmes d'unicité (cf. théorème 1.2), la propriété d'unicité
demeurera si l'on modifie le terme d'ordre zéro c0, ou si l'on se place en

un point voisin de x0 sur la surface d'équation cp(x) cp(x0). Ce point de vue
explique que nous ne fassions pas mention du théorème d'Holmgren, ni de

théorèmes analogues; cela donne en outre à nos réciproques la forme que
l'on trouvera typiquement énoncée au théorème 1.1 ci-dessous.

1.2. Nature des hypothèses

Nous introduisons maintenant les objets algébriques sur lesquels nous*

désirons « lire » la réponse à la question que nous avons posée. Ces objets

sont construits à partir de la fonction temps (p et de l'opérateur L, et

reflètent leurs propriétés près de x0. Nous supposerons tout au long de ces
n

notes que L est non dégénéré en x0, c'est-à-dire que £ l^/^o)l2 ^ 0.
j= i

Commençons par une définition: Le problème est dit caractéristique si

Lcp(x0) 0. Cette définition est indépendante de la fonction cp pourvu que
cette dernière définisse les mêmes demi-espaces du passé et du futur. Les

chapitres 2, 3 et 4 sont consacrés à l'étude du problème non caractéristique,
tandis que le problème caractéristique est abordé au chapitre 5.

*

Nous allons construire maintenant l'objet qui permettra principalement la
discussion de l'unicité: l'algèbre de Lie associée au champ L. Par cette

expression, nous désignons l'ensemble des combinaisons linéaires à coefficients

réels des champs réels X Re L, Y Im L et de tous leurs commutateurs :

[X, 7] XY — YX, [X, [X, Y]] etc. En chaque point x, ces combinaisons

linéaires forment un sous-espace vectoriel de TxRn dont la dimension est

appelée rang de l'algèbre de Lie au point x et que nous noterons

rgj£?(x). Comme L est non dégénéré en x0, on a rg S£(x) e {1,..., n) pour
tout x voisin de x0, mais le rang de Y£ n'a aucune raison d'être constant

lorsqu'on passe d'un point à un point voisin.
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A cette algèbre de Lie sont associées des variétés appelées variétés

intégrales de if. La variété iT sera une telle variété si pour tout xef,
l'espace vectoriel Txnfr coïncide avec le sous-espace de TxR défini par if.
L'existence de variétés intégrales de if n'est pas automatique, et nous devrons

la supposer pour obtenir certains résultats. Nous introduisons donc deux

conditions « techniques » destinées à nous fournir de telles variétés intégrales,

ou des variétés se comportant un peu comme des variétés intégrales.

Nous dirons que la propriété (R) est vérifiée dans l'ouvert Q si par tout

point de Q passe une variété intégrale de if; Sussmann [25] a donné des

conditions nécessaires et suffisantes pour que cette propriété soit vérifiée;

rappelons que c'est classiquement le cas dans chacune des deux situations

suivantes (qui constituent des critères aisément vérifiables sur un champ L
donné) :

1. Lorsque le rang de if est constant dans Q (théorème « de Frobenius »,

cf. Sternberg [23, p. 132]).

2. Lorsque les coefficients aj de L sont analytiques dans Q (théorème de

Nagano [16]).

Nous dirons que L vérifie la condition (P) dans oo c= Q s'il existe des

coordonnées locales (y, t) e R" -1 x R, un ouvert v de Rn~1 et un nombre T > 0

tels que œ c v x ] — T, T[ ci Q, que L s'écrive

L a(y, t) [_dt + ib(y, t) • dy] avec a # 0 dans v x ] — T, T[

et que pour tout y e v, il existe un vecteur unitaire d(y)e R"-1 tel que

b{y, t) | b(y, t) \ d{y) pour tout t e ] - T, T[

Cette condition (P) a été introduite par Nirenberg et Trêves [17] pour
étudier la résolubilité locale de L, et ces auteurs ont montré que si (r|, x)

était un autre choix de coordonnées locales tel que

L a(ri, x) [dT + zß(ri, x) • dj, ß à valeurs dans Rn_1,

l'existence d'un vecteur d(y) tel que b(y, t) \ b(y, t) | d(y) est équivalente à

l'existence d'un vecteur 8(r|) tel que ß(r|, x) | ß(rj, x) | 5(r|). Nous verrons au
paragraphe 1.5 comment trouver à partir d'un champ L non dégénéré des

coordonnées locales dans lesquelles L a(dt + ib • dy), b à valeurs dans R"-1,
si bien que par cette propriété d'invariance, la condition (P) est aisément
vérifiable sur un champ L donné.

Le lecteur remarquera que si L vérifie la condition (P) dans cd, alors

rg < 2 dans © ; cependant, la condition (P) dit plus que cela : elle implique
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1 existence de variétés de dimension 1 ou 2 le long desquelles le champ L
reste tangent (sans qu'il s'agisse de variétés intégrales de jSf) ainsi qu'une
condition de signe sur les coefficients de L.

1.3. Enoncé des résultats principaux

Munis de ces notations, nous pouvons énoncer les principales réponses
apportées à la question posée en 1.1.

Théorème 1.1. Posons S3 {xeR"| <p(x) cp(x0) et rg $£(x) ^ 3}.
Si le problème est non caractéristique et si x0 e S3, alors pour tout
voisinage Q de x0, il existe œ c Q avec co n S3 ^ 0, ue C°°(co) et
a e C°°(cö) tels que

(1.1)

(L + c0 + a) u(x) 0 dans œ

Supp u' G)+ {x e û) I <p(x) ^ Cp(x0)} et

Supp a a (o+

Moralement, ce théorème signifie que pour avoir la propriété d'unicité,
il est nécessaire que rg < 3 sur la surface d'équation <p(x) <p(x0). Cette
condition est également suffisante lorsque nous faisons l'une des deux
hypothèses « techniques » introduites au paragraphe précédent :

Théorème 1.2. Posons S3 {xeRn\(p(x) cp(x0) et rg£>(x) ^ 3};
supposons que le problème est non caractéristique et que x0 $ S3 ; supposons
encore qu'il existe un voisinage Q, de x0 tel que l'une des deux hypothèses
« techniques » suivantes soit vérifiée : soit L vérifie la condition (.R) dans Q,
soit L vérifie la condition (P) dans Ù+ {xefi| cp(x) > <p(x0)}. Alors,
pour tout voisinage œ de x0 et toute ueC\(o) solution .du système

(1.2)
(L + c0)u(x) 0 dans q, et

u(x) 0 dans œ_ {x e co | cp(x) ^ cp(x0)}

la fonction u s'annule au voisinage de x0.

1.4. Commentaires sur les théorèmes

1. Comme nous le verrons au paragraphe 2.1, le théorème 1.1 s'applique
essentiellement aux opérateurs de la forme



PROBLÈMES DE CAUCHY 7

L dt + i[tkidyi + tk2dy22 ^1 k2, q> — t.

Ce théorème a été démontré dans le cadre plus général des opérateurs

d'ordre m quelconque par Alinhac [1] et Robbiano [19] sous la condition

fcx 0.

2. Le théorème 1.2 s'applique aux deux opérateurs suivants définis

dans R2 :

L(fl) dt + it(t -h y) dy et L(P+ iß ^
<p t,

le premier vérifiant la condition (R), mais pas la condition (P), et

réciproquement pour le second. Ce théorème 1.2 est dû à Strauss et Trêves [24]

qui l'ont démontré d'une part sous la condition rg S£(x0) 2 dans R2 (cas

particulier de la condition (R)) et d'autre part en supposant que L vérifie

la condition (P) dans tout un voisinage Odex0.
3. Le théorème 1.2 devient faux si nous supprimons les hypothèses

« techniques » ou même si nous supposons seulement que L vérifie la condition

(R) dans D+ ; nous montrerons en effet au chapitre 4 que l'opérateur

ne possède pas la propriété d'unicité par rapport à t 0 pourvu que l'on
ajoute un terme d'ordre inférieur, bien que rg ££ 2 pour t > 0.

4. Dans l'énoncé du théorème 1.1, il convient de remarquer que l'ouvert œ

ne contient pas nécessairement le point x0 ; le théorème 1.1 signifie donc
ceci: si nous ne savons pas toujours construire une solution de (1.1) au
voisinage de x0, nous savons du moins le faire au voisinage de x± pour
un point xx arbitrairement proche de x0 sur la surface d'équation cp(x)

cp(x0). En revanche, lorsque les hypothèses du théorème 1.2 sont vérifiées

en x0, elles le sont en tout point suffisamment proche de x0 sur la surface

d'équation cp(x) cp(x0), et la conclusion s'applique quel que soit le terme
d'ordre inférieur; le théorème 1.2 est donc bien une réciproque du théorème

1.1. Cette remarque correspond à la propriété d'unicité «stable»
dont nous avons parlé au paragraphe 1.1.

5. Les hypothèses du théorème 1.2 sous la condition (R) sont équivalentes
au groupe d'hypothèses suivant: le problème est non caractéristique, et il
existe un voisinage de x0 où rg & ^ 2 et où la propriété (g) introduite
par Nirenberg et Trêves [17] est vérifiée (cette propriété (g) peut s'énoncer

L dt + ie ljt sin - dv
t y

si t > 0

L dt si t < 0
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de lafaÇOn suivante: Par tout point xeü, tel que rg 1 passe une
variété intégrale de if). Sou« la condition (P), nous pourrions omettre
l'hypothèse x0 $ S3(car (P) dans Ù+=> n 0), mais nous préférons
considérer ce groupe d'hypothèses comme l'hypothèse x0^S3 à laquelle nous
avons rajouté une hypothèse « technique ».

6. Plan de l ensemble. Nous exposerons les techniques de construction de
contre-exemples à l'unicité dans le chapitre 2 que nous consacrons à démontrer
le théorème 1.1. Symétriquement, le chapitre 3 contiendra la démonstration
du théorème 1.2 comme illustration des méthodes développées pour obtenir
1 unicité. Par ces deux théorèmes, nous avons « génériquement » répondu à
la question posée; nous avons cependant écarté trois problèmes marginaux
qui feront l'objet des chapitres suivants: au chapitre 4, nous étudierons
sur un modèle la situation lorsque rg if 2 mais que les hypothèses
« techniques » ne sont pas vérifiées ; au chapitre 5, nous étudierons le
problème caractéristique; au chapitre 6 enfin, nous étudierons l'influence du
terme d'ordre zéro, c0.

1.5. Choix des coordonnées pour les problèmes non caractéristiques

Dans ce paragraphe, nous donnons pour les problèmes non caractéristiques

(étudiés aux chapitres 2, 3 et 4) un choix de coordonnées permettant
d'écrire sous une forme canonique l'opérateur à étudier.

Lemme 1.3. Supposons que le problème soit non caractéristique ; alors il
existe près de x0 un système de coordonnées (y, t) e R""1 x R tel que :

1. x0 (0,0)

2. cp(x) - (p(x0) t

3. L + c0 a(y, t) [dt +ib(y,t) • dy+c(y, t)]
où a:R"-> C, b:R"R"1 et c:R"-> C sont des fonctions C°° au
voisinage de (0, 0) et a(y, t)#0 au voisinage de (0, 0).

Démonstration. Commençons par choisir des coordonnées xt,..., x„ telles
que Xq(0,..., 0) et x„ <p(x) - cp(x0); comme le problème est non
caractéristique, nous savons que a„(0,.., 0) / 0; on peut donc écrire

L + c0 an(x) |\ + £ (aj(x) + ißj(x)) dj + cl(x)l
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où les 0Cj(x) et les ß;(x) sont à valeurs réelles. Pour 1,1, soit

yt(x) la solution du système

yk(x', 0) xk
n— 1dny,c+ Z 0.
i= i

dxSi de plus nous posons £(x) comme la matrice jacobienne

admet l'unité pour déterminant en (0,..., 0), nous pouvons utiliser (y, t)

comme nouvelles coordonnées locales; nous obtenons que L + c0 (.Lt)ôt

+ Yj(Lyk)dyk + c0 est de la forme 3, d'où le lemme.

Chapitre 2: Construction d'un contre-exemple

Dans ce chapitre, nous proposons une démonstration du théorème 1.1.

La méthode utilisée pour obtenir ce résultat est désormais classique; elle a

été mise au point successivement par Cohen [8], Plis [18], Hörmander [10],
Alinhac-Zuily [3]. Ici, nous suivrons de très près la démonstration du théorème

1 d'Alinhac [1] (qui, pour le premier ordre, est un cas particulier du
théorème 2.2 ci-dessous avec k1 0 et k2 1).

La technique consiste à choisir une suite de valeurs positives 5fc tendant
vers 0, puis à construire par les méthodes de l'optique géométrique des

fonctions uk, pour cp(x) voisin de cp(x0) + ôfc, qui soient approximativement
dans le noyau de L + c0 : c'est ce que nous faisons en 2.2. Puis on ajuste
la taille de ces fonctions afin de pouvoir les recoller pour obtenir une
solution u définie au voisinage de x0 et telle que u et a — (L + c0)u/u
soient régulières: c'est l'opération effectuée en 2.3, les dernières vérifications
étant reportées en 2.4.

Afin de limiter la complexité de la construction, il convient de choisir un
bon système de coordonnées. C'est ce par quoi nous commençons.

2.1. Nouveau choix de coordonnées

Plaçons-nous dans les hypothèses du théorème 1.1 et fixons le voisinage Q.
Grâce au lemme 1.3, nous pouvons déjà trouver des coordonnées locales
(y, t)e R"~1 x R dans D (quitte à restreindre ce dernier) telles que
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1- *o (0, 0)

2. <p(x) - cp(x0) t
3. L+ c0 dt+ ib(y, t)• dy+ c(y, tà un facteur non nul près.
De plus, en utilisant l'hypothèse x0eS3, on peut trouver un point
x3 — (>'3, 0) e ß tel que rg £f(x3) 3. Nous pouvons alors écrire notre
opérateur L+ c0sousune forme encore plus précise que celle donnée par le
point 3. ci-dessus, comme le montre le lemme suivant.

LEMAŒ2.1. Supposons que L + c0et querg^(*3) > 3 pour un point x3sSR"1 x {0}. Alors, pour tout voi-
sinage Q de x3, il existe un point x2 e Q n S, un voisinage co de x2et des entiers et k2>0 teet bl(y,t)- bi(y, 0) + t 2b2(y, t) dans co avec (bfix,), b2(x2)) linéairement indé-
pendants.

Demonstration. On peut déjà supposer que il est suffisamment petit pour
que le rang de reste supérieur ou égal à 3 dans ß n

Soit kx~inf {k>0I 3x e ß n S: 0* b(x) * 0}. Alors k, < 00 car
rg i?(x3) > 3. Soit donc x1un point deûnS tel que dkl ^ 0 et soit
co c ß un voisinage de x, tel que df b(x) * 0 pour tout xetonS. Dans co
on a b(y, t) tkibl(y,t) avec bfix)

Soit maintenant k2 M{k>0\3xeo>nS:d!etsoient
hneairement indépendants}. Alors k2 < co car rg ^ 3. On peut donc
écrire dans co, bl(y, t) b}(y, 0) + t">b2(yt)et il existe un point x2 e co n S
tel que h1(x2) et b2(x2) soient linéairement indépendants.

Ce lemme nous permettra donc de déduire le théorème 1.1 du théorème
suivant (que nous démontrerons aux paragraphes 2.2, 2.3 et 2.4).

Théorème 2.2. Supposons que L +ib(y, c(y, t), queb:R" x R-> R" 1 et c:R"1 x R-> C sont des fonctions C00 dans
un voisinage ß de x0(y0,0)et qu'il existe des entiers ^ 0 et
k2>0 tels que b(y,t)bfiy, t) et bfiy, t) bfy, 0) + tk> b2{y, t)

dans ß avec (bfixo), b2(x0)) linéairement indépendants. Alors il existe un
voisinage co de x0,ue Cœ(a) et ae00)vérifiant (1.1).

2.2. Optique géométrique

Nous dirons 1ue w e ßm(R" x R+ si w(x, 8) est une fonction continue surR" x [0, 00 [, indéfiniment dérivable en x pour 8 > 0 et dont les dérivées
restent bornées quand ô tend vers 0.
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Proposition 2.3. Sousles hypothèses du théorème il existe au

sinage de (y0,0,0) deux fonctions cp et ß e CfR^ xdCxR) telles que

Re cp(3£, ô) - 5il+fa-1(t-S)2 ß(y, 8) pour S > 0

(2.1)
ß(3>o,0,0) ß0 > 0

et telles que pour toute fonction y eB<R"1 x R+ existe une fonction

w(y, s,e) e B°°(R"~1 x R x R+ telle que w{y, 0, 0) 1 et

Va e N", Vv eN,35cli v : pour 0 < 8 < 8a v et

pour (y, 8 ~ 2(t- 8)) dans un voisinage fixe de (y0, 0)

(2.2) ^dépendant de a et v)
| d«[{L+c0)h/h]| < 2 Sv

où on a posé :

h{y, t, 8)

w(y, 8~2(t—8), 81/3) exp [-8"5/3 y(y, 8) + h-A~kl~kl cp(y, t, 8)]

(dans (2.2),d* désigne la dérivation d'ordre a par rapport à y et t).

(2.3)

Démonstration : en trois parties.

1. Construction de cp et de ß. Choisissons Po s R" 1 tel que bfix^) Po ~ ^

et b2(x0)-r\0 < 0 (ce qui est possible grâce à l'hypothèse d'indépendance).

Il existe alors une fonction Cm à valeurs réelles vß x telle que

bfiy, 8) • d^fy, 8) 0

fyMyo.O) "Ho

et on pose :

Wy. t, 8) | b(y, r) • éyW(y, 8

<p(y, t, 8) v|t, 8) + h|p(y, 8).

On calcule alors que :

Wy> 8,8) o,
d,v|/2(y, 8, 8) b(y, 8) • ö/l/ßy, 8) 0 par choix de \\>i, et

bf^2(y, t, S) ôth(y, t) • ô/h(y, 5)
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kitk' ~ 1b1(y, 0) + (k1+k2)tkl+k^1b2(y,t) + tk<+k%b2{y,t) 3»v|'10', 5)

-k11kl~18k2b2(y, 8) + (k.+k^^'^iy, t) + tkl+k2 ôtb2(y,

__ gfcl+fe2" "{-kl

+ 5

Sy^lliy, S)

biiy? 5) + (&i + &2)
g

ki +k,2 ~ 1

b2(y, t)

ki +k2

dtb2(y, t) fyK (y, s) •

Par la formule de Taylor avec reste intégral, on obtient donc

Re <pO, t,8) \| r2(y,t,8) — +fc2"x(r — ô)2 ß(y, 8~l(t-8), 8)

OÙ

ß(y, a, 8) (0-1) -^(l+Gaf'-^S)

+ (k, + k2)(1 + 0a)k'+'k2 -%(y, 8(1 + 0a))

+ 8(1 + 9o)k'+k2 ôtb2(y, 8(1 + 0a)) ' fyKCc, §)d0

ce qui donne (2.1) puisque ß(yo,0,0) - - 0) • q0 > 0 grâce à

notre choix de r|0.

Notons que

Lcp(y, t,8)- i8"+fe-1(t-8)28(y, • 3,ß(y, S'^f-S), 8)

par (2.1), et si on pose s S—2(t — 8),

L [s-^-^-^cp (y,t,8)] - • Ôfi(y, 8s, 8).

2. Construction de w. Définissons l'opérateur M par la relation (Mw/w)
((L+c0)h/h) où /z est donnée par (2.3); on calcule alors que

Mw 5"2 [3sw + eiVw] avec iVw iB • 3 w + Cw

où B et C sont des fonctions de l'espace £°°(Rn ^RxR+J définies par:



PROBLÈMES DE CAUCHY 13

B(y, s,e) e5b(y,s3+e6s),

C(y, s,s) - ibiy, s3 + s6s) • dyy{y,e3)- ie2s2b(y, s3 + s6s) • dy$(y, s
3s,e3)

+ s5c(y, e3 + e6s).

Définissons une suite de fonctions Wj de l'espace ß°°(R" 1 x R x R+

par les formules (toutes ces fonctions sont bien définies sur un même

domaine)

w0(y, s, s) 1,

Wy+iCy, s, s) - Nwj(y, r, s)dr, pour j > 0

Une solution de (2.2)-(2.3) est alors obtenue formellement en posant

w £ dwj. Choisissons donc une fonction de troncature, c'est-à-dire une

fonction x e C°°(R) telle que x 1 sur [0,1], x 0 sur [2, +oo[ et

X(e) e [0, 1] pour 8 g [0, + oo[. Nous posons

My, s, e) X s, 8),
o

et nous allons prouver dans la troisième partie de cette démonstration

qu'il existe une suite de réels positifs Xj telle que cette formule définisse

une fonction w de l'espace ß°°(R"-1 x R x R+) qui vérifie de plus (2.2)-(2.3).

3. Construction de la suite Xj. Nous allons montrer qu'il suffit que la suite

Xj croisse assez vite pour que l'on ait les deux propriétés précédentes.

Nous pouvons déjà imposer que Xj+1 > 2Xj de sorte que pour tout s > 0 fixé,

les %(XjS) soient tous égaux à 1 ou à 0 sauf au plus l'un d'entre eux.

Soient k un voisinage compact de y0, s0 > 0 et s0 > 0 tels que les

fonctions Wj soient bien définies dans K k x [ — s0,s0] x [0, s0]. Pour
obtenir que w g 5co(Rn_1 x R x R+), il suffit d'imposer pour tout Je N,

Xj > (J+1) sup {| DaWj{y, s, e) | | (y, s, e) g K, | a | < J et j ^ J + 1}

où Da désigne la dérivation d'ordre oc en y et s. En effet, si (XJ+1)~1

^ 8 ^ (\j) 1,

j
My, s,e) X s> 8) + zJ+1%(h+iz)wj+i(y, s, 8)

j=o

donc si 0 < | a | ^ J, (XJ+1)~1 ^ s ^ (Xj)_1 et (y, s, e) g K,

| D"w(y, s, e) | < £ s | D«Wj(y, s, s) | ^ 1

j=i
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Il en résulte que w6ß00(R""1xRxR+) car w est continue sur K comme
somme d'une série uniformément convergente de fonctions continues sur K.

On a w(y, 0, 0) 1, et si on a choisi le compact K assez petit, on

a aussi | w | > — dans K (un tel compact K pourra être choisi après coup,

une fois que les Xj auront été fixés) ; il en résulte que | (Dyw)/w | reste
inférieur à 2 pour s ^ (X^)-1. Comme on peut écrire D\Nwj/w) comme une
somme (algébrique) comportant au plus (|a| + l)! x 2 termes de la forme
[(DpATw7-)/w] [(DY1w)/w] [(DYMw)/w] (avec oc= ß + Yi + + Y|a|, par la
formule de Leibniz), on obtient une majoration

| D°(NwjM|< (|a| +1) 21-1+ 2
sup {| D*Nwj | | ß < a}

pourvu que e < (^|a|)_1- Si donc nous demandons pour tout que

Xj > (/+1) 2J+2sup{| D"NWj{y,s,s) | | (y, s, s) e K, | a | ^
et j< J+ 1}

alors pour (A,J+1)_1 ^ e <

Mw s7"5 [iVwj( 1 — %(Xj+ e)) + NwJ+1ex(Xj+1e)]

d'où | D"(Mw/w)|=% 2eJ~6 pour | a | < (et (X.J+1)_1 ^ et
(y, s, s) e K). Cette majoration étant obtenue pour tout J, on peut remplacer
la condition (!XJ+1)~1 ^ s ^ (À,,)-1 par 8 ^ (XjJ"1.

Pour aeN" et veN fixés, on obtient, en posant J 6(1 -h|oc|) + 3v,

que pour (y, s, s) e K et 8 ^ (Xj)_1,

| da((L + c0)h/h) | | 8~6tXtDa(Mw/w) | ^ 2e3v 2ÔV.

2.3. Ajustement des fonctions uk

Nous posons

Puis nous considérons les fonctions hk(y,t) h(y,t,dk) définies par (2.3);
ces fonctions vérifient (2.2) pour k suffisamment grand et t e ]8fc+1,

pourvu que §k2lk tende vers 0 lorsque k tend vers l'infini, ce qui est bien

En vue de poser u hk + hk+1 pour t voisin de mk et de montrer que
a — (L + c0)u/u est C00, il nous faut déterminer le lieu d'équation hk+1

— hk (qui est contenu dans le lieu d'équation \hk+1\ \hk\).

le cas puisque 8fc
2 lk ~ — k 1/4.
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Proposition 2.4. Sousles hypothèses précédentes, il existe un voisinage

de y0, une fonction yeB°°(R"-1xR+)

y(y, 0) > 0 pour yeY, et trois suites de fonctions ek e C°°(R" fk

et gkeC^CR"-1 x R) à valeurs réelles telles que les fonctions hk(y,t)

h(y, t, Sk) définies en (2.3) (avec la fonction y ci-dessus) vérifient

hjhk+1 exp[fk+i9k] avec

(2.4)

(2.5)

(2.6)

lim sup I fk{y, | 0,
fc^oo V Y

et dtfk{y, t) >
ßok2

sur Y x ]St+1, <\.[ ;

pour tout a e N", il existe Ca et v„eN tels que sur

Y x ]5t+1, ôfc[, | Ô"fk(y,t) | < CX* et | t) | < Cafcv° ;

I K(y,t)|| hk+1(y,t)|o ek(y)

et ek(y)o(lk)(pourk^co)

Démonstration* Posons

<pk(y, t) _fc2<p(y, t, 5J et wk(y, t) w(y, 8(2(t-6k), 6f3) ;

les constructions s'effectuent en trois temps.

1. Construction de y. Nous allons choisir la fonction y de telle sorte que

Log | hk(y,mk)| - Log | hk+1(y, | 0

du moins si on néglige l'influence de w dans la formule (2.3). Nous posons donc

Ik(y) Re (pk{y, mk)-Re(pfc+ i(y, mk)4.„ 1

ß(y> o, 0) + o(i)
ç

sk5 ik + — Ôfc+j ik (pour k—> oo)

d'après (2.1), et donc si on a choisi Y de telle façon que ß(j/, 0, 0) > 0

pour y e 7 (ce qui est possible grâce à (2.1)),

Ik(y) ~ -1
ß(y, 0,0)55 IIß(j,, o, 0)fc1/4 pour yeY.

Remarquons que de même, pour tout a g N" -î

|3«Jt(y)K Cafc1/4.

k- 1

Nous posons alors, pour k0 assez grand, yk(y) — £ l/OO î nous avons :

j ko
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Y*0') ~ ~ ß(y. 0, 0)k5'4 A ß0,; o, 0)6* 5'3, et

I daJk(y) I ^ Cadk5'3 pour tout a e Nn_1,

et il existe donc une fonction y e Bœ(R"-'xR+) telle que pour tout

k> k0, yk(y)8k5/3y(y, 6*) et que y{y, 0) ^ ß(y, 0, 0) > 0 pour e

2. Construction des suites fk et gk. Comme àk2 lk tend vers 0 quand k
tend vers l'infini, la fonction w fournie par la proposition 2.3 vérifie

(2.7) lim sup I wh(y, t) - 1 | 0 ;
fc-> oo \Y x]öfc + i,8fc-i[ /

nous utiliserons donc la détermination principale du logarithme de w, qui
possède les mêmes propriétés de régularité que w ; nous posons

fkRe Log w* - Re Log wk+1 + yk - yk + 1 Re <p* - Re cp*+1

gkIm Log wk - Im Log wk+1 + Im cp* - Im <p*+ *.
Nous avons donc (cf. (2.3)) hk/hk+1 exp [A + igJ, et grâce au choix de y

et à (2.7) nous obtenons la première moitié de (2.4) soit lim I sup | fk(y, mk)
k~> oo

0. De plus, il est facile de vérifier (2.5) sur les formules ci-dessus
définissant fk et gk.

3. Construction de la suite ek. Compte tenu de ce qui précède, il ne nous
reste plus qu'à montrer la minoration de dtfk (deuxième moitié de (2.4))

et (2.6). Mais (2.6) découle de (2.4) parce que | hk+1(y, t) | | hk(y, t) | équivaut

à fk(y, t) 0 et que k2lk ^ k1/4^j tend vers l'infini avec k.

En reprenant l'expression de fk ci-dessus, calculons-en la'dérivée par
rapport à t

dtfk S/T2 Re(3sw*/w*) - 8kfk Re{dswk+1/wk+1)

+ d,Re<p* - d, Re <p*+1.

Les deux premiers termes sont 0(6 k2)lorsquek tend vers l'infini (cf. (2.7));

pour estimer les deux autres, on écrit, grâce à (2.1)

51-*!-*, ôf Re ^ f> s) - 2(t—6)ß(y, ô'Ht-S), 6)

_ 5 - _ 5)25CTß(y, 5 - l(t- S), ô)

^ ~~ ßo(^ 8)
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pourvu que | y- y0|,S"2(£-8) et 5 soient suffisamment petits. On obtient

donc

d,fk(y, t)> ß0S*"5(8fc-t) + ßoSfc+Vt-Sfc+i) + 0(8(i 2)

ï? ßo8t 5(8t—8t+1) + ßo(f—8fc+1)(8^+!— 5) + 0(bk

S* %?>k5k + Oß^yr1) + 0(St"2) (pour fe^co).

Enfin, ôt-% ~ ^k2etS*"2 k3'2,d'où (2.4) puis (2.6).

Maintenant que nous avons circonscrit le lieu où u s'annule (par (2.6)),

il faut nous assurer que (L+c0)u s'annule suffisamment en ce même lieu

pour que (L+c0)u/u soit régulière. Pour cela, nous devons modifier les

fonctions hk.

Proposition 2.5. Sous les hypothèses précédentes, il existe un voisinage Y
de y0, un entier k0 et trois suites de fonctions uk g Cco{Y x ]5fc+1, 8fe-iD
à valeurs complexes et Fk et Gk g C°°(7 x]5fc+1, 8fcD à valeurs réelles tels

que si Von pose

rk(y, t) {L+c0)uk(y, t)/uk(y, t)

vk(y, t) uk(y, t)/uk+1(y, t)

on ait vk exp (Fk + iGk], et rk, Fk et Gk possèdent les propriétés
suivantes pour k ^ k0:

rk(y, t) et rk+1(y, t) sont «plates» sur t mk + ek(y)

(ce qui signifie que toutes leurs dérivées s'y annulent) ;

pour tout a g N" et tout v e N,

(2.8)

(2.9)

(2.10)

(2.11)

lim I sup I kvdark(y, t)\ 0 ;
le-* co \yx]8k+i,ôk-i[

Fk{y,mk + ek(y)) 0

et dtFk(y,t)> sur 7x]5l+1, 8k[ ;

pour tout a e N71, il existe Ca et va g N tels que sur
Y x ]Sfe+ x, 5fe[, | d«Fk(y, t) | ^ CakV(t et \ d«Gk(y, t) \ ^ Cak>

Démonstration : en deux parties.

1. Construction de la suite uk. Nous choisissons les fonctions uk(y, t) par la
formule uk hk(l + ek) avec
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%(y, t) e(y, 8k)

où la fonction e(y, t, 8) est à choisir. Pour obtenir (2.8), il faudra que pour
tout a e N",

^[(L+Co)V^] + 3»[L8jA1 + 6»)] 0

sur t mk+ ek(y) et sur tmi_1 + Si nous demandons de plus à
la fonction e de s'annuler sur les fermés et définis ci-dessous, ces
conditions sont encore équivalentes à la suite d'équations suivante:

(2.12)

pour tout j>1 et tout k^k0,
Sis0>, t, 8) k(y) sur

{(y>T>5)I y6Y,8 8ketT lk1(mk + ek(y)-8k)}
d{ e(y, t, 8) \|/Jit(y) sur

{Ce, t, 8) | ye Y,8St et x /^K-i +e^iOO-S,

ou les fonctions <pjjy)etv|/j, tCy) s'expriment en fonction des dérivées de
(L+ c0 )hjhket sont donc à décroissance rapide en k ainsi que toutes leurs
dérivées grâce à (2.2). Nous demanderons aussi à la fonction s de vérifier

(213) i pour tout l>0et tout 7" > 0, ainsi que pour j / 0,
et pour tout k^ k0,d{d\ e(y, t, 8) 0 sur <l>k et *Pt, et

(2-14) S s s( y,t,0) 0 pour tout > 0.

fi existe une fonction e e C^R""1 x R x R) vérifiant (2.12), (2.13) et (2.14) :

elle nous est fournie par le théorème d'extension de Whitney [26] appliqué
au fermé

{(y,t,8) e R""1 x R x R | 8 0} u (u<0 u
\k>ko J \k^k0 J

Les conditions de compatibilité requises pour pouvoir utiliser ce théorème
sont trivialement vérifiées puisque les fonctions <phk et \Jfjtk sont à décroissance

rapide en k ainsi que leurs dérivées, et que lk1(mk + ek{y)—8k)

2 i~ 3" + *) et lk 1{p^k-i+^k-iiy)—= - + 0{k~1) (pour 00).
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Le fermé auquel on applique le théorème de Whitney.

2. Construction des suites Fk et Gk. Les équations (2.12) ont été choisies

pour que rk et rk+1 soient plates sur t mk + ek(y): la propriété (2.8) est

donc acquise. De la condition (2.14) nous tirons que pour tout a e N" et

tout v e N,

(2.15) lim I sup I kvd"ek | 1 0.
k~*co \Y x]ôk+ î,5k-i[ /

et par conséquent, on obtient (2.9) en utilisant (2.2) et la formule

5% 3"[(L + c0)feA] + ôa[LSt/(l + st)]

L'estimation (2.15) permet aussi d'utiliser la détermination principale du

logarithme de 1 + s; nous posons donc:

Fk fk +ReLog (l + efc) - ReLog(l + efc+1)

Gk gk + ImLog(lH-Sft) - Im Log(l+et+1).
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Nous avons alors vk exp [Ft + iGJ, et F, et G, vérifient (2.10) et (2.11)
grace a ces formules qui les définissent et à (2.4), (2.5), (2.6), (2.13) (j=l=0)et (2.15).

2.4. Construction des fonctions m et a

Par un calcul élémentaire nous voyons que pour assez grand,
ö*+i < St - - lk< mk +efc(y) < Sj.+ 1 + -lk + 1 < Nous choisissons alors

une fonction à valeurs réelles %e C^(R) telle que

X(t) 1 pour te [-3/4, 3/4],
supp x c= [-1, i] et x(t) £ [0,1] pour r e [-1,1] ;

puis avec %k(t) y_(lk l(/ - 8t nous posons

^ Xk(t)uk(y, t) pour ]0, Sto[,

U(y' ^0 Pour (y, ]-ôto, 0]
a(y, t) — L+c0)u(y,t)/u(y,t) pour u(y, 0

a(y, t) 0 p0ur t) 0

Figure 2.2.
Profils des fonctions uk et uk+1 pour t e [8i+1, SJ
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Régularité de la fonction u. Remarquons d'abord qu'une telle fonction u

est C00. En effet, pour t > 0, u est somme d'au plus deux termes non nuls

qui sont des fonctions C00, et u est donc C00 dans Y x ]0, 5fco[; pour voir

que u est C°° au voisinage de t 0, il suffit de montrer que pour tout

a g Nn,

Or tous les éléments ayant servi à la construction de uk se comportent

comme des puissances de k ainsi que leurs dérivées; on peut donc écrire

pour k suffisamment grand et y e Y; comme ß(y, 0, 0) > 0 pour y g Y,

cela donne (2.16).

Détermination des supports des fonctions u et a. D'après (2.10), nous
savons que | vk(y, t) | < 1 pour £ g [5k+1, mk + ek(y)[, et comme dans ce même
domaine u uk+1 + %kuk, soit u uk+1(l+%kvk), on en déduit que u ne
s'annule pas; on démontrerait de même que u ne s'annule pas pour
t g ]mfc+1 + ek+1(y), ôk+1], ni donc dans le domaine

D {(yV t)eY x ]-8ko, 8ko[ | t > 0 et t ^ mk + eh(y) pour tout k ^ k0}

qui est dense dans Y x [0, ôfco[; il en résulte que supp u Y x [0, 5fco[,

et par définition de a, on a supp a c= supp u. Pour obtenir (1.1), il ne nous
reste plus qu'à montrer que a est C00 dans Y x ] — 8ko, 8fco[.

Régularité de la fonction a. Dans le domaine D défini ci-dessus, u #= 0
donc la fonction a est définie par la formule a — (L + c0)m/m; il en résulte
que a est C00 dans D. Pour t voisin de mk + ek(y), u uk+1 + wk, donc pour
uk+1 + uk 7^ 0, a — (L + c0)u/u — (rk+1uk+1 -\-rkuk) / (uk+1 + wfc); en
particulier,

(2.16) sup
yx]ôk+i,ôk_i[

I ^a(Xfe%) I ^ CJcv* exp (—Yfc + Re cpfe).

Mais - y k(y)~-^ß(y, 0,0)fc5/4, et

I Re <pJ ^ ^ 8t~5 IIß(y,0,0) < kll4f>(y, 0, 0)

a - (rk+i + rkvk)/(l + vk) si

a ~ + si

t < mk + ek(y)(<>| 1)

t > mk + ek(y) (<*> | < 1).
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Dans la première de ces deux formules, le numérateur est plat surt- mk +ek(y) à cause de (2.8), et le dénominateur vérifie

1 + Vk I > 1 — I Vk I ^
ßofc2

12 K + ek(y)-t)

d après (2.10) et en utilisant l'inégalité e< 1 + L pour Fe [-2, 0], L'expression

(rk+l+rkvk)/(l + vk) définit donc une fonction plate sur ek(y),
et comme il en est de même pour l'autre expression, nous avons obtenu
que, meme si u s'annule en certains points de t mk + ek(y) (ce quientraîne que a0 par définition de a), la fonction a est C°° dans

Y x]0,5to[.
• Pour montrer que a est C00 pour t voisin de 0, ü nous faut estimer
es denvees de asur Yx[St+1, 5J lorsque k tend vers l'infini. Pour cela

nous étudions a successivement sur les quatre intervalles schématisés sur la
figure 2.2.

1. Sur Dk {(y, t) | ô4+1 < t<ô4 — - lkj,on a

Fk(y,h—m<- h
pour k assez grand d'après (2.10). En utilisant aussi (2.11), on obtient que
pour tout a e N" et tout v 6 N,

k~>oo \ 1
Dk

lim I sup I kvdavk | 0

Sur Dl, u et a sont données par les formules u uk+1 + ikuk et
a — {L+c0)u/u, d'où

a — (L+ c0)uk+1 + %k{L + c0)uk + Ik1 %'
t — ô.

/u

i^k+i + | \krk+ lk1 x'^+

On en déduit, à l'aide de l'estimation précédente et de (2.9) que pour tout
a G N",

lim sup I daa\ 1 0.
*>k
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2. Sur Dl {(y, t) \ bk -^lk«S t< +ek(y)}, on a Fk(y, 0 d'après

(2.10) d'où | uj < 1. Comme u uk+l +# 0, on peut alors écrire

a, — (L+c0)u/u {i"k+ iFk+1 "b / (^k+i~bwk)

— (7fc+i +rA) / (1 + %) 9

et toutes les dérivées d'une telle expression peuvent être estimées par des

sommes de puissances de k avec des coefficients de la forme (darfe(+i)) / (1 + vk).

Mais grâce à (2.10)

| 1 + vkIs* 1 - | vk\ÏSmin

1 F
car eF ^ — pour Fe] —oo, — 1] et eF ^ 1 H- — pour Fe [ — 2,0], et le

théorème des accroissements finis donne pour (y, t)e Dk

I (dVfc(+1}(y, t)) / (mk + efe(y)- é)v |

^ sup {| da+%+i)(y, t) | | (y, t) e Dj? et | ß | < v}

puisque rfc(+1) est plate sur t mk + ek(y) (cf. (2.8)). On obtient donc en

utilisant (2.9) que pour tout a e N",

lim sup I ôaa | ] 0
k~~* oo V 2 /X Dk '

3
3. Sur Dl {(y, t) \ mk + ek(y) < t ^ bk+1 + -lk+1} on procède comme

sur Dl en échangeant les rôles de uk et uk+1, et donc en utilisant vkx à la

place de vk.
3

4. Sur Dk {(y, t) | 8k+1 + - lk+1 ^ t ^ 5k} on procède comme sur Dk

en échangeant les rôles de uk et uk+1.

Chapitre 3: Techniques d'unicité

Dans ce chapitre, nous allons montrer comment prouver certaines
inégalités de Carleman, et comment les utiliser pour obtenir l'unicité de Cauchy.
En guise d'exemple, nous donnons une démonstration complète pour le cas

elliptique (3.1).
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Pour démontrer le théorème 1.2, nous suivrons le schéma proposé par
Strauss et Trêves [24] sauf au paragraphe 3.2 où nous nous inspirons de

Zuily [28]. Il faut dans la démonstration distinguer les étapes suivantes:
tout d'abord une étape purement locale où nous établissons un lemme
technique copié sur le cas elliptique (3.2); puis nous effectuons par deux
fois un passage du local au global afin d'obtenir le théorème 1.2 sous la
condition (R) d'abord dans R2 (3.3), puis dans Rn (3.4); enfin, c'est de nouveau
en « globalisant » le résultat donné par le lemme du paragraphe 3.2 que
nous obtenons le théorème 1.2 sous la condition (P) (3.5).

3.1. Le problème elliptique

Un champ L de R2 est dit elliptique en x0 si les champs réels

X Re L et Y Im L sont linéairement indépendants en x0. Pour toute
fonction (p telle que d(p(x0) ^ 0, le problème associé à un champ elliptique
est non caractéristique. Le champ L sera dit elliptique dans un ouvert Q

de R2 s'il est elliptique en chacun de ses points.

Théorème 3.1. Soit L un champ elliptique en un point x0 e R2. Alors,

pour tout voisinage œ de x0 et toute u e C^œ) solution du système

(3.1)
(L + c0)u(x) 0 dans œ et

u(x) 0 dans cû_ {x e œ | cp(x) < (p(x0)}

la fonction u s'annule au voisinage de x0.

Démonstration. Posons

v|/(x) cp(x) - cp(x0) + | X - x012 et *P(x) - (\|/(x)-e0)2

pour un e0 > 0 que nous choisirons ultérieurement. Remarquons que pour
tout 0 < s ^ 80, Kz {x e co+ | \|f(x) ^ e} est un compact tel que x0 soit

un point intérieur de Ke u œ_

Le point clé de la démonstration, que nous établirons plus loin, est

l'obtention de l'inégalité suivante (dite inégalité de Carleman): il existe des

constantes x0 < oo et C < oo, et un opérateur R (du premier ordre) tels

que Mv e CX(R2) avec supp v a KEo, Vt ^ x0,

(3.2) e~2TWlvl2 ^ C !e~2\(L+c0)v\(\Rv\ + \v\).
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Montrons pour le moment comment obtenir l'unicité à partir d'une telle

inégalité. Des valeurs s, et e2 étant fixées de telle manière que 0 < s2

< s, < e0, nous choisissons une fonction de troncature % e (R telle que

1 1 sur XEl et supp x n ©+ c Kso:

1 o

Figure 3.1.

Le support de % et les compacts KE0, KEl et KE.

{(p(x) Cp(x0)}

Soit u une solution du système (3.1); formons le produit de

par %'veC^R2) et supp v czKeo,donc on peut appliquer l'inégalité (3.2)

à v. Mais d'une part

„2T(£2-£O): f l"|2<
J KE2 %

,-2TT 1 v\2 <

e-^lul2

et d'autre part, L + c0)v%(L+c0)u + [L, x]M — (Uc)u — 0 sur ^

| (L + c0)v | (|Ru| + |u|) ,-2T>P ] (L+c0)f | (|jRu| + |t;|)

«so\k„

< g2T(EI_E0)2 | | (L+c0)u | (|jRu| + |u|).
*en
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L'inégalité (3.2) donne donc pour x ^ x0,

I 2 ^ ^^2t(82—El) (2eq—El — 82) \(L+c0)v\(\Rv\ + \v\),

et comme (e2 — £i) (2s0 — £i~ £2) < 0? ü suffit de laisser x tendre vers l'infini
pour savoir que u 0 dans Ke2 donc au voisinage de x0.

Démonstration de l'inégalité (3.2). Comme d\|/(x0) dcp(x0) ^ OetqueL
est elliptique en x0, le problème (avec \|/) est non caractéristique et nous

pouvons d'après le lemme 1.3 trouver des coordonnées (y, t) e R x R
telles que

1. x0 (0, 0),

2. \|/(x) t,

3. L + c0 dt + ib(y, t) ôy -b c(y, t) à un facteur non nul près.

Comme L est elliptique en x0, nous supposerons que b(0, 0) > 0 (sinon,
changer y en — y), et prendrons s0 suffisamment petit pour que b ^ 8 > 0

dans KS0.

En vue d'écrire vv, posons L% e xX¥(L + c0)exV¥, et c c± + zc2

où cx et c2 sont à valeurs réelles; d'après les points 2 et 3 ci-dessus,

on calcule que :

dt — 2t(£—b0) + ib dy + c1 + ic2 M + iN où

M dt + ic2

N bdy + i(2x(t—e0) — c1).

Dans le découpage ci-dessus, nous avons séparé la partie autoadjointe
de la partie anti-autoadjointe pour pouvoir effectuer des intégrations par
parties. En effet, pour w g C1(R2) avec supp w a Keo,

Re LtwNW
ib -ReIs MwNw +

£0 '

Nw I2
: f~
)ib^ Re | — MwNw

ib

puisque b > 0 dans Keo ; puis

2 Re Mw(Nw/ib) w 2dtl{2x(t-So)-cM - J I w 12ôyc2

par intégrations par parties. On obtient donc :
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w :(2x\_(b-(t-s0)dtb)/b2'] - [ôyc2 + ci,(c1/fe)])

Ltw | | |.2Re
11
— LzwNwsS 2
ib

Choisissons donc s0 assez petit pour que | (t-s0)dtb | < 5/2 dans Xeo,

puis t0 suffisamment grand pour que | dyc2 + dt(cjb) | «S ôr0/(2 sup b dans

K alors, pour r > x0 et C04 sup h2/8,

r
~C~o

w I Ltw | | Nw/b \.

F.nfirij pour v s C^R2) avec supp V <= XEo, posons w - e T>py, et reportons

cette expression dans l'inégalité précédente; on obtient:

e'2^ Irl2 -2tT | (L + c0)v | | (|

+ C( J- | (L + c0)ü | |

d'où l'inégalité (3.2) si nous posons

R dy - icjb et Cmax {Co/r0, C0 sup | 2 |}

Remarques. Il existe pour les champs elliptiques des inégalités de

Carleman meilleures que l'inégalité (3.2); nous avons fait ce choix parce que

ce résultat s'étend à des champs non elliptiques comme nous le verrons

plus loin. L'introduction du facteur 1/b dans les intégrales a pour but de

remplacer j" bdtwôyw qui nécessite des calculs pour être estimée, par 1 dtwdyw

dont la partie imaginaire est nulle; c'est là que nous utilisons l'ellipticité de L.

Dans le prochain paragraphe, nous allons montrer qu'un tel calcul est encore

possible sous des hypothèses plus faibles sur L. Avant cela, donnons un

corollaire du théorème 3.1.

Corollaire 3.2. Soit Q un ouvert connexe de R2 dans lequel

le champ L est elliptique. Si w e C1(Qi) vérifie (L + c0)u(x) 0 dans Q

et s'annule dans un ouvert non vide a> c: Q, alors u est nulle dans Q.

o
Démonstration. Notons F supp u et supposons que F # F.

o
Alors il existe x0 e F\F. Comme x0 e Q, il existe une boule ouverte

centrée en x0, B(x0, 5), qui soit contenue dans Q. Comme x0 / F, il existe
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un point x1eB(x0,hß) tel que x1$F. Soit alors s sup {r \ B(x1, r)

n F 0}; on a 0 < e < 5/2 puisque F est fermé et que x0 e F, donc

B(x1, s) c= B(xo, 5) c= De plus, par compacité il existe x2 e F n s).

Soit cp(x) | x — x± |
2

; alors u est nulle dans {x e fi | cp(x) ^ s2}

B(xl9e) puisque B(xl9e) n F 0 par définition de s; or le problème
est elliptique en x2 et d(p(x2) 2(x2 — x1) ^ 0, donc par le théorème 3.1,

u 0 au voisinage de x2, ce qui contredit le fait que x2e F supp u.

Cette contradiction prouve que le support de u est à la fois ouvert et

fermé. Mais supp u ^ Q puisque œ # 0 est contenu dans le complémentaire
de ce support. Comme Q. est connexe, c'est que supp u 0.

3.2. Un lemme technique

Pour préparer la démonstration du théorème 1.2, nous donnons
maintenant un résultat d'unicité dans R2 copié sur le résultat précédent, mais

sous des hypothèses plus faibles.

Lemme 3.3. Soient 0:R-»R et b: R2 - R deux fonctions C00.

Supposons qu'il existe un voisinage convexe cû de (y0 9(y0 Que ^

soit positive sur co+ {(y, t) e œ | t > 0(y)} et b(y0, t0) > 0 pour un

t0 tel que (y0, t0) e co+ Alors pour toute u e C^œ) solution du système

f ôtu + ib dvu -h eu 0 dans œ, et
(3 3) <

[ u 0 dans œ_ {(y, t) e (o \ t ^ 0(y)}

la fonction u s'annule au voisinage de (y0>Q(y0))'

Démonstration. Elle sera très semblable à celle du théorème 3.1. Pour

commencer, nous allons choisir un poids v|/ fabriqué de telle manière que

l'opérateur n N/b soit encore bien défini.

Si b(y0,Q(y0)) > 0, nous sommes dans le cas elliptique, et le résultat

découle du théorème 3.1; nous supposerons donc tout au long de cette

démonstration que b(y0,0(yo 0: Le t0 de l'hypothèse vérifie donc

t0 > 0(yo)> et il existe un voisinage de (y0,t0) contenu dans œ+ tel que
b ^ 5 > 0 dans ce voisinage (et nous supposerons 5 < 1 dans la suite);

nous pouvons même choisir ce voisinage de la forme
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Nous posons alors

(3.4) Mu) (y-yo)2 +

]yo — a, )>o + aC x ]*o ~ °Uo + aC •

s) (to + u-s)ds.
eoo

Alors, pour tout 0 < s ^ a25, Xe {x e co+ | \|/(x) ^ s} est un compact

tel que x0 soit un point intérieur de K£ u co_, ce qui nous permettra de

déduire l'unicité de l'inégalité de Carleman (3.5) comme dans la démonstration

du théorème 3.1.

Soit 0 < s0 ^ oc28 que nous fixerons plus loin. En vue décrire

w v exp — T\j/ + c(y, s)ds posons

U exr:p(-T\|/+ c(y,s)ds) [dt + ibdy + c]
i

exp(T\|/— c(y,s)ds)
%, to

Grâce à (3.4), et en posant dyc(y, s)ds cx(y, t) + ic2(y, t) où cx et c2
J to

sont à valeurs réelles, on calcule que :

Lt [_dt + Tb(t0 + OL—t)—c] + ib[_dy + xdyy\f—(c1 + ic2j] + c

M + iN M -h ibn

où nous avons séparé la partie autoadjointe de la partie anti-autoadjointe:

d ,3\1/
M — + ixb ibc1

dt ôy

n ix(t0 + aL—t) — ic2
dy

Alors, pour w e CX(R2) avec supp w c i(£o,

Re — Lxwnw Re Jt Mwnw + J b 1 nw |2 ^ Re - Mwnw
i

puisque b ^ 0 dans Keo ; puis,

2 Re Mw(nw/i) — w 2dt(x(t0 + CL — t) + c2) — | w\2dy{xbdyy\f-bc1)
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par intégrations par parties. On obtient donc

| w |2 [x(l - djbdjd r))+ (dy(bCl - dt(c2 ))]

^ 2 Re — Lxwnw < 2 | Lxw | | nw |.

Il nous faut maintenant distinguer deux cas. Pour cela, posons
0O sup {t > 0(j>o) | Vs g [0(jo), f], b(y0, s) 0}; alors Q(y0) ^ 0O < t0. Si
% alors pour tout voisinage de (y0,Q(y0)) on peut trouver un
8 > 0 tel que Ke soit contenu dans ce voisinage; en revanche, si 0O > 0(yo),
alors \|/ est nulle sur K0 {y0} x [0(yo)> 0o]> c'est seulement pour tout
voisinage de K0 qu'on peut trouver un 8 > 0 tel que Ke soit contenu
dans ce voisinage. Cette distinction de cas nous permet d'écrire :

1. Si 0O 0(yo), calculons dy\\f par la formule (3.4):

et donc b(y0,Q(y0)) dy^(y0, Q(y0)) 0; d'où dy(bÔyy\f)(y0, Q(y0j) 0, ce

qui fait qu'on peut trouver e0 assez petit pour que | dy(bdyy\f) | ^ 1/2 dans KZo.

2. Si 0O > Q(y0), alors b est nulle sur K0, et comme b est positive dans
(Ö+, dyb est également nulle dans {y0} x ]0Q>o), 0O], donc dans K0 ; d'où
dy(bdyy\f) 0 dans K0, ce qui fait qu'on peut trouver e0 assez petit pour
que | dy(bôy\|/) | < 1/2 dans Keo.

Le nombre 80 > 0 étant choisi, oublions maintenant cette distinction des
deux cas, et choisissons x0 suffisamment grand pour que | d'y{bc1 — dtc2 |

^ x0/4 dans Keo ; alors, pour x ^ x0

dyb(y, s) (it0 + cc-s)ds + &(y)b(y9 0(y)) (t0 + a-Q{y))

Enfin, pour v e C1(R2) avec supp v c= Keo, posons

w v exp(—x\(/ + c(y, s)ds)

et reportons cette expression dans l'inégalité précédente; on obtient:
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e 2x^ e2 Re i"c
I v |2 ^ -

+

g
— 2t\|/ g2 Re Je

| g^ + fog v + CV \ \ ÔyV + CtV \

e 2xxl/ g2ReJc | g^v _|_ fo^yV _]_ cv | | (5y\|/ + l'(^0 + a ~~ t))V I '

Il existe donc une constante C telle que pour toute v e C1(R2) avec supp v a KS(

et tout t ^ x0,

(3.5) I e~2x* | v |
2 ^ C e~2x* | ôtv + ibdyv + cv \ (IdyV + c^ + M).

3.3. Unicité en dimension deux sous la condition (R)

Nous continuons en donnant une version faible du théorème 1.2 sous la

condition (R) lorsque l'espace est R2.

Théorème 3.4. Supposons que rgj£?(x0) 2 en un point x0e R2.

Si le problème est non caractéristique (en x0), alors pour tout voisinage co

de x0 et toute u e C^co) solution du système

(3.6)
(.L + c0)u(x) 0 dans œ et

u(x) 0 dans œ_ {x e œ | cp(x) ^ cp(x0)}

la fonction u s'annule au voisinage de x0.

Démonstration. D'après le lemme 1.3, nous pouvons prendre sur R2

des coordonnées (y, t) telles que :

1. x0 (°> °)>

2. <p(x) - cp(x0) t,

3. L + c0 dt + ib(y, t) dy + c(y, t) à un facteur non nul près.

Si b(0, 0) / 0, nous sommes dans le cas elliptique et le résultat découle
du théorème 3.1. Sinon, par l'hypothèse rg &(x0) 2, il existe k > 0 tel que
ô* b(0, 0) 7^ 0 tandis que ô{ b(0, 0) 0 pour j < k. Alors, par le théorème
de préparation de Malgrange (cf. Hörmander [11, th. 7.5.5]), il existe,

pour (y, t) e ] — Y, Y[ x ] — T, T[ avec Y > 0 et T > 0, une factorisation

b(y,t) a(y, t) {tk + ak. ^y)?'1 +... + a0(y))
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avec a, a0,..., ak_1 des fonctions C00 à valeurs réelles telles que a(y, t) ^ 0
dans ] — 7, 7[x] — T, T[, et 0,(0) 0 pour j 0,...,/c — 1. Nous allons
maintenant découper le domaine ] — 7, 7[ x ] — T, T[ en petits morceaux
pour pouvoir appliquer le lemme 3.3; ce découpage nous est donné par le
lemme suivant :

Lemme 3.5. Dans la situation décrite ci-dessus, il existe une suite
d'intervalles ouverts disjoints (Ii)ieN dont la réunion est dense dans ] — 7, 7[,
et pour chaque ie N, un nombre fini de fonctions C00 Jf-> R tels

que pour tout y e It :

1- h < h => Qi.jSy) < 0;,^),
2. b{y,t) Ood \jtelque t Quj(y).

Démonstration du lemme. Avec les notations précédentes, posons

P(y, t) tk + ak^1(y)tk~+ + a0(y)

qui est un polynôme en t à coefficients réels et réguliers en y.
Soit (9k l'ouvert de ] — Y, 7[ tel que P(y, t) possède k racines complexes

distinctes en t pour y e (9k ; notons (9k l'intérieur du complémentaire de (9k

dans ] — Y, 7[. Si (9k est vide, c'est que (9k est dense dans ] — Y, Y\_ et
nous arrêtons là notre construction ; sinon P(y, t) possède au plus k — 1

racines complexes distinctes en t pour ye(9'k. Nous définissons alors 0k_1
comme l'ouvert de (9'k tel que P(y, t) possède exactement k — 1 racines
complexes distinctes en t pour ye(9k_1, puis Q'k_ 1 comme l'intérieur du

k

complémentaire de (9k_x dans (9'k. Et ainsi de suite; l'ouvert u (9j est
j= i

alors dense dans ] — Y, Y[. Nous appelons (/f)i6N les composantes connexes
des ouverts Oj.

Dans chaque intervalle It, les racines en t de P(y, t) sont de multiplicité
constante, et par le théorème des fonctions implicites, elles sont donc fonctions

C00 de y; de plus, P étant à coefficients réels, 0 est racine si et
seulement si 0 est racine, et donc, toujours à cause de la multiplicité
constante, les racines réelles et distinctes restent réelles et distinctes quand y
décrit It. Ces racines réelles sont donc représentées par des fonctions
C00 QUj: It -> R vérifiant 1. et 2.

Démonstration du théorème 3.4 (fin). Soit u e C^(œ) une solution du
problème (3.6). Supposons qu'elle soit non nulle en un point de ] — Y, 7[ x ]0, T[ ;

alors elle est non nulle dans tout un voisinage de ce point, et donc il



PROBLÈMES DE CAUCHY 33

existe un point (y0, t0)esupp uavecy0 e It pour un ie N. L'intervalle

étant ouvert, il existe aussi s>0 tel que [fo- £> J'o + e]

Posons \)/(y, t) t+ t0(y-y0)2£~2 et considérons les paraboles Pr d'équations

\Ky, t) t. La fonction uest nulle en dessous de la parabole P0

puisque P0 <= {t<0}, mais Pt0 coupe le support de u et Pt0 n {t> 0}

cj; x [0, T[. Par compacité, il existe donc un point (}q, tx) e supp

n (7j x [0, T[) tel que u0 dans {(y,t) e œ | \|/(y, t) < iKjq > (i)}- Nous distm"

guerons alors deux cas :

1. Si &CKi, *i) # 0, le problème est elliptique en (yx, t±) et tt) ¥=- 0;

donc par le théorème 3.1, u 0 au voisinage de (j>i5£i) ce qui contredit

le fait que (yx, t±) e supp u.

2. Si b{yl9t1) 0, par le lemme 3.5 il existe j tel que t1 Ö^-Oh)-

En outre, le lemme 3.5 permet d'affirmer que

a. £2 {(.y, t) g Ii x R I Öij-iGO < t < Ö*.;()>)} est un ouvert connexe;

ß. b ne s'annule pas dans £2, donc L est elliptique dans £2.

Comme u s'annule dans {(y, t) e œ | \|/(y, t) < \|/CV!, ti)}, elle s'annule dans

l'intersection de ce domaine avec £2, qui est une partie ouverte non vide

de £1 Par le corollaire 3.2, u est nulle dans £2.

De même, la fonction b ne s'annule pas dans {(y, t) e It x R | Gî.jCp)

< t < 0ifJ-+iöO}, et on Peut donc supposer, quitte à changer y en —y,

que b est strictement positive dans ce domaine. Il existe donc un voisinage

convexe w de (y±, t±) tel que b soit positive sur w+ {(y, t)ew\t ^ 0;, j()0}5

strictement positive en un point (yl912) £ w+, et tel que u 0 dans

w_ {(y, t) e w | t ^ Qijiy)}- Tout cela nous permet alors d'utiliser le

lemme 3.3 au point (yl9 ): nous obtenons u 0 au voisinage de (yl9 tx),

ce qui contredit le fait que (j^, t±) e supp u.

Figure 3.2.

Les paraboles Px.
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3.4. Démonstration du théorème 1.2 sous la condition (R)

Dans ce paragraphe, l'espace est R", n entier quelconque.
Commençons par expliciter les hypothèses du théorème 1.2 sous la

condition (R); le problème étant non caractéristique, nous pouvons choisir
(lemme 1.3) des coordonnées locales (y, t) telles que:
1. oc0 (0, 0),

2. cp(x) - <p(x0) t,

3. L + cQ dt + ib(y, t)* dy + c(y, t) à un facteur non nul près.

L'intersection de l'ouvert co avec le domaine dans lequel la propriété (R)
est vérifiée contient un voisinage de (0, 0) de la forme v x ] - T, T[ où
T > 0 et v est un voisinage de 0 dans R"-1 suffisamment petit pour que
rg ££ ^ 2 sur S {(y, 0) g R" | y g v}. On a rg j£? ^ 1 sur S puisque ôt g j£f,
ce qui entraîne encore que :

1. Pour un point (yo,0)eS tel que rgj£?(yo,0) 1, la variété intégrale
passant par (y0, 0) est {y0} x ] - T, T[.
2. Pour un point (y0, 0) g S tel que rg £>(y0, 0) 2, si la courbe y c- S

est la trace sur S de la variété intégrale passant par (y0,0), cette dernière
est y x ] - T, T[.
Comme la réunion des traces sur S des variétés intégrales de & est égale
à S par la propriété (R), la réunion des variétés intégrales de coupant S

est égale au voisinage v x ] — T, T[ tout entier.
Soit u g C1(co) une solution du problème (1.2), et supposons qu'il existe un

point (y0,t0)ev x ]0, T[ tel que u(y0, t0) ^ 0. Ce point (j/0, t0) est donc
situé sur une variété intégrale de & coupant S. Si (y0>*o) est sur une
variété intégrale de dimension 1, c'est que b(y0, t) 0 pour tout t g ] - T, T[,
et u vérifie donc l'équation

dtu(yo, 0 + c(y0, t) u(y0,0 0 pour t e ] — T, T[
où y0 n'est plus qu'un paramètre; la théorie des équations différentielles
ordinaires nous permet de conclure que u(y0, t) 0 pour t g]0, T[, ce qui
contredit le fait que u(y0, t0) / 0.

Il s'ensuit donc que (y0^o) est sur une variété intégrale de <£ de
dimension 2 que nous noterons V. Utilisons (z, t) comme coordonnées sur y
où z est l'abscisse curviligne sur y n S, et désignons par z0 l'abscisse du
point (y0,t0) dans les coordonnées (z, t). Alors il existe e>0 tel que
[z0-s, z0 + e] x ] — T, T[ soit contenu dans y. Comme dans la démonstration

du théorème 3.4, nous posons \|/(z, t) t -h t0(z — z0)2 e~2 et intro-
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duisons les paraboles J\ d'équations i|/(z, x. Nous obtenons ainsi un

point {z1,t1)dusupport de la trace de sur V tel que u - 0 dans

{(z, t)eir\ \|/(z, t) «S i|/(zi, ti )} Or le problème (pour \j/) est non caractéristique

en (z^ti) et rgi?^^) 2 puisque nous sommes sur une variété

integrale de j? de dimension 2. Nous pouvons donc appliquer le théorème 3.4

pour conclure que u est nulle au voisinage de (z^tj sur V, ce qui

contredit le fait que {zutt) est un point du support de la trace de u

sur ir.
Nous avons donc obtenu que u 0 dans x ]- T,T[.

3.5. Démonstration du théorème 1.2 sous la condition (P)

Comme le problème est non caractéristique, nous pouvons faire usage du

lemme 1.3 pour trouver des coordonnées locales t) e R"~1 x R, un voisinage

vde 0 dans R"-1 et un nombre T>0 tels que

1. x0(0, 0),

2. <p(x) - cp(x0) t,

3. L + c0 dt + ib(y, t)-Ôy +c(y,t)dans x ]-T, T[ à un facteur non

nul près,

4. vx ] - T,T[c cd n ß.

Soit u e CHrn) une solution du problème (1.2) et supposons qu'il existe

(y0,t0)ev x ]0, T[ tel que u(y0, t0) # 0. Si on avait b(y0, t) 0 pour tout

t s ]0, t0[, l'équation se réduirait à une équation différentielle ordinaire, ce

qui conduirait à une contradiction.

Il existe donc C e ]0, t0[ tel que b(y0 # 0. Il existe aussi tout un

voisinage de y0 tel que b(y, tj) # 0 pour y dans ce voisinage, par continuité,

et le vecteur

d(y) b(y,t1)/\b(y,t1)

est bien défini et régulier au voisinage de y0\ par conséquent, le champ réel

d(y) • ôy admet en y0 une courbe intégrale que nous noterons y.

Comme la condition (P) est vérifiée dans v x ]0, T[, nous avons

b(y, t) | b(y, t) | d(y) pour tout (y, £) e yx ]0, T[, et donc le champ L est

tangent à yx ]0, T[; nous pouvons désormais nous restreindre à

Y x ] — T, T[ qui contient le point (y0,t0) où u ne s'annule pas et sur

lequel nous prenons comme coordonnées le couple (z, t) où z est l'abscisse

curviligne sur y associée au champ d(y) ; z0 désignera l'abscisse du

point (To, t0).
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Par continuité, il existe un £ > 0 suffisamment petit pour que le problème
restreint à y x ] — T,T[ se présente de la façon suivante :

1. r ]z0 — e,z0 + e[x] — T, T[^yx]-T, T[;
2. w(z, t0)=£0pour z e ]z0- s, z0 + e[ ;

3. L+ c0 ô,+ ih(z, t) <3Z + c(z, t) dans iC+ ]z0-£, z0 + s[ x [0, T[ ;

4. b(z, t) > 0 dans if + (par la condition (P)).

Comme dans la démonstration du théorème 3.4, introduisons la fonction
\|/(z, t) t + t0(z — z0)2 s-2 et les paraboles d'équations \|/(z, t) x. Nous
obtenons ainsi un point (z2,t2) du support de la trace de sur
tel que t2 <t0etw 0 dans {(z, t) e Y|v|/(z, t) < \|/(z2, t2)}.

Comme tout à l'heure, si on avait b(z2,t) 0 pour tout f e]r2, T[,
on prouverait que u(z2,t0) 0 ce qui contredit le point 2 ci-dessus. Il
existe donc f3 e ]f2, T[ tel que b(z2, t3) > 0. Nous distinguons alors deux cas
de figure :

1. Si t2 > 0, posons 0(z) t2 + t0 — -] — t0 [ (en sorte que
8

t > 9(z)\|/(z, t)>\|r(z2,t2)). Nous pouvons alors trouver un voisinage
convexe w de z2,t2)contenant (z2,t3) (où 0) tel que b soit positive
dans w+ {(z, t) ew|t^0(z)} et u0 dans w_ {(z, t)ew\t^ 0(z)}.
Par le lemme 3.3 nous en déduisons que 0 au voisinage de (z2,t2)
ce qui contredit le fait que (z2,t2) est un point du support de la trace
de u sur Y+.
2. Si t2 0, posons 0(z) 0. Nous pouvons alors trouver un voisinage
convexe w de (z2, r2) possédant les mêmes propriétés que dans le cas
précédent, d'où la même conclusion.

Chapitre 4: Etude d'un modèle dans R2

Lorsque nous supprimons les hypothèses « techniques », le théorème 1.2
devient faux; c'est ce que montre l'un des premiers contre-exemples à
l'unicité de Cauchy historiquement construits : le contre-exemple de Cohen [8],
Plutôt que d'en répéter la construction, que le lecteur trouvera par exemple
dans Hörmander [9, th. 8.9.2], nous avons préféré étudier de façon assez
précise un modèle dans R2 (ce qui assure que rg üf < 2) qui fournit des

contre-exemples où le champ L est complètement explicite; c'est l'objet de ce
chapitre.
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Pour traiter le problème non caractéristique général dans R2, nous savons

d'après le lemme 1.3 qu'il suffit d'étudier le champ L d, dy

où best à valeurs réelles. Nous allons examiner ici le cas où la fonction b

est indépendante de y, c'est-à-dire que L prend la forme

L dt -h ib(t) dy

Pour un tel modèle, la condition (R) dans un voisinage de 1 origine

entraîne la condition (P) dans un ouvert Ù+, Q étant un autre voisinage

de l'origine, si bien que le théorème 1.2 s'énonce plus simplement de la

façon suivante: s'il existe un nombre T > 0 tel que b(t) ne change pas

de signe dans l'intervalle ]0, T[, alors il y a unicité (au sens de la conclusion

du théorème 1.2, et pour tout terme c d'ordre zéro).

Dans le lemme ci-dessous (que nous ne démontrons pas car nous ne

l'utiliserons pas), nous analysons la condition précédente.

b(s)ds.
o

Lemme 4.1. Soient b : R- R une fonction C°° et B(t) -
Alors il est équivalent de dire :

(i) VT > 0, b change de signe dans l'intervalle ]0, T[.

(M) Il existe une suite de réels ôfe décroissante et tendant vers 0 telle

que pour tout k ^ 1,

Vt e [ôk+1, Ôk_ J, (-1)*B(8t) > -1ym et

(~lf{B(bk) - B(8k+1)) > 0.

Dans cette situation, nous allons montrer que l'on peut modifier le terme

d'ordre zéro c en sorte que l'opérateur + ne possède pas la propriété

d'unicité, à condition toutefois de faire l'hypothèse supplémentaire que la suite

- l)*(jB(8t - B{St+ ne tend pas trop vite vers zéro.

Théorème 4.2. Soient b : R — R et c : R2 —> C deux fonctions C00 ;

posons B(t) b(s)ds, et supposons qu'il existe une suite de réels 8fe

o

décroissante et tendant vers 0, et un réel > 0 tels que si l'on pose

8fc+1 exp[ — SfcT1] pour tout k ^ 1 on ait

L vt e [sk+ls Sk.j, (-îym) > {-iym et

(-1)^(5,)-^^)) > sfc.
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Alors il existe un voisinage œ de (0, 0) dans R2, u e C°°(co) et a e C°°(œ)
tels que

(4.1)
\_dt + ib(t) dy + c(y, t) + a(y, t)] u(y, t) 0 dans œ

supp w a>+ {(y, t) e CO I t ^ 0}, et

supp a c= (ù+

Exemple. Le lecteur vérifiera facilement que la fonction

j b(t) e~1!t sin(l/t) pour t > 0,
b(t) 0 pour t < 0

satisfait les hypothèses du théorème (on prendra 8k=l/kn).

La démonstration du théorème 4.2 s'effectue en deux étapes : d'abord nous
construisons cinq suites de paramètres Xk, mk, pk, qh, yh possédant de
bonnes propriétés asymptotiques ; la deuxième étape, plus standard, utilise
ces paramètres pour construire les fonctions m et a par une technique de

recollement analogue à la méthode de Cohen [8] (cf. aussi les calculs du
paragraphe 2.4).

Proposition 4.3. Sous les hypothèses du théorème 4.2, il existe cinq suites
de réels positifs Xk, mk, pk, qk et yk telles que

ô/c + i < pk < mk < qk < 8k,

Vte [5»+1>R],(-l)k(B(t)-B(mk))< -
(4.2)

(4.3)

(4.4)

et (-lf(B(i)-B(ô,)) ^ - - (-1

et Vtelqk,bkl(-lt(B(t)-B(mk))>-(-1

L-Ju + i-l)%(B(mk)-B(bk)j]

l-Yt+iH-ïf+%+1 {B(mk)-B(8k+1).

lim
Log Xk

lim
Log (ft —ök+i)

_ lim Log (8t-gt)
k->as yk k->co Xk(B(8k) — B(5k+fc->oo Yfc+1
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(4.5)

Log (A,fc+Xfc+i) 1-
Log (pt 8t+1)

(Xk + Xk + 1){B(mk)-B(5k + 1))k~* oo

Log (5k-qk) =0lm
(lk + \k+,)(B(mk)-BCök+1))k~+ 00

Démonstration : en quatre parties.

1. Construction de la suite Xk. Nous choisissons Xk £k3', on peut alors

écrire

Log Xk+1 — 3 Log Sj

^ -ouus»k+1 _3 g2 Log 8fc+i 3 Sfc5 d'où
Xk\B(bk)~ B(bk+1)\ zkäek

1« Log ^fc+1 ~
} ~

En outre, comme > e3s^3 (car ex Ss ex => (ex)3 > e3x3),

(4.7) Xk+1>2Xk.

2. Construction des suites mk, pk et qk. En utilisant (4.7), nous pouvons
écrire

0 <\-^(-l)k(B{8k)-B(bk+1)) < (-1
^ ^k+ 1

et donc, par le théorème de la valeur intermédiaire, nous obtenons l'existence

d'un point mk e ]8fc+1, 5fc[ tel que

(4.8) (-l)tB(mt)-.B(5t+1)) l-^{-lf(B{bk)-B(Sk+1)).
Z ^fc+l

Nous posons ensuite :

pk sup {p > 5t+11 Vf e [5t+ p],

(-1 )k(B(t)-B(bk+i))l-(^lf(B(
qk inf {q <Ôk|Vf e [q,8J,

(- l)\B(t)-B(dk+1))>l(-l?{B(mk)-B(8k+1))}

La propriété (4.2) se déduit facilement de cette définition et de (4.8). Nous
aurons en outre besoin d'estimations sur pk — 5k+1 et 8k — qk. Or B(pk)

— Bfôk+1) ^{B(mk) — B(dk+1)); par le théorème des accroissements finis,

il existe donc 0fc e ]5fc+x, pk\_ tel que
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(pk-8k+1)b(Qk)

et comme b est bornée au voisinage de 0, on obtient pour un >0
(ft-5»+1) ^ C(-l)k(B(

En multipliant cette inégalité par Xk + 1et en utilisant (4.8) il vient

Vi(ft-ö*+i) >^(-l)%{

On procède de la même façon pour estimer Xk ayant été choisi
de telle sorte que (—1)^(5(0^) — jB(ôt+1)) tende vers l'infini avec on a donc

(4 9) | pour ^ si|ffisamment grand
1 I Log (pk—ôfc + 1) | ^ Log ^k+ieti Log (8k-~qk)\ ^ Log Xk+1.

3. Construction de la suite yk.Pour construire yk nous prenons la
propriété (4.3) comme définition, c'est-à-dire que nous posons

Yi 0, puis pour k^1,

Jk+i Yk - (~l)X(B{mk+

De (4.7) et (4.8) nous tirons

(-1 )k(B(mk)-B(8k+1))<^-(-1)'(%)-B(5H1)), d'où

(-l)k{B(8k)-B(mk)) >^(-l)k(B(8k)-B(8k+1j), puis

- (-1)^%)-5(5S)) > ^ (- l)%+ )- + x)).
^

En reportant cette estimation dans la définition de yk, on obtient

(4-10) Yfc+i >Jk + ^(-1 )%+x{B(mk

4. Calcul des limites (4.4) et (4.5). De (4.8) et (4.10) nous tirons que

Y*+i >\(-i)% + l(B(mk)~B(8k+1)) ~(-l)%(B(8k)-B(8k^)),

d'où
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Log Xk^

Jk+1

4 Log Xk+1

(-l)kXk(B(ök)-B((>k+1))'

Grâce à (4.6), nous en déduisons que

fe-»co yk

De plus, en utilisant (4.9) nous pouvons écrire

Log (Pfc —Sfc+1) Log \
Xk{B(bk)-B(5t+1))

Log (5

\k{B(8k)-B{8k+1j)

Log "hk+1

et

Yk+1 Yk+1

d'où (4.4) en utilisant (4.6) et le résultat précédent.

Grâce à (4.7) et (4.9) on a

Log Xfc+1(l + o(l))Log (Xk + Xk+1)

(Xk + Xk+1 (B(mk) — B(bk + 1

Log (pfe-ôk+1)

(^k + ^k+i) {B{mk) — B(bk+1))

Log (àk — qk)
<

Log Xk+1

K+i{B(mk)-B(bk+l))

Log Xk+1

h + i{B{mk)-B(bk+1))

2 Log Xk+1

(Xk + Xk + 1) (B(mk) — B(bk + 1))

puis d'après (4.8),

Log Xk+1

\+i{B(mk)-B(bk+1)) h{B(bk)-B(bk + 1j) '

ce qui implique (4.5) en utilisant (4.6).

Démonstration du théorème 4.2. Etant donnée une fonction % e C°°(R)

vérifiant: 0 < % ^ 1, % 0 sur ]-°o, 0] et x 1 sur [1, +oo[, nous
définissons dans co R x ] — oo, les fonctions suivantes:

uh(y, t) exp [ —yk + — 1)%{B(t)- B(6k + iyj]

<PkW X
t~$k + i

\pk — àk+1

u0{y, t) yk(t)uk{y, t) + y\fk{t)uk+1(y, t)

"o(3>, 0 0

et \|/fe(t) X
t fit

!ik- fifc/'

pour te[ôk+i,ôfc]:

pour t < 0
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a0{y, t) (dMy, t) + ib(t)dyu0(y,t))/u0(y, t) si u0(y, 0,
a0(y, t)0

«i (y,t) b{t)

ai(y, t)0

dyc(y,s)ds

si u0(y, t) 0,

pour t > 0,

pour t < 0

Puis enfin nous posons

a(y,t)-a0(y, + t), et

u(y, t) u0(y, t) exp

Comme exp c(y, s)ds

c(y, s)ds

est C00 et non nulle, il suffit, pour montrer que a

et u sont solutions du problème (4.1), d'établir les quatre points suivants:
1. La fonction u0 est C°° dans co. La fonction u0 est clairement C00 pour
t > 0 ainsi que pour t < 0. Pour conclure au voisinage de t 0, il faut
estimer les dérivées de u0 pour les petites valeurs de t.

Comme (-l)k(B(t)-B{8kj) ^ 0 et (~l)k+1(B(t)-B(dk+1j) < 0 pour
te IÄ+1 > 8J, et que (p k(t)1 pour te[pk, ôj, on peut écrire les estimations
suivantes :

<?>*%) I < I Cß4Pi e" pour te[pk, SJ et

ß + y^a

pour t e [Sk+1, SJ

où les constantes Cp et CPy ne dépendent que de a, de % et de b, mais

pas de k.Or le logarithme de chacun de ces termes vaut

Log Cp + | ß | Log - yk yk
L°ë CP

+ | ß |
L°g **

_ /
y yk

Log CPy - I y I Log (S k-qk)+ | ß | Log Xk+1 - yk + 1

et

Tfe+i
"Log CPï

_ ^^
Log (bk-qk)

+
Log X*

Yfc+1 Yfc+1 YkH fH
et tend vers — oo lorsque k tend vers l'infini grâce à (4.4); donc les

quantités de départ tendent vers 0.
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Reste à estimer le terme d*[(pk{t)uk(y, tj] pour t e[bk+l9pk]; dans ce

domaine, (-l)\B{t)-B(?>kj)<- \ {-l)k(d'après(4.2), d'où
0

l'estimation

1 ^((PfcUfc) |

< I cßv(pt-5i+1) exp
ß + Y^a

où les constantes CßY ne dépendent que de a, de x et de b, mais pas de k ;

comme ci-dessus, on calcule le logarithme des termes de cette somme

Log Cay - I Y I Log (A —öfc+1) + | ß I Log Xk

yk + -(-l)%(B{8k)-B(8k+1)) < yk+^-l)%(B(8k)-B{8k+1))

Log CPY
+ 1 YI

_ yk

8 Log (pfc — ôfc+!

7\k(B(8k)-B(5k + 1j)
+ Iß

Log K
yk

et cette expression tend à son tour vers — oo lorsque k tend vers l'infini
grâce à (4.4). Nous avons donc démontré :

lim sup I dauQ(y, t) | 0
fc->oo \R x [5k + i, 5k] J

2. Le support de a est contenu dans supp u0 {(y, t) e œ | t ^ 0}. Pour
te[bk+1, 5fe], posons vk uh/uk+1. En utilisant (4.3), on peut écrire :

(4.11) vk(.M) expl(-l)k(Xk + Xk+1)(B(t)-B(mk) + iy)]

Pour te [ôfc+!, pj, on a grâce à (4.2) | vk1, et comme u0 1 + <pkvk),

on a u0 ^ 0. De même pour te[qk, 8J, | 1 et uk(l+^ik/vk) # 0.

Enfin, pour t e[pk,qk~],u0 uk + uk+l, et donc u0 0 équivaut à — 1,

ce qui entraîne d'après (4.11) que

exp[(-l )k(h+h+i)iy'] - 1,

soit y g
f (2n+l)7i

ne Z > ; cet ensemble étant discret, on obtient que supp u0[Xk + Lk+1

{(y, t) g Q) 11 ^ 0}.
Par définition de a0, supp a0 a supp u0, et par définition de ax, supp a±
{(y, t) g co 11 ^ 0}, d'où finalement supp a a supp u0.
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3. La fonction a0 est C00 dans œ. Pour tout k, on a dtuk + ib dyuk 0,

et donc pour t e [pk, qf\, u0 uk + uk+1 => a0 ôtu0 + ib dyu0 0; pour
u0 ^ 0 donc a0 (dtu0 + ibôyu0 )/u0 est une fonction C00. Il

en résulte que la fonction a0 est C°° dans les domaines d'équations t > 0

et t < 0.

Pour conclure au voisinage de t 0, il faut estimer les dérivées de a0

pour t g [5fc + 1, pk2 et te \_qh, ôfe] (a0 est nulle en dehors de ces intervalles).
Pour t e [5fc+1, pfe], | vk \ < 1, et on peut écrire

(dt + ibdy)(yhuk + uk+1) wh

<Pkuk + uu+1

wk(y, t) (Pk-àk+1)"1 x'

X/cty, 0 Vk(t)vk(y, t).

1 + xk

t~&k+1

ou

Pk~$k+1
*>k0>, 0 et

Pour montrer que les dérivées de cette expression tendent vers 0 lorsque k
tend vers l'infini, il suffit de montrer qu'il en est ainsi pour les fonctions
wk et xk. En utilisant (4.2) et (4.11), on obtient les majorations

\d*wk\< I Cpy(pk-bk+1)-1-M(Xk + Xk+1)W
ß + y^a
1

exp -(-l)*(Xfc + Xfc+1 ){B(mk)-B{bk+1))J,

l^l< E cPïfe-s,+1)-M(^+^+1fi
ß + y^a

exp - - - l)\Xk + Xfe+, {B(mk - B(bk+1

où les constantes Cßy ne dépendent que de a, de % et de b, mais pas de k.

Comme tout à l'heure, on montre que ces expressions tendent vers 0 en
calculant leurs logarithmes et en utilisant (4.5). Nous obtenons donc

lim I sup I daa0 | 0
k~* oo \Rx[5k+i,Pk]

On montre de même à l'aide de (4.2), (4.11) et (4.5) que

lim I sup I ôaa0 | 0
oo \R x [qk) 8k]

4. La fonction ax est C00 dans œ. Pour obtenir cette dernière propriété,
il suffit de remarquer que toutes les dérivées de la fonction b tendent vers 0
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lorsque t>0 tend vers 0. En effet, comme b{bk) 0 pour tout nous

obtenons par application répétée du théorème de Rolle que pour tous j
et k entiers positifs, il existe un point 0{ e ]5t+;, 8k[ tel que d{b(Q{) 0,

la limite annoncée en résulte.

Chapitre 5 : Le problème caractéristique

Dans ce chapitre, nous donnons deux résultats: l'un d'unicité, l'autre de

non-unicité.

Au paragraphe 5.1, nous regardons ce qui subsiste du théorème 1.2

lorsque nous supprimons l'hypothèse que le problème est non caractéristique.

Le résultat d'unicité (théorème 5.2) découlera d'un théorème sur la géométrie

du support d'une solution (théorème 5.1) qui est dû à Bony (cf. Sjöstrand

[22, th. 8.7] qui en donne une extension aux équations d'ordres supérieurs).

Puis au paragraphe suivant (5.2) nous construisons un contre-exemple à

l'unicité sous la condition que le rang de est constant. Ce dernier

résultat est dû à Saint Raymond [21, th. 2.9].

5.1. Résultat d'unicité lorsque rg Sß < 2

Plaçons-nous dans les hypothèses du théorème 1.2, mais sans nous donner

de fonction cp ni supposer que le problème est non caractéristique. Cela

signifie que nous sommes dans l'un des deux cas suivants :

1. L vérifie la condition (R) dans un ouvert Q où rg £ ^ 2 (cf. 1.2).

2. L vérifie la condition (P) dans un ouvert Q (cf. 1.2).

Donnons-nous de plus une solution u e CX(D) de l'équation (L+c0)w(x)
0 dans D. Alors, pour paraphraser le théorème 1.2, chaque fois que l'on

trouvera x0 e Q et cp g C°°(Q) à valeurs réelles tels qu'il existe un voisinage
co de x0 avec

x0 e (supp wnco) c= {x e co | cp(x) ^ cp(x0)}

on pourra affirmer que le problème en x0 est caractéristique, c'est-à-dire que
Lcp(x0) 0 ou encore que Xcp(x0) Lcp(x0) 0 (si X Rq L et Y Im L).
Cette remarque nous donne une relation entre les champs réels X et Y
et le fermé F supp u dont nous allons analyser les conséquences dans le

prochain théorème.
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Avant de l'énoncer, rappelons qu'un champ réel X (éventuellement
dégénéré) défini dans un ouvert £1 vérifie toujours la propriété (R). En effet,
pour les points x où X s'annule, {x} est une variété intégrale, et dans
l'ouvert où X ne s'annule pas, le rang est constamment égal à 1 d'où la
propriété grâce au théorème de Frobenius (cf. 1.2). Si X £ afx) dj9 nous
noterons etXx0 la solution x(t) du système différentiel ordinaire suivant:

X'j(t) cij(x(t))

} x(0) x0

Si X 0 en x0, etXx0 reste égal à x0, tandis que si X ^ 0 en x0,
etxx0 décrit la courbe intégrale de X passant par x0.

Théorème 5.1. Soient X un champ réel défini dans un ouvert Q
de R", et F œ £1 une partie fermée dans Q. Supposons que pour tout
x0e£l et toute cp e C°°(Q) à valeurs réelles,

[3co ouvert de £1: x0 g F n œ c œ+ {x e co | cp(x) ^ cp(x0)}]

=*> Xcp(x0) 0

Alors, pour tout compact K de £1, il existe s > 0 tel que

x0e F n K et \t \ < e=> etxx0 e F

Démonstration. Pour un compact K fixé, choisissons un voisinage
compact W de K (c'est-à-dire KœW, W compact de £1); il existe alors
Si > 0 ne dépendant que de K, de W et de X tel que pour x0eK
et te] —Sj[, etxx0 soit bien défini et reste dans W; par la suite,
chaque s que nous choisirons sera plus petit que le précédent, et ne dépendra
que de K, W, X et F.

Pour tout x0 e K, le système

(5.1)

3t<p(t, x) + X<p(t, x) 0

cp(0, x) | x — x0 |
2

admet une solution cp (dépendant de x0) définie dans ]-£2,e2[ x W
pour un s2 > 0. La dérivée par rapport à t de cp(t, etXx0) est nulle à cause
de l'équation (5.1), d'où cp(t, etxx0) cp(0, x0) 0. Puis dérivons la fonction
(p/t) ^cp(t, etxx0 ); nous obtenons (en utilisant (5.1)):
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(3j[ôt<p(t, x)] + X [3/p(t, X)])

[X, dj] <p(t, x) | x=etxxo £
k=l

d'où cp/f) 0 puisque c'est vérifié en 0. Comme (p(0, x) | x — x0 |2,

il existe un s3 > 0 tel que si x0 e K,xe et | \<e3,
(5.2) <p(£, x)^i [ x - etXx0 |2

Pour x0 e FnK, nous avons 0 inf (p(0, x) < inf <p(0, x) et donc
xeFnW xeFndW

cette inégalité reste vraie lorsque | t \ < s pour un s > 0. Pour tout t e ] — s, s[
fixé, il existe donc un point xt e F n W où cp(£, x) atteint sa borne inférieure,

soit:

x, e (FnW) C {x e WIcp(t, x) > cp(t, x()}

En utilisant l'hypothèse du théorème on obtient X(p(t, xt) 0, et en utilisant

l'équation (5.1), dtcp(t, xt) 0. Nous avons donc pour tous | t \ < s et
| s | < s,

0({t-s)2) cp(£, xt) - cp(s, xt) ^ cp(£, xt) - cp(s, xs) ^ (p(£, xs) - cp(s, xs)

0((t-s)2)

d'où cp(£, xt) cp(0, x0) 0. Par (5.2) nous en déduisons que pour x0e F n K
et 111 < s, etXx0 xt g F.

Pour pouvoir tirer les conséquences pour l'unicité de ce théorème, il
nous faut introduire un nouvel objet géométrique.

Si L vérifie la condition (P) dans un voisinage Q d'un point x0 e Rw,

choisissons des coordonnées (lemme 1.3) dans lesquelles L s'écrit dt + ib • dy
à un facteur non nul près, et notons ir1 la courbe intégrale du champ réel dt

passant par x0. Si le rang de reste égal à 1 au voisinage de x0 sur
^l5 nous dirons que Y"x est la «feuille de 3? passant par x0 ». Si au
contraire on peut trouver des points de ir1 arbitrairement proches de x0
où le rang de ££ est égal à 2, nous savons par la propriété (P) qu'il
existe une variété V2 de dimension 2 contenant Y'1 et à laquelle le champ L
reste tangent au voisinage de x0; dans ce deuxième cas, nous dirons que
Y2 est la « feuille de passant par x0 » (on remarquera que Y2 n'est
pas nécessairement une variété intégrale de if, et que dans les deux cas
la feuille de if passant par x0 est une notion géométrique indépendante des
coordonnées choisies).
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De même, pour n'énoncer qu'un seul théorème, si L vérifie la condition (R)
dans un voisinage Q d'un point x0 g Rn, nous appellerons « feuille de

passant par x0 » la variété intégrale de FX passant par x0.
Dans l'énoncé suivant, iX désigne la feuille de FX passant par x0.

Théorème 5.2. Supposons qu'il existe un voisinage D de x0 tel que
l'on se trouve dans l'une des deux situations suivantes:

1. L vérifie la condition (R) et rg FX ^ 2 dans Q.

2. L vérifie la condition (P) dans Q.

Si de plus, pour tout voisinage oo de x0,

iX n co <yé cû+ {x g a> | cp(x) ^ cp(x0)}

alors pour tout voisinage co de x0 et toute u g C^œ) solution du système

^ | (L + c0)u(x) 0 dans œ, et

\ u(x) 0 dans co_ {x g co | cp(x) ^ cp(x0)}

la fonction u s'annule au voisinage de x0.

Démonstration. Soit u g C^oo) une solution du problème (5.3); supposons
que x0 e supp u. Nous allons montrer qu'il existe alors un voisinage de x0
sur iX entièrement contenu dans supp u. En utilisant ensuite l'hypothèse
sur iX du théorème, nous en déduisons qu'il existe des points x g supp u
tels que <p(x) < cp(x0) ce qui contredit le fait que u 0 dans co_. C'est
donc que x0 <£ supp u, c'est-à-dire que u 0 au voisinage de x0.

Montrons donc que si x0 g supp u, il existe un voisinage de x0 sur Y
entièrement contenu dans supp u. Le champ L étant non dégénéré, nous
pouvons trouver (lemme 1.3) des coordonnées locales (y, t) telles que
1. x0 (0, 0),

2. L + c0 dt + ib(y, t) • ôy + c(y, t) à un facteur non nul près.

Comme (L + c0)u(x) 0 dans œ, nous pouvons affirmer grâce au théorème 1.2

que les hypothèses du théorème 5.1 sont vérifiées dans œ avec F supp u
et chacun des deux champs réels X dt et Y m b(y,t)'dy. Nous devons
alors distinguer deux cas :

1. Si dim Y 1, il suffit d'appliquer le théorème 5.1 avec X et K {x0}
pour obtenir un voisinage de x0 sur iX entièrement contenu dans supp u.

2. Si dim iX 2, nous pouvons trouver un voisinage de x0 inclus dans co

qui soit de la forme {(y, t) g Rn | | y | < 8 et | t \ < T} pour un 8 > 0
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| et un T > 0 avec b(y, T) ^ 0 pour tout y tel que | y \ < 8 (sinon, changer t

1 en -t). Prenons alors sur y les coordonnées (z, t) où z est l'abscisse

curviligne associée au champ b(y,T)-dy; on notera z0 l'abscisse de x0.

Il existe alors un a > 0 tel que K [z0-oc, z0 + a] x [-T, T] soit un

voisinage compact de x0 dans y contenu dans le voisinage précédent.

Dans ces conditions, tout point de K est dans le support de m, en effet,

(Zo 5 0) x0 e supp u par hypothèse, puis étant donné (z, t) e K, on obtient par

l'utilisation répétée du théorème 5.1 avec tantôt X, tantôt Y, que

(z, t) e(t-T)Xe(z-zo)YeTX(zo,0) e supp u n K

Remarque. Le théorème de Bony (théorème 5.1 ci-dessus) permet aussi de

démontrer des théorèmes d'unicité globale. A titre d'exemple, énonçons le

résultat pour un problème mi-local, mi-global : dans

a {{y, t) e R2 I y2 + t2 < 2}

considérons le champ

î
f L dy + iey+1 dt si y < — 1,

si y > - 1
•

Alors, pour tout voisinage œ de (0, 0) et toute u e C1^) solution du système

(L + c0)w(x) 0 dans Q et

u(x) 0 dans œ_ {(y, t) e cd | t ^ 0}

la fonction u s'annule au voisinage de (0, 0).

(On remarquera que ce problème ne possède pas la propriété d'unicité

locale; en effet, dans cû {(y, t) e R2 | y2 + t2 < 1}, la fonction

u(y, t) exp J c0(z, t)dz — si t > 0

u(y, t) 0 si t ^ 0

est C00, solution de (.L + c0)u(x) 0 dans o, et vérifie supp n co+

{(y, t) g (ù\t^ 0}).

I 5.2. Contre-exemple à l'unicité lorsque le rang de 5£ est constant

Lorsque le rang de ££ est constant, le champ L vérifie la condition (£)
d'après le théorème de Frobenius (cf. 1.2). Dans l'énoncé suivant, y désigne
la variété intégrale de if passant par x0.
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Theoreme 5.3. Supposons qu'il existe un voisinage Q de x0 tel que le
rang de ££ soit constant dans Q et que

'V n £1 cz D+ {x g Q | cp(x) ^ (p(xo)}

Alors il existe un voisinage co de x0, u g C°°(ö>) et a g C°°(co) tels que

(L + c0 + a)u(x) 0 dans co,

(5.4) r n œ c supp u c= o>+ {x g cd | cp(x) ^ cp(x0)}, et
Va g N", a(x0) 0 (a est « plate » en x0)

De plus, sz c0 0, on petz£ choisir a 0.

Démonstration. Le rang de étant constant, on peut trouver des
coordonnées locales dans un voisinage œ de x0 qui redressent les variétés intégrales
de ^f, ou plus précisément, des coordonnées x (x', x", xH) avec
x' (xx,..., xr) et x" (x,.+ 1,..., x„_1), telles que:
1. x0 (0, 0, 0).

2. d<p(x0) (0,0, 1).

3. Les variétés intégrales de 3? ont pour équations x" Cte, xn Cte
(en particulier, ir a pour équation x" 0, xM 0).

Dans ce qui va suivre, nous aurons éventuellement besoin de réduire le
voisinage co. Le nombre d'étapes étant fini, et les propriétés obtenues restant
vraies si on réduit le voisinage, nous utiliserons toujours la même lettre co

sans préciser les modifications de ce dernier.
Comme L reste tangent aux variétés intégrales de jSf, nous avons L\|/(x) 0

dans cd si \|/(x) x3 - | x" | 2. Posons

u0(x) exp (- l/v|/(x)) si x g co et \|/(x) > 0, et
u0(x) 0 si x g œ et \|/(x) ^ 0

Alors u0 g C°°(co), Lu0(x) 0 dans co et if n co c supp u0 puisque u0(x\ 0, e)

> 0 pour tout x! et tout s > 0 tels que (x', 0, e) g co. Pour voir que
supp u0 a co+ il faut exprimer cp dans les coordonnées (x', x", xM).

Par le théorème des fonctions implicites (cf. le point 2 ci-dessus), il existe
une fonction cp0 g C°°(RM *) telle que cp(x) ^ cp(x0) équivaut dans co à
xn T- ÇoC*' x ^ 0. L hypothèse sur du théorème nous indique que
cp0(x', 0)^0 dans co (cf. le point 3 ci-dessus), donc par développement
de Taylor en x à 1 ordre zéro, cp0(x', x") ^ — C | x" | dans co pour une
constante C < oo(C>0). Si donc on a choisi co assez petit pour que
I x" I < C~3 dans co,

(5.5)
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u0{x) # 0 => v|/(x) > 0

d'où supp
Uq

x„> x 1.2/3
Xn + cpo(x', x") >0 => cpW > 0

®4

Nous avons donc donné une solution du problème (5.4) lorsque c0 0.

Sinon, le champ L étant non dégénéré, choisissons (lemme 1.3) des

coordonnées (y, t)telles que

1. Xq(0,0).

2. L + c0 S,+ ib(y, t)-ôy + c(y, t) à un facteur non nul près.

Pour tout j e N, posons alors

h/y) d{ b(y, 0) et c/y) d{ c(y, 0),

puis par récurrence,

»oOO o.

(5.6)

fj+i(y) - t C)bk(y)dyvj-k(y)-c/y) pour j>0.
k 0

Par le théorème de Borel (cf. Hörmander [11, th. 1.2.6]), il existe une

fonction v e Cœ(co) telle que d{ v(y, 0) Vj(y). Par (5.6), nous obtenons que la

fonction

; a(y, t) — (dtv(y, t) + ib(y, t) • dyv(y, t) + c(y, t))

I est plate en (0, 0).

La fonction u(x) ev{x)u0(x\ où u0 est donnée par (5.5) et v par ce qui

précède est alors solution du problème (5.4).

Remarques. 1) Pour une discussion du rôle du terme d'ordre zéro, on

se reportera au chapitre suivant.

2) On notera que par les théorèmes 5.2 et 5.3 nous avons complètement
élucidé la question de l'unicité pour les problèmes caractéristiques de rang
constant. En effet, distinguons les deux situations suivantes :

a — Le rang de est inférieur ou égal à 2. La condition nécessaire et

suffisante pour qu'il y ait unicité (pour toute perturbation a plate en x0)
est alors que la variété intégrale de ££ passant par x0 ne reste pas
localement dans {(p(x) ^ cp(^o)} (c'est nécessaire par le théorème 5.3, et suffisant

par le théorème 5.2).

ß — Le rang de $£ est supérieur ou égal à 3. Alors il n'y a jamais
unicité « stable ». En effet, deux cas peuvent se produire : s'il existe des
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points arbitrairement proches de x0 dans S {xeRn\ <p(x) <p(x0)} où le
problème n'est pas caractéristique, nous pouvons appliquer le théorème 1.1;
si le problème est caractéristique en tous les points de S, c'est que la
variété intégrale de 3? passant par x0 reste localement dans S, et nous
pouvons appliquer le théorème 5.3.

Chapitre 6: Rôle du terme d'ordre zéro

Aux théorèmes 1.1, 2.2, 4.2 et 5.3, nous avons dû modifier le terme
d'ordre zéro pour montrer qu'il n'y avait pas unicité de Cauchy. Il est alors
naturel de se demander si de tels problèmes possèdent tout de même la
propriété d'unicité pour certains termes d'ordre zéro. La réponse à cette
question est positive comme nous le verrons ci-dessous.

Cependant, le rôle du terme d'ordre zéro est encore mal connu. Nous
nous bornerons ici à énoncer deux remarques qui suggèrent la nature des

conditions à imposer. La première d'entre elles (théorème 6.1) est dûe à

Lewy [15].
Avant d'énoncer le premier théorème, rappelons que la résolubilité locale

d'un champ complexe non dégénéré a été étudiée par Nirenberg et Trêves [17],
et que sous les hypothèses du théorème 2.2, ainsi que sous les hypothèses
du théorème 5.3 si rg ^ 3, le champ L n'est localement résoluble en aucun
point d'un voisinage de x0 ; de même, les hypothèses des théorèmes 1.1 et 4.2
entraînent qu'il existe de nombreux points voisins de x0 où L n'est pas
localement résoluble. Il en résulte qu'il existe des fonctions C00 c telles que
l'équation Lv — c 0 ne possède pas de solution v au voisinage de ces

points.

Théorème 6.1. Soit J^j(c0) /'ensemble des points de R" au voisinage
desquels l'équation Lv(x) + c0(x) 0 ne possède pas de solution v e Cj.
S'il existe un voisinage Q de x0 tel que

Jffc<f) Q+ {x g Q, I cp(x) ^ (p(*o)} >

alors pour tout voisinage œ de x0 et toute u e CJ(co) solution du système

^2) | (L + c0)w(x) 0 dans œ et

| u(x) 0 dans œ_ {x e œ | cp(x) < cp(x0)}

la fonction u s'annule au voisinage de x0.
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Démonstration. Soit u g Cj(©) une solution du problème (6.1). Supposons

qu'elle n'est pas nulle dans © n Q. Alors, comme u(x) 0 dans co_,

il existe un ouvert contenu dans © n Q+ où m ne prend pas la valeur 0; cet

ouvert contient donc un point x1eJrJ(c0) et une boule ©x de centre

x1 : u(x) i=- 0 pour tout x g ©!. Dans ©x, on peut alors écrire u(x) e

pour une fonction v g C\(ù1 Or (6.1) implique que Lv(x) + c0(x) 0 dans

ce qui contredit le fait que x1ejVj(c0). Donc u — 0 dans © n Q.

Dans le théorème suivant, nous nous plaçons résolument dans une

situation où l'on a déjà montré qu'il n'y avait pas unicité pour un terme

d'ordre zéro donné c0 (situation fournie par exemple par l'un des

théorèmes 1.1, 2.2, 4.2 ou 5.3), et nous cherchons pour quels autres termes

d'ordre zéro c l'opérateur L + c ne possède toujours pas la propriété

d'unicité. 0
Pour un fermé F, nous noterons Cj(F) l'ensemble des fonctions v g Cj(F)

possédant la propriété suivante : pour tout xgF et tout multi-indice a de

longueur inférieure à j, il existe un voisinage ©a de x tel que d^v reste

bornée dans ©a n F.

Théorème 6.2. Supposons qu'il existe un voisinage © de x0 et

des fonctions u0 g Cj(©) et c0 g C°°(©) tels que

(L + c0)w0(x) 0 dans ©, et

x0 g supp u0 a ©+ {x g © | cp(x) ^ cp(x0)}

Si de plus l'équation Lv(x) + c(x) — c0(x) 0 possède une solution

v g CJ(supp Uq alors il existe une fonction u e CJ(©) telle que

f (L+c)m(x) 0 dans ©, et

| x0 g supp u c= ©+

Démonstration. Il suffit de prendre w(x) eu(x)w0(x).

Application. Comme illustration de ce dernier théorème, reprenons un
problème abordé au chapitre 5.

Supposons qu'il existe un voisinage Q d'un point x0 g Rn dans lequel
le champ L vérifie la condition (P) et F£ est de rang constant. Deux
exemples d'une telle situation sont fournis par le cas où L est un champ réel
(non dégénéré en x0) et le cas où X Re L et Y Im L sont linéairement
indépendants en x0 et commutent au voisinage de x0([X, Y] 0).



54 X. SAINT RAYMOND

Notons if la variété intégrale de f£ passant par x0; alors, en
rassemblant les résultats des théorèmes 5.2, 5.3 et 6.2, et en rappelant que
sous la condition (P), L est localement résoluble (cf. Nirenberg et Trêves [17]),
on s aperçoit qu'on a démontré l'équivalence des deux propriétés suivantes :

1. Unicité locale en x0 : pour tout voisinage co de x0,

U G C^Gö)

(L + c0)u(x) 0 dans co, et

u(x) 0 dans œ_ {xe co | <p(x) ^ <p(x0)}

2. Pour tout voisinage co de x0, f n co ^ œ+ {x g co | <p(x) > <p(x0)}.

u 0 au voisinage de x0
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