Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 32 (1986)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: THE GEOMETRY OF THE HOPF FIBRATIONS

Autor: Gluck, Herman / Ziller, Wolfgang

Kapitel: 7. Symmetries of the Hopf fibration $H: S*7 \hookrightarrow S"15
\rightarrow S"8%

DOI: https://doi.org/10.5169/seals-55085

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-55085
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en
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same is true if one of these planes is L, . Thus the Hopf 7-spheres on
S1° are parallel to one another, as claimed. QED

The Riemannian metric on the base space S® which makes the Hopf §
projection S§'° - S8 into a Riemannian submersion is that of a round
8-sphere of radius 1/2, which one sees directly just as in the previous cases.

7. SYMMETRIES OF THE HOPF FIBRATION H:S§7 ¢, §15 _ §8

PROPOSITION 7.1.  The group G of all symmetries of the Hopf fibration

H:S87 o 8 - S® s isomorphic to Spin(9), the simply comnected double
cover of SO(9).

The action is as follows :

1) Thereisa geG inducing any preassigned orientation preserving isometry

of the round base S®, but no orientation reversing ones.

2) Given such a g, there is exactly one other symmetry,

—¢g = antipodal map o g ,
which induces the same action on S8,

It is likely that Elie Cartan was aware of this result, since in [Ca 2,
esp. pp. 424 and 466] he identified Spin(9) as the group of isometries
fixing a point in the Cayley projective plane CaP?. It is not hard to see
that this is the same as the group of symmetries of our Hopf fibration.

The symmetry groups of the other Hopf fibrations can likewise be identified

with the groups of isometries fixing a point in complex and quaternionic
projective spaces, also known to Cartan.

We give the proof of Proposition 7.1 in a series of lemmas. °

LEMMA 7.2. The only symmetries which take each fibre to itself are the
identity and the antipodal map.

Suppose B: R'® — R'¢ is such a symmetry. Since B maps
Lo={®0)}, L, = {0,)} and L, = {(u w)
into themselves, we must have _
B(u, v) = (A(u), A(v))

for some A4 € O(8). Since B maps L,, = {(u, mu)} into itself, we get
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Blu, mu) = (A(u), AGmu)) = (A(w), mAwW).

¥ 3 ‘?‘

b Thus Amu) = mA@), all mueCa.
2 Now in this equation put u = 1 and keep m arbitrary:
A(m) = mA(l) = ma,
where we define a = A(1). Insert this back into the previous equation, getting
(mu)a = m(ua), forall m,ueCa.

But then it follows from the nonassociativity of the Cayley numbers that
| the element a must be real. Since A€ O(®), @ = £1. Thus A(m) = £m,
! and hence B(u,v) = (+u, +v), that is, B is either the identity or the
antipodal map, as claimed. QED

, If we compare Lemma 7.2 with the corresponding assertions about the
earlier Hopf fibrations, we conclude that the current Hopf fibration is the
least symmetric of all.

LeMMA 7.3. There is a symmetry of our Hopf fibration inducing any
preassigned orientation preserving isometry of the base which keeps Lo fixed.

| Such a symmetry must also take the orthogonal fibre L, = {(0, v)} to
- itself, and hence must be of the form

(u, v) — (A(u), B(v)), where A, Be0(8).

\ Given such a symmetry, the Cayley line L, = {(u, mu)} is taken to the
§  set {(A(w), B(mu))}, which must itself be some Cayley line, say L, . Thus
! B(mu) = m' A(u). Note that as a function of u, the left hand side is
conformal with conformal factor | m |, while the right hand side is conformal
§  with factor |m'|. Hence |m| = |m'|. Since the correspondence m i m'
§  is easily seen to be R-linear, it must be an isometry. Hence we can write
¥ m = C(m), with C € O(8).

'E Summarizing so far,-a symmetry of our Hopf fibration which takes the
“ fibre L, to itself must be of the form (4, B) with A, Be O(8), and there
must exist a C € O(8) such that

B(mu) = C(m) A(u), forall m,ueCa.

| Vice versa, if such a C exists, then the map (4, B) is indeed a symmetry
of the Hopf fibration.
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Since it is C which describes the induced action on the base space
S®, we need to be able to preassign C e SO(8). The possibility of doing
this is the content of the “Triality Principle”, as follows.

LEmMMA 7.4. (Triality Principle for SO(8), see [Ca 1, pp. 370 and 373]
and [Fr]). Consider the triples A, B and C in SO®8) such that

Bmu) = C(m) Aw), forall m,uecCa.

If any one of these three isometries is preassigned, then the other two
exist and are unique up to changing sign for both of them.

We concentrate on preassigning C. Let G be the subset of SO(8)
consisting of all transformations C for which there exist 4 and B in
SO(8) satisfying the above equation for all m, u € Ca. First note that G is
actually a subgroup of SO(8). For suppose that C and C’ are in G, and
correspond as above to 4, B and A’, B’ respectively. Then

BB'(mu) = B(C'(m) A'(w)) = CC'(m) AA'(u),

showing that CC’' € G. And similarly for inverses.
We want to show that G is all of SO(8). Let x be an imaginary
Cayley number of unit length. We claim

(7.5)  The right and left translations R, and L, arein G.

To show this, we use the first two Moufang identities.
To satisfy B(mu) = C(m) A(u) with C = R,, choose A = —L.R, and
B = R,. We must show that

(mu)x = — (mx) (xux).
To do this, simply take the Moufang identity
2(xyx) = ((zx)y)x
and put x - X,y = uand z = mx, getting
| (mx) (xux) = ((mxx)u)x = — (mu)x,

since x> = —1. Thus R, € G.
To satisfy B(mu) = C(m) A(u) with C = L_R_, choose A = L, and
B = —L,. We must show that

—x(mu) = (xmx) (xu) .
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To do this, take the Moufang identity
(xyx)z = x(y(xz))

and put x = x, y = mand z = xu, getting

(xmx) (xu) = x(m(xxu)) = —x(mu),
since x2 = —1 as before. Thus LR, € G. Since we already know that G
is a group and that it contains R,, it must also contain L,, establishing

our claim.
Next we claim

(7.6)  The transformations R, and L., as x ranges over all imaginary
unit Cayley numbers, generate SO(8).

Since the subgroup G contains these transformations, this will show
that G is all of SO(8).

First note that any unit vector can be mapped to any other unit vector
by a composition of such transformations. To see this, first suppose that
u and v are orthogonal unit vectors: <u,v> = 0. Then <1, w > = 0.
Hence x = vu~! is an imaginary unit Cayley number such that L, (u)
= (ou"Yu = v. If u and v are unit vectors, but not necessarily orthogonal,
just pick a unit vector w orthogonal to both. Find L, and L, such that
L.(u) = wand L, (w) = v. Then L,L,(4) = v, as desired.

So now it will be sufficient to show that any transformation in SO(8)
keeping 1 fixed is a composition of right and left translations by imaginary
unit Cayley numbers. One such transformation is — LR, for any imaginary
unit Cayley number x. Note that —L,R.(x) = X, so that this transformation
also keeps x fixed. On the other hand, if y is an imaginary Cayley number
orthogonal to x, then

_LxRx(y) = —XyxX = XXy = —JY,

since orthogonal imaginaries anti-commute by Fact 6. Thus —L,R, is the
identity on the 2-plane spanned by 1 and x, and is minus the identity
on the orthogonal 6-plane. Viewed just on the imaginary Cayley numbers,
this transformation is reflection about the line through x.

But it is easy to see that the set of reflections through all lines in
R7 generates SO(7). Hence the transformations R, and L., as x ranges over
all imaginary unit Cayley numbers, generate SO(8), as claimed.

Thus the subgroup G of transformations C in SO(8), for which one
can find A and B in SO(8) satisfying B(mu) = C(m) A(u) for all Cayley

AL R B et £, T b Dt s e
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numbers m and u, must be all of SO(8). In a similar fashion, one can
preassign either 4 or B and find the other two, completing the proof of
existence for the Triality Principle.

To prove uniqueness up to sign change for the Triality Principle,
suppose C is the identity. Thus B(mu) = m A(u) for all m,ue Ca. Put
m = 1 to learn that B(u) = A(u). So now A(mu) = m A(u). Put u = 1 to get
A(m) = m A(1) = ma, where we define a = A(1). Then put this back in the
previous equation to get (mu)a = m(ua). Since this holds for all m, u e Ca,
the element a must be real. Since A4 is orthogonal, a = +1. Thus 4 = B
= =1, proving uniqueness up to sign change when C = I. Uniqueness up
to sign change for all C e SO(8) follows by composition. A similar argument
gives uniqueness up to sign change when 4 or B is preassigned, completing
the proof of the Triality Principle. QED

Preassigning C and using the Triality Principle to select A and B
then completes the proof of Lemma 7.3: there is a symmetry of our Hopf
fibration inducing any preassigned orientation preserving isometry of the
base which keeps L, fixed. QED

We next use Lemma 7.3 to sharpen itself.

LEMMA 7.7. There is a symmetry of our H opf fibration inducing any
preassigned orientation preserving isometry of the base. In particular, there is a
symmetry taking any fibre to any other.

On the base space S® we take the north pole to be Ly and the south
pole to be L,. Then the equator will consist of all L, for which
|m| = 1. Now consider the circle consisting of the points I, for real m.
We plan to show that this circle is contained in the orbit of L, under the
symmetry group of H. Since this circle meets the equator in two points,
Ly and L_;, we can then use (7.3) to conclude that the orbit of L,
is all of S°. Combining again with (7.3) will yield (7.7).

Consider the map A4,: Ca* — Ca? defined by
Ay(u, v) = (cosd u—sind v, sind u+cosp v).

These maps, for 0 < ¢ < 2w, provide a circle group of isometries of Ca?.
We claim '

(7.8) Each A, is a symmetry of our Hopf fibration.
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EQUATOR §7 = {L,:|m| =1}

8 CIRCLE {L,,: m real}

L,

FIGURE 4

We must show that, given me Ca, there exists m' € Ca such that
A¢(Lm) — Lml. NOW
Ay(u, mu) = (cosd u—sind mu, sind u+ cosd mu)

= ((cos$ —sind m) u, (sin +cos¢ m) u).

Let W = (cosd—sind m) u
and m = (sind+cosd m) (cosd—sind m)~*.
Then my = [(sind +cosd m) (cosp —sind m)_ 11 [(cosd —sind m) u] .

The product on the right hand side may be reassociated because all the
elements lie in the subalgebra of Ca spanned by the two elements m and u.
As noted in section 5, such a subalgebra must be associative. But then
clearly

3
;
#|
:
i
!
3
%

mu = (sind+cosd m)u,
so that we have
Ay(u, mu) = (', mu').

Thus A44(L,) = L., so each A, is a symmetry of our Hopf fibration,
as claimed. : :
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Since Ay(Lo) = Liany, We see that the orbit of L, under the various
A, 1s the circle (L, : m real). As indicated above, this is enough to complete
the proof of (7.7). QED

LEMMA 7.9. No symmetry of our Hopf fibration can induce an orientation
reversing isometry of the base.

Suppose there were such a symmetry. Using Lemma 7.7, we can assume it
takes the fibre L, = {(u,0)} to itself. Then it must be of the form
(u, v) — (A(u), B(v)) with A, Be O(8), and as we saw in (7.3) there must
exist a C € O(8) such that B(mu) = C(m) A(u) for all m, u € Ca.

Composing our symmetry with an appropriate one guaranteed by
Lemma 7.3 we can assume that C(m) = m. Thus B(mu) = m A(u). Put
m = 1 to conclude that A = B. Thus A(mu) = m A(u). Put u = 1 to conclude
that A(m) = m A(1) = m a. Then put this back in the previous equation to
get (mu)a = m(ua). But mu = um by Fact 4 of section 5. Hence

(um)a = m(u a) .
Now replace u by u and m by m to get
(um)a = m(ua) forall wu meCa.

But this equation is impossible, which we see as follows.

Simply choose an automorphism of the Cayley numbers, see (5.4), which
moves the element a to a unit quaternion. Apply such an automorphism
to the above equation, and now consider that equation only for the
quaternions:

(um)a = m(ua) forall u,meH.

But the quaternions are associative, so we remove the parentheses, then
cancel the a and learn that

um = mu forall umeH,

which is of course false. QED

Proof of (7.1). Let G again denote the group of all symmetries of the
Hopf fibration H:S? ¢ S'> — 8% Consider the homomorphism G — O(9),
which takes each ge G to its induced action on the base space S®. By K
Lemma 7.9, the image lies in SO(9). By Lemma 7.7, the homomorphism |
is onto. By Lemma 7.2, it is two-to-one. Thus G is a double covering of
SO(9). It remains to show that this covering is nontrivial.
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i It will be sufficient to look only at the symmetries of H which take the
| fibre Lo = {1, 0)} to itself, and hence are of the form (u, v) — (A(w), B(v)).
. We already know that there must be a C e SO(8) such that B(mu) = C(m) A(u)
§ for all myueCa To show that G is a nontrivial double covering of
 50(9), we must find a loop of Cs which lifts to a non-loop of (A, B)’s.
-, This can be done by using the Moufang identities, just as in the
proof of the Triality Principle. Recall from that proof that if x 1s an
| imaginary Cayley number of unit length, then A = L., B = —L, and
. € = LR, “works”, that is, — L, (mu) = LR, (m) L,(u). Now let x describe a
§  semi-circular path in the i, j-plane from i to —i. At the beginning of the
© path, C(m) = imi, while at the end of the path Clm) = (—iym(—i) = imi.
Thus C describes a loop in SO(8). At the beginning of the pati;{AW), B(v))
| — (iu, —iv), while at the end (A(w), Bw)) = (—iu, iv). Hence (4, B) describes a
~ non-loop in G. Thus G is the non-trivial double covering Spin(9) of SO(9).
| QED

Here is a further indication of the extent of symmetry of the Hopf
' fibration H: S7 & §*3 — S® Orient the fibres.

PROPOSITION 7.10. Let P and Q be any two fibres of H. Then a
! preassigned orientation preserving rigid motion of P onto Q can be
d  cxiended to a symmetry of H. In particular, the symmetries act transitively

on S'3.

By Lemma 7.7, the symmetries act transitively on fibres, so we may

take P = Q = L,. To preassign an orientation preserving rigid motion of

" L, onto itself is to preassign the map A4 € SO(§) in the Triality Principle,
which then promises the desired symmetry of H. QED
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