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182 H. GLUCK, F. WARNER AND W. ZILLER

Proposition 3.1. The Hopf3-spheres on S4"-1 are parallel to one
another.

The proof is similar to that of Proposition 1.1 for Hopf circles; it
uses the fact that scalar multiplication by i, j and k are isometries of II".
Alternatively, it will follow, as in Remark 1 above, from Proposition 4.2 a.

QED

metric on HP"\The canonical metric on 1 makes it into a round
4-sphere of radius 1/2. This follows by the same argument given in
Proposition 1.2 for the case H : S1c> s3->CP1.

4. Symmetries of the Hopf fibrattons with fibre S3

We now investigate the symmetries of the Hopf fibration

H: S3 c+ S4"-1 - 1.

The symplectic group

Spin) Gl(n,H)n 0(4n)

consists of quaternionically linear maps which are also rigid. Since these
maps take quaternionic lines to quaternionic lines, they must be symmetries
of the above Hopf fibration.

There are other symmetries. For each unit quaternion v, consider the
action of right scalar multiplication by v on

Rv(ui,-, un) (ut v,..., u„

This map is certainly not H-linear, since

R-v [(«1, -, un)wl(u1 W V,

while [PK(«i, -, «„)] vv («j v w,..., unvw).

Nevertheless, Rv takes each quaternionic line in to itself. Thus the group
S of unit quaternions, acting on Hn from the right, must also be counted
among the symmetries of our Hopf fibration.

Since the symplectic group Sp(ri) acts on S4""1 from the left, while
the group S3 of unit quaternions acts from the right, these two actions
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commute! The actions also overlap, because they both contain multiplication

by — 1. Hence they combine to give an action of the group

Sp(n) x
2

on S4"' 1,where this group is obtained from )x by dividing out by

the two-element subgroup consisting of the identity and the antipodal map.

The following lemma asserts that there are no further symmetries.

Proposition 4.1. Thegroup G of all symmetries of the Hopf fibration

H is

Sp(n) x S3

G= 2
'

Let gbe a symmetry of the Hopf fibration, i.e., a rigid map of H

taking quaternionic lines to quaternionic lines. Composing g with an appropriate

element of Sp{n), we can arrange that the new g be invariant on

each quaternionic coordinate fine 0 x x x x 0.

We claim this new g is orientation preserving on x 0 x x 0.

Suppose not. Then composing it with appropriate elements of Sp(n) and S3,

we can further arrange that g(u,...) (û, -)• Here we use the fact that

left and right multiplication by unit quaternions generates the group SO(4).

Since g takes quaternionic lines to quaternionic Unes, we must have

g(u, u,...) (û, mû,...), for some m ^ 0

Then for any s,

g(u, su,...) (û, m(su),...) (û, m s,...).

As u varies, these image points must also fill out a quaternionic line,

hence m û s t ü. Putting u1, we get t m s. Thus û.

Cancelling the m, we get ûs"= sü. Since both u and s are arbitrary,

this is impossible, establishing the claim.

Thus g is orientation preserving on x 0 x x 0, and we compose it
with appropriate elements of Sp(n) and S3 so as to make it the identity
there. Then we again use the fact that g takes quaternionic lines to
quaternionic lines to conclude that

g(u, u,..., u) (u, m2 u,..., m„ u).
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Hence

9(ui»2 » -, u„)(tq ,m2u2, mnun),

so the current version of g must lie in Sp(n). QED

Remark. Note that all the symmetries are orientation preserving, since the
group Gis connected.

Let H\ S3 c+ S '*" 1 - H P" 1 denote our current Hopf fibration, and let
us orient the fibres in a consistent fashion. The next proposition shows
that this fibration is highly symmetric, yet slightly less so than the Hopf
fibrations by circles.

Proposition 4.2. Let H :S3 o>S4""1 - be a Hopf fibration.
Then

a) The only symmetries of H inducing the identity on the base space
are the right multiplications by unit quaternions. This is just a 3-parameter
subgroup of the 6-parameter group 0(4) of all rigid motions of a fibre.

b) If P and Q are any two fibres, then any preassigned orientation
preserving rigid motion of P onto Q can be extended to a symmetry
of H. But no orientation reversing one can.

c) The group of symmetries acts transitively on S4""1, and in particular
acts transitively on fibres.

It follows easily from the non-commutativity of the quaternions that
the only transformations in Sp(ri) which take each quaternionic line to
itself are ±Id. Then a) follows immediately from the description of the
symmetry group given in Proposition 4.1.

Even the subgroup Sp(n) of G acts transitively on S4"-1, and c) follows.
To prove b), we can now assume that P and Q both coincide with

the unit 3-sphere on Hx0 x x 0. Then left and right multiplication
by unit quaternions takes this fibre to itself, and generates 50(4). No
orientation reversing transformation of this fibre can be achieved, since
the group of symmetries is connected. This proves b). QED

Remarks. 1) Note that the existence of symmetries of H taking each fibre
to itself and acting transitively on a given fibre shows that these fibres
must be parallel.

2) Also note that a symmetry of H:S3 54""1 - induces an
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isometry of the base space HP"'1 in its canonical metric. It is easy to

check that when n 2, every orientation preserving isometry of the base

HP1 S4(l/2) can be produced this way, while no orientation reversing

one can (since the group is connected). We remark without proof that all

isometries of HP"'1,n> 2, can be produced this way, and that they are

all orientation preserving.

5. Normed Division Algebras and the Cayley Numbers

In order to describe the Hopf fibration <+ -> in the next

section, we first review here some facts about normed division algebras

and the arithmetic of Cayley numbers. More can be found in two excellent

references, [Cu] and [H-L, pp. 140-145].

A normed division algebra Bisa finite dimensional algebra over the reals

with multiplicative unit 1, and equipped with an inner product < >

whose associated norm j | satisfies

I xy I I x I I y I for all x, y e B

By Hurwitz' Theorem ([Hu 1], 1898), a proof of which we will outline

here, every normed division algebra is isomorphic to either the reals R,

the complex numbers C, the quaternions H or the Cayley numbers Ca.

Actually, what Hurwitz proved is that normed division algebras can only

occur in dimensions 1, 2, 4 and 8. He stated the corresponding uniqueness

result without proof. In |~Hu 2], published in 1923 after his death, Hurwitz

credits E. Robert [Ro] with writing out the details of the uniqueness

argument in a 1912 Zurich thesis.

Now let B denote a given normed division algebra. Let Re B denote

the one-dimensional linear subspace spanned by the identity 1, and Im B the

orthogonal complement of Re B. Then each x e B has a unique orthogonal

decomposition,

x Xi + x', X1 e Re B and x' e Im B

into its real and imaginary parts. Conjugation in B is defined by :

X Xi — x'.

Here are some basic facts about arithmetic in any normed division

algebra B :
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