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HOPF FIBRATIONS 181

d) There is no symmetry of H inducing the identity on the base space and
reversing the orientations of the Hopf circles.

Consider the symmetries z+Id, | z| = 1, which multiply each coordinate

in C* by the complex number z of unit length. They induce the identity

on the base space, and can be selected to take a fibre to itself by a
preassigned rotation, proving a).

The transformations in U(n) can take any complex line in C" to any
other by a preassigned orientation preserving rigid motion. Complex conjuga-
tion then adds the orientation reversing ones, proving b).

In particular, this implies c).

Suppose there were a symmetry of H: St ¢ §2»~1 5 CP" ! taking each
Hopf circle to itself with reversal of orientation. Then, by restriction to C?,
such a symmetry would also exist for n = 2. Its reversal of orientation on
the total space S° would then contradict the remark following Proposition 2.1.
This proves d). QED

Remarks. 1) Note that the existence of symmetries of H rotating each
Hopf circle within itself shows again that these circles must be parallel.

7) Also note that a symmetry of H:S" o §2»=1 _, CP" ! induces an
isometry of the base space CP"~! in its canonical metric. We remark
without proof that all isometries of CP" ! can be produced this way.

3. HOPF FIBRATIONS WITH FIBRE S°

Choose orthonormal coordinates in R*" and identify this space with
quaternionic n-space H". A little care is needed in dealing with H" because
the quaternions form a non-commutative division algebra:

1) Scalars ve H will act on vectors (uy,..,u,)€ H" from the right.
(Ug s ooy Uy) U = (Ug U, oy U, D) .

2) H-linear transformations of H" will be expressed by matrices of
quaternions acting from the left (so as to commute with scalar multiplication).

The quaternionic lines in H", each looking like a real 4-plane, form the
quaternionic projective space HP"~ ' and fill out H", with any two meeting

only at the origin. The unit 3-spheres on these quaternionic lines give us
the Hopf fibration

H:S83c¢ S 1 Hpr 1,
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ProposiTiION 3.1.  The Hopf 3-spheres on  S*"~' are parallel to one
another.

The proof is similar to that of Proposition 1.1 for Hopf circles; it
uses the fact that scalar multiplication by i, j and k are isometries of H".
Alternatively, it will follow, as in Remark 1 above, from Proposition 4.2 a.

QED

The Riemannian metric on HP"™! which makes the Hopf projection
§**~1 — HP" ! into a Riemannian submersion is known as the canonical
metric on HP""*. The canonical metric on HP' makes it into a round

4-sphere of radius 1/2. This follows by the same argument given in Pro-
position 1.2 for the case H: S ¢, S3 - CPL.

4. SYMMETRIES OF THE HOPF FIBRATIONS WITH FIBRE S3

We now invesfigate the symmetries of the Hopf fibration
H:S8%c §4~1 , gpr—1t
The symplectic group
Sp(n) = Gl(n, H) n O(4n)

consists of quaternionically linear maps which are also rigid. Since these

maps take quaternionic lines to quaternionic lines, they must be symmetries
of the above Hopf fibration.

There are other symmetries. For each unit quaternion v, consider the
action of right scalar multiplication by v on H",

Ry(uys . tty) = (uy 0, ..., u, v).

This map is certainly not H-linear, since

R, [y, s W] = (uy wo, .., u, wv),

while [Ry(uys o h,)IW = (uy 0w, ..., u, vw).

Nevertheless, R, takes each quaternionic line in H" to itself. Thus the group
S* of unit quaternions, acting on H" from the right, must also be counted
among the symmetries of our Hopf fibration. |
Since the symplectic group Sp(n) acts on S**~! from the left, while
the group S® of unit quaternions acts from the right, these two actions
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