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174 H. GLUCK, F. WARNER AND W. ZILLER

1. HOPF FIBRATIONS WITH FIBRE S!

We describe the Hopf fibration
H:S'¢ §21 5 cprt
as follows. Choose orthonormal coordinates in real 2n-space R?" and write

(%15 X35 s Xon—15 X2n) = (X +0X5, ey X1 +X3,)
= (ul 9 oy un) H]

thus identifying R?" with complex n-space C". ,

The complex lines in C", each looking like a real 2-plane, form the
complex projective space CP"~! and fill out C” with any two meeting
only at the origin. The unit circles on these complex lines give us the
Hopf fibration of S?"~ 1,

The simplest case occurs for n = 2. The complex lines in C? are of
the form

L, = {(u,mu):ueC} foreach meC,
and L, = {0,v):veC}.

FiGure 1 -
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| 5]
%Note that there is one Hopf circle for each complex number m, and one for
?the number 0. So the set of Hopf circles is topologically a 2-sphere.
Above is a sketch of the Hopf fibration H: S* o $3 - S?, due to Roger
; Penrose [Pe].

| The portions of the this sketch may be identified as follows:

1) Circlex} + x3 =1, x3=0x,=0 fibre
2) Torus x2 + x3 = 3/4, x3 + x5 = 1/4 union of fibres
3) Torus x? 4+ x% = 1/2, x3 + x3 = 1/2 union of fibres
4) Torus x? + x% = 1/4, x5 + xi = 3/4 union of fibres
5) Circle x; = 0,x, = 0, x3 + xi = 1 fibre

In the construction of the Hopf fibration of $?*~' by great circles,
we began by choosing orthonormal coordinates for R?". A different choice
of such coordinates simply turns the picture of the Hopf fibration around
by a rigid motion of s2n~1 and we refer to all of these as “Hopf
fibrations”.

A key geometric feature of the Hopf fibrations is given by

PROPOSITION 1.1. The Hopf circles on S*"~' are parallel to one another.

What do we even mean by this? Two subsets P and Q of a metric
" space will be said to be parallel if there is some real number d such that
i  each point of P has minimum distance d from Q, and-vice versa. If P and
| . Q are parallel great circles on §2"~1 at distance d apart, then each lies
on the boundary of a tubular neighborhood of radius d about the other.

1 To see this with more precision, first suppose that P and Q are
§  arbitrary great circles on §2"~1 and use the same symbols to denote the
« 2-planes through the origin that they span in R?". Let o, denote the

13

. smallest angle that any line in P makes with Q, and let o, denote the

I

largest such angle. Then 0 < o; < o, < n/2. These angles are called the

R principal angles between P and Q.

Ko

oy j%

One can always choose an orthonormal basis ey, ..., e;, for R*" so that ;
e, and e, form an orthonormal basis for P, while cos o e; + sina, e;
and cos o, e, + sin a, e, form an orthonormal basis for Q. Then P and Q

are parallel if and only if the two principal angles o; and a, are equal
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cos a, e, + sin a, e,

cos oy e; + sin o e;

FIGURE 2

Note that with respect to these bases, the matrix for orthogonal pro-
jection of P onto Q (or vice versa) is given by

COS 0y 0
0 cos o,/

Thus P and Q are parallel if and only if orthogonal projection of P
to Q is a conformal map. For future use, we also note that if 4 is the
matrix of a linear map with respect to orthonormal bases, then that map
is conformal if and only if 4 A* = A L

To prove the proposition, let P and Q be two Hopf circles on §2"~1,
If u is any unit vector in the 2-plane P, then u and iu form an ortho-
normal basis for P. Likewise we get an orthonormal basis v and iv for Q.
With respect to these bases, the matrix 4 of orthogonal projection of P

onto Q@ is given by

a= <uv> b = <u,iv>
¢ = <iu,v> d = <iu,iv>)"

But multiplication by i is an isometry; hence a = d and b = —c. Thus
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a b | a2+b2 0 |
A=<_ ) and AA’———(O 2+ b))

b a
showing that A4 is conformal, and hence that P and Q are parallel. QED
e the usual situation in Euclidean space,

We remark here that, unlik
herical geometry. Consider,

" being parallel is not a transitive relation in sp

for example, the following three great circles in S*:

P, = {xp%¥): x> +y = 1/2}
P, = {(x,,0,0): x* + y: =1}
P3 = {(xa ¥, X, —y):xz + y2 = 1/2}

Then P, and P; are each parallel to P», but certainly not to each other,

since they meet in two points.

Since the Hopf fibrations of g2n—1 have parallel fibres, they can be

viewed as Riemannian submersions as follows.

Let ©: M — N be a smooth map between
said to be a submersion if its differential m, has maxim
point. A submersion between closed manifolds must be a fibration.

If in addition M and N are Riemannian manifolds, then a submersion
between them is said to be a Riemannian submersion if its differential
preserves the lengths of tangent vectors orthogonal to the fibres 7 1(y), ye N.

Suppose now that w: M — N is a submersion of one complete connected

smooth manifold onto another. The following facts are easy to deduce:

smooth manifolds. This map is
al rank at each

HIf M and N have Riemannian metrics which make T a
Riemannian submersion, then the fibres of m are parallelin M.

2)If M has a Riemannian metric in which the fibres of m are
parallel, then one can choose a Riemannian metric on N in terms of which
n becomes a Riemannian submersion.

In particular, there is a Riemannian metric on CP"~! which makes the
Hopf projection m: 8>~ ' — CP"~! into a Riemannian submersion. This
is known as the canonical metric on CP" 1. The distance between points
on CP"~! equals the distance between corresponding Hopf fibres on S2n 1
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PROPOSITION 1.2.  The canonical metric on CP! makes it into a round §
two-sphere of radius 1/2.

We've already noted that for the lowest dimensional Hopf fibration
H:S' ¢ S® > CP!, the base space is topologically a two-sphere. Let P
denote one of the fibres of H, say the unit circle on the X1X,-plane.
Let P' denote the orthogonal fibre, in this case the unit circle on the
X3X4-plane. We let P correspond to the north pole and P' to the south
pole on a round two-sphere S%(1/2) of radius 1/2.

For each quarter circle on S® from P to P+, orthogonal to P and PL
we obtain a family of fibres of H, one through each point of the quarter
circle. These will correspond to the points of a semicircle on S%(1/2) from
the north pole to the south pole.

Now consider all ‘the fibres of H which are at distance o from P,
0 < a < m/2. They fill out the torus

T, = {x{ + x3 = cos?>q, x2 + x2 = sin? o}
= S'(cos o) x S'(sin o).
Every fibre on this torus is the graph of a “linear” bijection from
S'(cos o) to Sl(sin o). Each such fibre meets a small circle (cos a, 0, 0, 0)
x S'(sin o) at a single point. But these points are further apart than the

actual distances between the fibres. The following diagram shows that in the
limit, as ¢’ approaches g, the scale correction factor is cos a.

Sl(sin )

27 sin o,

= S'(cos a)

27 cos o

FIGUre 3
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Hence the fibres of H which lie on the torus T, form a circle of

radius sin o cos o. But a circle of latitude on S*(1/2), located at distance o
from the north pole, has radius (1/2) sin 200 = sin a cos a.. It follows that
there is a correspondence between fibres of H and points of $%(1/2) which
§ is a Riemannian isometry, proving the proposition. QED

Besides being parallel, the fibres of the Hopf fibration are assembled
in a very regular way. The following two geometric features give an
expression of this regularity, and were important in [GWZ].

1) Constancy Feature. Refer again to the figure showing the Hopf
fibration of S3, in which we see S® decomposed into a pair of orthogonal
- great circles and a family of intermediating tori:

T, = SY1) x 0
T, = S'(cosa) x S'(sina) 0 < a < m/2
TTE/Q. = O X Sl(l) .

Any two of these intermediating tori are a constant distance apart, and
hence parallel to one another. There is a natural “radial projection” map
between them, which matches closest neighbors on the two surfaces. It is
easy to see that this map also matches Hopf circles, and in this sense we
regard the Hopf fibration as “constant” on the family of tori. A corres-
ponding phenomenon can be observed in all the Hopf fibrations.

2) Inductive Feature. A Hopf fibration contains within itself copies
of lower dimensional Hopf fibrations, and can be regarded as assembled
from these in a certain way. For example, just as C" contains C"™ 1,
so does the Hopf fibration of $>"~! contain the Hopf fibration of $2"~ 3.

2. SYMMETRIES OF THE HOPF FIBRATIONS WITH FIBRE S!

Let H:S' ¢, §2"7! —» CP""! denote a Hopf fibration with fibre S
By a symmetry of H we mean a rigid motion of $>"~! which takes Hopf

@ circles to Hopf circles. We want to find these symmetries explicitly.

The unitary group
U(n) = Gl(n, C) n O(2n)

complex general linear group N orthogonal group
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