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THE GEOMETRY OF THE HOPF FIBRATIONS

by Herman GLUCK, Frank WARNER and Wolfgang ZILLER ')

This is an eclementary exposition of the geometry, and especially the
| symmetries, of the Hopf fibrations of spheres by great spheres.

~ Using the complex -numbers C, the quaternions H and the Cayley
| Lumbers Ca, we will describe the Hopf fibrations

Sl ¢, §2»~t . CP""! = complex projective n—1 space,
§3 ¢, §*n~1 _, HP"~! = quaternionic projective n—1 space, and
S7 ¢ S5 S8,

These fibrations were introduced by Heinz Hopf [Ho 1, 2] about fifty years
ago. Even the littlest one, S! ¢, S3 - CP! = S?%, had a powerful effect on
topology: it provided the first example of a homotopically nontrivial map
from one sphere to another of lower dimension, spurring the development
of both homotopy theory and fibre spaces in their infancy.

The Hopf fibrations have many beautiful properties. For example, we
will see that their fibres are parallel, in the sense of having constant
distance from one another. This actually characterizes the Hopf fibrations
among all fibrations of round spheres by great subspheres, as was proved by
Wong [Won] and Wolf [Wol 1, 2] and later by Escobales [Es] and Ranjan
[Ra]. See [GWZ] for an expository account.

Another striking property of the Hopf fibrations is that they all have
a large group of symmetries, acting transitively on the total space and in
particular on the fibres. We will determine these groups here. The finale
is the calculation that the symmetry group of the “exceptional” Hopf

fibration §7 ¢ §*° — S8 is isomorphic to Spin(9), the simply connected double
cover of the special orthogonal group SO(9). This will involve us in details

~about the arithmetic of Cayley numbers and the “Triality Principle” for
. 503).

1) We thank the National Science Foundation for their support, and Wolfgang
Ziller also thanks the Sloan Foundation. ;
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1. HOPF FIBRATIONS WITH FIBRE S!

We describe the Hopf fibration
H:S'¢ §21 5 cprt
as follows. Choose orthonormal coordinates in real 2n-space R?" and write

(%15 X35 s Xon—15 X2n) = (X +0X5, ey X1 +X3,)
= (ul 9 oy un) H]

thus identifying R?" with complex n-space C". ,

The complex lines in C", each looking like a real 2-plane, form the
complex projective space CP"~! and fill out C” with any two meeting
only at the origin. The unit circles on these complex lines give us the
Hopf fibration of S?"~ 1,

The simplest case occurs for n = 2. The complex lines in C? are of
the form

L, = {(u,mu):ueC} foreach meC,
and L, = {0,v):veC}.

FiGure 1 -
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| 5]
%Note that there is one Hopf circle for each complex number m, and one for
?the number 0. So the set of Hopf circles is topologically a 2-sphere.
Above is a sketch of the Hopf fibration H: S* o $3 - S?, due to Roger
; Penrose [Pe].

| The portions of the this sketch may be identified as follows:

1) Circlex} + x3 =1, x3=0x,=0 fibre
2) Torus x2 + x3 = 3/4, x3 + x5 = 1/4 union of fibres
3) Torus x? 4+ x% = 1/2, x3 + x3 = 1/2 union of fibres
4) Torus x? + x% = 1/4, x5 + xi = 3/4 union of fibres
5) Circle x; = 0,x, = 0, x3 + xi = 1 fibre

In the construction of the Hopf fibration of $?*~' by great circles,
we began by choosing orthonormal coordinates for R?". A different choice
of such coordinates simply turns the picture of the Hopf fibration around
by a rigid motion of s2n~1 and we refer to all of these as “Hopf
fibrations”.

A key geometric feature of the Hopf fibrations is given by

PROPOSITION 1.1. The Hopf circles on S*"~' are parallel to one another.

What do we even mean by this? Two subsets P and Q of a metric
" space will be said to be parallel if there is some real number d such that
i  each point of P has minimum distance d from Q, and-vice versa. If P and
| . Q are parallel great circles on §2"~1 at distance d apart, then each lies
on the boundary of a tubular neighborhood of radius d about the other.

1 To see this with more precision, first suppose that P and Q are
§  arbitrary great circles on §2"~1 and use the same symbols to denote the
« 2-planes through the origin that they span in R?". Let o, denote the

13

. smallest angle that any line in P makes with Q, and let o, denote the

I

largest such angle. Then 0 < o; < o, < n/2. These angles are called the

R principal angles between P and Q.

Ko

oy j%

One can always choose an orthonormal basis ey, ..., e;, for R*" so that ;
e, and e, form an orthonormal basis for P, while cos o e; + sina, e;
and cos o, e, + sin a, e, form an orthonormal basis for Q. Then P and Q

are parallel if and only if the two principal angles o; and a, are equal
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cos a, e, + sin a, e,

cos oy e; + sin o e;

FIGURE 2

Note that with respect to these bases, the matrix for orthogonal pro-
jection of P onto Q (or vice versa) is given by

COS 0y 0
0 cos o,/

Thus P and Q are parallel if and only if orthogonal projection of P
to Q is a conformal map. For future use, we also note that if 4 is the
matrix of a linear map with respect to orthonormal bases, then that map
is conformal if and only if 4 A* = A L

To prove the proposition, let P and Q be two Hopf circles on §2"~1,
If u is any unit vector in the 2-plane P, then u and iu form an ortho-
normal basis for P. Likewise we get an orthonormal basis v and iv for Q.
With respect to these bases, the matrix 4 of orthogonal projection of P

onto Q@ is given by

a= <uv> b = <u,iv>
¢ = <iu,v> d = <iu,iv>)"

But multiplication by i is an isometry; hence a = d and b = —c. Thus
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a b | a2+b2 0 |
A=<_ ) and AA’———(O 2+ b))

b a
showing that A4 is conformal, and hence that P and Q are parallel. QED
e the usual situation in Euclidean space,

We remark here that, unlik
herical geometry. Consider,

" being parallel is not a transitive relation in sp

for example, the following three great circles in S*:

P, = {xp%¥): x> +y = 1/2}
P, = {(x,,0,0): x* + y: =1}
P3 = {(xa ¥, X, —y):xz + y2 = 1/2}

Then P, and P; are each parallel to P», but certainly not to each other,

since they meet in two points.

Since the Hopf fibrations of g2n—1 have parallel fibres, they can be

viewed as Riemannian submersions as follows.

Let ©: M — N be a smooth map between
said to be a submersion if its differential m, has maxim
point. A submersion between closed manifolds must be a fibration.

If in addition M and N are Riemannian manifolds, then a submersion
between them is said to be a Riemannian submersion if its differential
preserves the lengths of tangent vectors orthogonal to the fibres 7 1(y), ye N.

Suppose now that w: M — N is a submersion of one complete connected

smooth manifold onto another. The following facts are easy to deduce:

smooth manifolds. This map is
al rank at each

HIf M and N have Riemannian metrics which make T a
Riemannian submersion, then the fibres of m are parallelin M.

2)If M has a Riemannian metric in which the fibres of m are
parallel, then one can choose a Riemannian metric on N in terms of which
n becomes a Riemannian submersion.

In particular, there is a Riemannian metric on CP"~! which makes the
Hopf projection m: 8>~ ' — CP"~! into a Riemannian submersion. This
is known as the canonical metric on CP" 1. The distance between points
on CP"~! equals the distance between corresponding Hopf fibres on S2n 1
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PROPOSITION 1.2.  The canonical metric on CP! makes it into a round §
two-sphere of radius 1/2.

We've already noted that for the lowest dimensional Hopf fibration
H:S' ¢ S® > CP!, the base space is topologically a two-sphere. Let P
denote one of the fibres of H, say the unit circle on the X1X,-plane.
Let P' denote the orthogonal fibre, in this case the unit circle on the
X3X4-plane. We let P correspond to the north pole and P' to the south
pole on a round two-sphere S%(1/2) of radius 1/2.

For each quarter circle on S® from P to P+, orthogonal to P and PL
we obtain a family of fibres of H, one through each point of the quarter
circle. These will correspond to the points of a semicircle on S%(1/2) from
the north pole to the south pole.

Now consider all ‘the fibres of H which are at distance o from P,
0 < a < m/2. They fill out the torus

T, = {x{ + x3 = cos?>q, x2 + x2 = sin? o}
= S'(cos o) x S'(sin o).
Every fibre on this torus is the graph of a “linear” bijection from
S'(cos o) to Sl(sin o). Each such fibre meets a small circle (cos a, 0, 0, 0)
x S'(sin o) at a single point. But these points are further apart than the

actual distances between the fibres. The following diagram shows that in the
limit, as ¢’ approaches g, the scale correction factor is cos a.

Sl(sin )

27 sin o,

= S'(cos a)

27 cos o

FIGUre 3
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Hence the fibres of H which lie on the torus T, form a circle of

radius sin o cos o. But a circle of latitude on S*(1/2), located at distance o
from the north pole, has radius (1/2) sin 200 = sin a cos a.. It follows that
there is a correspondence between fibres of H and points of $%(1/2) which
§ is a Riemannian isometry, proving the proposition. QED

Besides being parallel, the fibres of the Hopf fibration are assembled
in a very regular way. The following two geometric features give an
expression of this regularity, and were important in [GWZ].

1) Constancy Feature. Refer again to the figure showing the Hopf
fibration of S3, in which we see S® decomposed into a pair of orthogonal
- great circles and a family of intermediating tori:

T, = SY1) x 0
T, = S'(cosa) x S'(sina) 0 < a < m/2
TTE/Q. = O X Sl(l) .

Any two of these intermediating tori are a constant distance apart, and
hence parallel to one another. There is a natural “radial projection” map
between them, which matches closest neighbors on the two surfaces. It is
easy to see that this map also matches Hopf circles, and in this sense we
regard the Hopf fibration as “constant” on the family of tori. A corres-
ponding phenomenon can be observed in all the Hopf fibrations.

2) Inductive Feature. A Hopf fibration contains within itself copies
of lower dimensional Hopf fibrations, and can be regarded as assembled
from these in a certain way. For example, just as C" contains C"™ 1,
so does the Hopf fibration of $>"~! contain the Hopf fibration of $2"~ 3.

2. SYMMETRIES OF THE HOPF FIBRATIONS WITH FIBRE S!

Let H:S' ¢, §2"7! —» CP""! denote a Hopf fibration with fibre S
By a symmetry of H we mean a rigid motion of $>"~! which takes Hopf

@ circles to Hopf circles. We want to find these symmetries explicitly.

The unitary group
U(n) = Gl(n, C) n O(2n)

complex general linear group N orthogonal group
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consists of complex linear maps which are also rigid. Since these maps take .
complex lines to complex lines, they must be symmetries of the above Hopf M
- fibration. 3

But there are other symmetries. Define complex conjugation

c:C"->C" by cdzg,..,2,) = (Z, - Z).
Note that ¢ lies in O(2n) but not in Gl(n, C), yet takes complex lines to
complex lines, hence must be a symmetry of the Hopf fibration. Note also
that ¢ reverses the natural orientations of the complex lines in C".

The next proposition indicates that there are no further symmetries.

PROPOSITION 2.1. - The group G of all symmetries of the Hopf fibration H
is G = U(n) v c Un).

Let g be a rigid motion of $"~! taking complex lines to complex
lines. In case g reverses the natural orientations of complex lines, compose
it with ¢ so as to preserve these orientations. The new g commutes with

multiplication by i, hence is complex linear. Since it is also rigid, it lies
in U(n). QED

Remark. Note that all the symmetries are orientation preserving when
n is even, while half are orientation reversing when # is odd.

The group of symmetries of the Hopf fibration is quite large, and this
may be underscored by exhibiting symmetries with preassigned features. We
collect some of these in the following proposition.

PROPOSITION 2.2. Let H:S'c $*"~* — CP""!' be a Hopf fibration.
Then

a) There is a symmetry of H inducing the identity on the base space
(and thus taking each Hopf circle to itself) and restricting to a preassigned
rotation on a given Hopf circle. '

b) If P and Q are any two fibres of the Hopf fibration, then any
preassigned rigid motion of P onto Q can be extended to a symmetry
of H.

¢) The group of symmetries acts transitively on S*"~1  and in particular
acts transitively on fibres. '

By contrast, here is a limitation on the possible symmetries.
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d) There is no symmetry of H inducing the identity on the base space and
reversing the orientations of the Hopf circles.

Consider the symmetries z+Id, | z| = 1, which multiply each coordinate

in C* by the complex number z of unit length. They induce the identity

on the base space, and can be selected to take a fibre to itself by a
preassigned rotation, proving a).

The transformations in U(n) can take any complex line in C" to any
other by a preassigned orientation preserving rigid motion. Complex conjuga-
tion then adds the orientation reversing ones, proving b).

In particular, this implies c).

Suppose there were a symmetry of H: St ¢ §2»~1 5 CP" ! taking each
Hopf circle to itself with reversal of orientation. Then, by restriction to C?,
such a symmetry would also exist for n = 2. Its reversal of orientation on
the total space S° would then contradict the remark following Proposition 2.1.
This proves d). QED

Remarks. 1) Note that the existence of symmetries of H rotating each
Hopf circle within itself shows again that these circles must be parallel.

7) Also note that a symmetry of H:S" o §2»=1 _, CP" ! induces an
isometry of the base space CP"~! in its canonical metric. We remark
without proof that all isometries of CP" ! can be produced this way.

3. HOPF FIBRATIONS WITH FIBRE S°

Choose orthonormal coordinates in R*" and identify this space with
quaternionic n-space H". A little care is needed in dealing with H" because
the quaternions form a non-commutative division algebra:

1) Scalars ve H will act on vectors (uy,..,u,)€ H" from the right.
(Ug s ooy Uy) U = (Ug U, oy U, D) .

2) H-linear transformations of H" will be expressed by matrices of
quaternions acting from the left (so as to commute with scalar multiplication).

The quaternionic lines in H", each looking like a real 4-plane, form the
quaternionic projective space HP"~ ' and fill out H", with any two meeting

only at the origin. The unit 3-spheres on these quaternionic lines give us
the Hopf fibration

H:S83c¢ S 1 Hpr 1,
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ProposiTiION 3.1.  The Hopf 3-spheres on  S*"~' are parallel to one
another.

The proof is similar to that of Proposition 1.1 for Hopf circles; it
uses the fact that scalar multiplication by i, j and k are isometries of H".
Alternatively, it will follow, as in Remark 1 above, from Proposition 4.2 a.

QED

The Riemannian metric on HP"™! which makes the Hopf projection
§**~1 — HP" ! into a Riemannian submersion is known as the canonical
metric on HP""*. The canonical metric on HP' makes it into a round

4-sphere of radius 1/2. This follows by the same argument given in Pro-
position 1.2 for the case H: S ¢, S3 - CPL.

4. SYMMETRIES OF THE HOPF FIBRATIONS WITH FIBRE S3

We now invesfigate the symmetries of the Hopf fibration
H:S8%c §4~1 , gpr—1t
The symplectic group
Sp(n) = Gl(n, H) n O(4n)

consists of quaternionically linear maps which are also rigid. Since these

maps take quaternionic lines to quaternionic lines, they must be symmetries
of the above Hopf fibration.

There are other symmetries. For each unit quaternion v, consider the
action of right scalar multiplication by v on H",

Ry(uys . tty) = (uy 0, ..., u, v).

This map is certainly not H-linear, since

R, [y, s W] = (uy wo, .., u, wv),

while [Ry(uys o h,)IW = (uy 0w, ..., u, vw).

Nevertheless, R, takes each quaternionic line in H" to itself. Thus the group
S* of unit quaternions, acting on H" from the right, must also be counted
among the symmetries of our Hopf fibration. |
Since the symplectic group Sp(n) acts on S**~! from the left, while
the group S® of unit quaternions acts from the right, these two actions



HOPF FIBRATIONS ' 183

commute_. The actions also overlap, because they both contain multiplication
by — 1. Hence they combine to give an action of the group

Sp(n) x S3
2

on S4"~ 1 where this group is obtained from Sp(n) x S by dividing out by
the two-clement subgroup consisting of the identity and the antipodal map.
The following lemma asserts that there are no further symmetries.

PROPOSITION 4.1. The group G of all symmetries of the Hopf fibration
H is
_ Sp(n) x S3

G
2

Let g be a symmetry of the Hopf fibration, ie., a rigid map of H"
taking quaternionic lines to quaternionic lines. Composing g with an appro-
priate element of Sp(n), we can arrange that the new g be invariant on
each quaternionic coordinate line 0 x ... X H x .. x 0.

We claim this new g is orientation preserving on H X 0 x..x0.
Suppose not. Then composing it with appropriate elements of Sp(n) and S3,
we can further arrange that g(u,..) = (%, ..). Here we use the fact that
left and right multiplication by unit quaternions generates the group SO(4).
Since g takes quaternionic lines to quaternionic lines, we must have

gu,u,..) = (4, mu .), forsome m# 0.

Then for any s,

glu, su, ) = (& m(su),..) = @Gmas,.).

As u varies, these image points must also fill out a quaternionic line,
hence mu§ = tu. Putting u = 1, we get t = ms. Thus mus =msu.
Cancelling the m, we get 4§ = Su. Since both u and s are arbitrary,
 this is impossible, establishing the claim.

Thus g is orientation preserving on H x 0 x .. x 0, and we compose it
- with appropriate elements of Sp(n) and S so as to make it the identity

7,  there. Then we again use the fact that g takes quaternionic lines to qua-
& tcrnionic lines to conclude that

glu, u, ..., u) = (U, my U, ..., M, U).
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Hence

g(ul s Up s ey un) = (ul s My Uy, ooy M, un) s

so the current version of g must lie in Sp(n). QED

Remark. Note that all the symmetries are orientation preserving, since the .}
group G is connected. ;

Let H: S* ¢, §*"~! > HP"~! denote our current Hopf fibration, and let
us orient the fibres in a consistent fashion. The next proposition shows
that this fibration is highly symmetric, yet slightly less so than the Hopf
fibrations by circles.

PROPOSITION 4.2. Let H:S8° ¢ S* ' - HP*' be a Hopf fibration.
Then

a) The only symmetries of H inducing the identity on the base space
are the right multiplications by unit quaternions. This is Jjust a 3-parameter
subgroup of the 6-parameter group O(4) of all rigid motions of a fibre.

b) If P and Q are any two fibres, then any preassigned orientation
preserving rigid motion of P onto Q can be extended to a symmetry
of H. But no orientation reversing one can.

¢) The group of symmetries acts tramsitively on S*"~ !, and in particular
acts transitively on fibres.

It follows easily from the non-commutativity of the quaternions that
the only transformations in Sp(n) which take each quaternionic line to
itself are +Id. Then a) follows immediately from the description of the
symmetry group given in Proposition 4.1.

Even the subgroup Sp(n) of G acts transitively on S*"~ 1, and c) follows.

To prove b), we can now assume that P and Q both coincide with
the unit 3-sphere on H x 0 x .. x 0. Then left and right multiplication
by unit quaternions takes this fibre to itself, and generates SO(4). No
orientation reversing transformation of this fibre can be achieved, since
the group of symmetries is connected. This proves b). QED

Remarks. 1) Note that the existence of symmetries of H taking each fibre
to itself and acting transitively on a given fibre shows that these fibres
must be parallel.

2) Also note that a symmetry of H: S>3 ¢ $* ! - HP" ! induces an
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isometry of the base space HP" ! in its canonical metric. It is easy to
check that when n = 2, every orientation preserving isometry of the base
. HP! = S4(1/2) can be produced this way, while no orientation reversing
§  onc can (since the group is connected). We remark without proof that all
8 isometries of HP"™ 1, n > 2, can be produced this way, and that they are

k- all orientation preserving.

5. NORMED DIVISION ALGEBRAS AND THE CAYLEY NUMBERS

 In order to describe the Hopf fibration H: S7 ¢, S5 — S® in the next
~ section, we first review here some facts about normed division algebras
" and the arithmetic of Cayley numbers. More can be found in two excellent
references, [Cu] and [H-L, pp. 140-145].
A normed division algebra B is a finite dimensional algebra over the reals R,
with multiplicative unit 1, and equipped with an inner product < , >
whose associated norm-| | satisfies

|xy| =|x| |yl forall x,yeB.

By Hurwitz® Theorem ([Hu 1], 1898), a proof of which we will outline
here, every normed division algebra is isomorphic to either the reals R,
the complex numbers C, the quaternions H or the Cayley numbers Ca.
Actually, what Hurwitz proved is that normed division algebras can only

" occur in dimensions 1, 2, 4 and 8. He stated the corresponding uniqueness
~ result without proof. In [Hu 2], published in 1923 after his death, Hurwitz
credits E. Robert [Ro] with writing out the details of the uniqueness
argument in a 1912 Zurich thesis.

Now let B denote a given normed division algebra. Let Re B denote
4 the one-dimensional linear subspace spanned by the identity 1, and Im B the
! orthogonal complement of Re B. Then each x € B has a unique orthogonal
2 decomposition,
x=x; +x, x;eReB and x'elmB,
‘ into its real and imaginary parts. Conjugation in B is defined by:

)5=x1——x.

Here are some basic facts about arithmetic in any normed division
algebra B: '
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) <xw,yw> = <x,y> |w|? = <wx, wy>.
Thus right or left multiplication by a unit vector w is an isometry of B.
2) Every nonzero x € B has a unique left and right inverse:

x 1 =x/x]|?%.

3) Given x and y in B with x # 0, the equations
xw =y and wx =y
can each be solved uniquely, with
w=x"1y and w=yx!

respectively.
4) Xy = Jy%.
5) If x is imaginary (that is, x € Im B), then x?> = —| x|
6) Orthogonal imaginaries ranti-commute. That is,
x,yelmB and <x,y> =0 imply xy = — yx.

7) The Moufang identities, the first two of which say that left and right
multiplication by xyx can be performed successively:

(xyx)z = x(y(xz))
z(xyx) = ((zx)y)x
x(yz)x = (xy) (zx).

Given three elements x, y, z € B, their associator is defined by

[x y, 2] = (xp)z — x(v2).

The following weak form of associativity always holds in a normed division
algebra: the trilinear form [x, y, z] is alternating, i.., it vanishes whenever
two of its arguments are equal. Such an algebra is said to be alternative.

The Cayley-Dickson process generalizes the way in which the complex
numbers are built up from the reals, and begins with the following

ProposiTION 5.1. (see [Cu] or [H-L]). Let A be a subalgebra
(containing 1) of the normed division algebra B. Let & be an element
of B orthogonalto A with |e| = 1. Then

1). Ag is orthogonal to A, and
ii) (a+be)(c+de) = (ac—db) + (da+bde forall a b,c,d in A.
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kes use of the commutation rules given in Fact 6 above.
sition implies that any

be isomorphic to R, C

The proof ma
We note for future use that the above propo

: subalgebra of Ca generated by two elements must

or H, and hence must be associative.
Suppose now that we start with a norme

f  define a product on A @ A4 by
(a,b) (¢, d) = (ac—db, da+b?).

d division algebra A and

The new algebra B =A® 4 is said to be obtained from A via the

Cayley-Dickson process. In particular,

C=R®R, H=C®C, Ca=H®H
‘ via the Cayley-Dickson process.

PrOPOSITION 5.2. (Jacobson [Jal, 1958). Suppose B = AS A s
obtained from A by the Cayley-Dickson process. Then
1) B is commutative < A = R
2) B is associative < A is commutative.

3) B is alternative <> A is associative.

See [Cu] or [H-L] for details.
From this proposition, we have:

C = R @ R is commutative;
H = C @ C is associative, but not commutative;
Ca = H @ H is alternative, but not associative;

Ca @ Ca is not alternative, hence not a normed division algebra.

THEOREM 5.3. (Hurwitz [Hu 1]). The only normed division algebras are
§ RCH and Ca

Pl
&

2 One can check directly that R, C, H and Ca are normed, though the
calculation for Ca is somewhat lengthy. An alternative argument can be

found in [Cu]. That there are no other normed division algebras follows
i from Propositions 5.1 and 5.2.

We end this section with the following description of all possible
automorphisms of the Cayley numbers.




188 H. GLUCK, F. WARNER AND W. ZILLER

PROPOSITION 5.4.  Suppose €1, e, and ey are orthonormal imaginary
Cayley numbers with e, orthogonal to e, e,. Then there exists a unique §
automorphism of Ca sending i = O e, j=(0rHe, and
g =(0,1) > e,. :

This follows from three applications of Proposition 5.1.
From Proposition 5.4, one concludes that the group of all automorphisms '
of the Cayley numbers (a Lie group known as G,) is 14-dimensional.

6. THE Hopr FiBRATION S7 ¢, S5 — §8

Choose orthonormal coordinates in R'® and identify it with Cayley
2-space Ca®. In Ca? consider subsets of the form |

L, = {(u,mu):ue Ca} foreach meCa,
L, ={0,v):veCa}.

They are 8-dimensional real linear subspaces of R'®, but not Cayley subspaces
of Ca® because they are not closed under Cayley multiplication. This is the !}
effect of the nonassociativity of the Cayley numbers. Nevertheless, we call
L,, and L,, Cayley lines for simplicity.

We need to check that these Cayley lines fill out Ca?, with any two
meeting only at the origin. Given (i, v) € Ca? if u = 0 then this point is
on the Cayley line L. If u # 0, let m = vu~'. Then m y — u Hu =y
by Fact 3 of the preceding section. Hence the point (u, v) lies on the Cayley
line L,,. Thus the Cayley lines fill out Ca2. K

Clearly L, meets each other Cayley line only at the origin. And if
the point (u,v), with u # 0, lies on the Cayley lines L, and L,, then i
v=mu = nu. Hence m = n. Thus any two Cayley lines meet only at
the origin. )

The unit 7-spheres on these Cayley lines then define for us the Hopf
fibration S7 ¢, §*° — S8 Note that the base space is clearly homeomorphic
to an 8-sphere, since there is one Cayley line for each Cayley number m,
and one for the number oo . '

In a similar fashion, if we start with any k-dimensional normed division
algebra K, we obtain a Hopf fibration

Sk—l N S2k—1 —)Sk.

Note by Hurwitz’s theorem that K is isomorphic to R, C, H or Ca, so
there are really no new cases. -
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PROPOSITION 6.1.  The Hopf 7-spheres on S 15 gre parallel to one another.

We must show that the 8-planes
P=1L,={ww} and Q=L,= {(u, wu)}

intersect S'° in parallel great 7-spheres.
Let the vectors e;,i = 1, .., 8 form an orthonormal basis for Ca. Then

 the vectors (e;,ve;), i = 1,..,8 form an orthogonal basis for P, with each
vector having length (1+[v| 2)* This is an immediate consequence of Fact 1

from the preceding section.
Likewise, the vectors (e;,we;), j = 1,.., 8 form an orthogonal basis for

0, with each vector having length (1 +|w| 3z,
With respect to these bases, the matrix 4 = (a;;) of orthogonal projection

of P to Q is given by

a; = <e,e;> + <ve,wej>,

or

, A=1+B.

We want to show that A is conformal, i.e., that

AA'=1+ B+ B + BB =M.
First note that
(B+B);; = <ve;, we;> + <vej, we; >

= <(v+we;, (V+we; > — <ve;,ve;> — <we;, we; >
= (lo+wPP—[o>—Iwl*) <e;, ¢;>

== 2<U, w> 8ij9

by repeatéd application of Fact 1 of the preceding section. Thus B + B‘.
is a multiple of the identity.
Next note that

(B BY);; = Z, <ve;, we, > <ve;, we, >
= <ve;, ve; > lwi|?=]v|?] W|26ij9
since we,,r = 1,..,8 is an orthogonal basis for Ca with each vector of
length | w|. Thus B B' is also a multiple of the identity.

It follows that A is conformal, and hence that the 8-planes P = L,
and Q = L, intersect S*> in parallel great 7-spheres. By ‘continuity, the
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same is true if one of these planes is L, . Thus the Hopf 7-spheres on
S1° are parallel to one another, as claimed. QED

The Riemannian metric on the base space S® which makes the Hopf §
projection S§'° - S8 into a Riemannian submersion is that of a round
8-sphere of radius 1/2, which one sees directly just as in the previous cases.

7. SYMMETRIES OF THE HOPF FIBRATION H:S§7 ¢, §15 _ §8

PROPOSITION 7.1.  The group G of all symmetries of the Hopf fibration

H:S87 o 8 - S® s isomorphic to Spin(9), the simply comnected double
cover of SO(9).

The action is as follows :

1) Thereisa geG inducing any preassigned orientation preserving isometry

of the round base S®, but no orientation reversing ones.

2) Given such a g, there is exactly one other symmetry,

—¢g = antipodal map o g ,
which induces the same action on S8,

It is likely that Elie Cartan was aware of this result, since in [Ca 2,
esp. pp. 424 and 466] he identified Spin(9) as the group of isometries
fixing a point in the Cayley projective plane CaP?. It is not hard to see
that this is the same as the group of symmetries of our Hopf fibration.

The symmetry groups of the other Hopf fibrations can likewise be identified

with the groups of isometries fixing a point in complex and quaternionic
projective spaces, also known to Cartan.

We give the proof of Proposition 7.1 in a series of lemmas. °

LEMMA 7.2. The only symmetries which take each fibre to itself are the
identity and the antipodal map.

Suppose B: R'® — R'¢ is such a symmetry. Since B maps
Lo={®0)}, L, = {0,)} and L, = {(u w)
into themselves, we must have _
B(u, v) = (A(u), A(v))

for some A4 € O(8). Since B maps L,, = {(u, mu)} into itself, we get
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Blu, mu) = (A(u), AGmu)) = (A(w), mAwW).

¥ 3 ‘?‘

b Thus Amu) = mA@), all mueCa.
2 Now in this equation put u = 1 and keep m arbitrary:
A(m) = mA(l) = ma,
where we define a = A(1). Insert this back into the previous equation, getting
(mu)a = m(ua), forall m,ueCa.

But then it follows from the nonassociativity of the Cayley numbers that
| the element a must be real. Since A€ O(®), @ = £1. Thus A(m) = £m,
! and hence B(u,v) = (+u, +v), that is, B is either the identity or the
antipodal map, as claimed. QED

, If we compare Lemma 7.2 with the corresponding assertions about the
earlier Hopf fibrations, we conclude that the current Hopf fibration is the
least symmetric of all.

LeMMA 7.3. There is a symmetry of our Hopf fibration inducing any
preassigned orientation preserving isometry of the base which keeps Lo fixed.

| Such a symmetry must also take the orthogonal fibre L, = {(0, v)} to
- itself, and hence must be of the form

(u, v) — (A(u), B(v)), where A, Be0(8).

\ Given such a symmetry, the Cayley line L, = {(u, mu)} is taken to the
§  set {(A(w), B(mu))}, which must itself be some Cayley line, say L, . Thus
! B(mu) = m' A(u). Note that as a function of u, the left hand side is
conformal with conformal factor | m |, while the right hand side is conformal
§  with factor |m'|. Hence |m| = |m'|. Since the correspondence m i m'
§  is easily seen to be R-linear, it must be an isometry. Hence we can write
¥ m = C(m), with C € O(8).

'E Summarizing so far,-a symmetry of our Hopf fibration which takes the
“ fibre L, to itself must be of the form (4, B) with A, Be O(8), and there
must exist a C € O(8) such that

B(mu) = C(m) A(u), forall m,ueCa.

| Vice versa, if such a C exists, then the map (4, B) is indeed a symmetry
of the Hopf fibration.




192 H. GLUCK, F. WARNER AND W. ZILLER

Since it is C which describes the induced action on the base space
S®, we need to be able to preassign C e SO(8). The possibility of doing
this is the content of the “Triality Principle”, as follows.

LEmMMA 7.4. (Triality Principle for SO(8), see [Ca 1, pp. 370 and 373]
and [Fr]). Consider the triples A, B and C in SO®8) such that

Bmu) = C(m) Aw), forall m,uecCa.

If any one of these three isometries is preassigned, then the other two
exist and are unique up to changing sign for both of them.

We concentrate on preassigning C. Let G be the subset of SO(8)
consisting of all transformations C for which there exist 4 and B in
SO(8) satisfying the above equation for all m, u € Ca. First note that G is
actually a subgroup of SO(8). For suppose that C and C’ are in G, and
correspond as above to 4, B and A’, B’ respectively. Then

BB'(mu) = B(C'(m) A'(w)) = CC'(m) AA'(u),

showing that CC’' € G. And similarly for inverses.
We want to show that G is all of SO(8). Let x be an imaginary
Cayley number of unit length. We claim

(7.5)  The right and left translations R, and L, arein G.

To show this, we use the first two Moufang identities.
To satisfy B(mu) = C(m) A(u) with C = R,, choose A = —L.R, and
B = R,. We must show that

(mu)x = — (mx) (xux).
To do this, simply take the Moufang identity
2(xyx) = ((zx)y)x
and put x - X,y = uand z = mx, getting
| (mx) (xux) = ((mxx)u)x = — (mu)x,

since x> = —1. Thus R, € G.
To satisfy B(mu) = C(m) A(u) with C = L_R_, choose A = L, and
B = —L,. We must show that

—x(mu) = (xmx) (xu) .
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To do this, take the Moufang identity
(xyx)z = x(y(xz))

and put x = x, y = mand z = xu, getting

(xmx) (xu) = x(m(xxu)) = —x(mu),
since x2 = —1 as before. Thus LR, € G. Since we already know that G
is a group and that it contains R,, it must also contain L,, establishing

our claim.
Next we claim

(7.6)  The transformations R, and L., as x ranges over all imaginary
unit Cayley numbers, generate SO(8).

Since the subgroup G contains these transformations, this will show
that G is all of SO(8).

First note that any unit vector can be mapped to any other unit vector
by a composition of such transformations. To see this, first suppose that
u and v are orthogonal unit vectors: <u,v> = 0. Then <1, w > = 0.
Hence x = vu~! is an imaginary unit Cayley number such that L, (u)
= (ou"Yu = v. If u and v are unit vectors, but not necessarily orthogonal,
just pick a unit vector w orthogonal to both. Find L, and L, such that
L.(u) = wand L, (w) = v. Then L,L,(4) = v, as desired.

So now it will be sufficient to show that any transformation in SO(8)
keeping 1 fixed is a composition of right and left translations by imaginary
unit Cayley numbers. One such transformation is — LR, for any imaginary
unit Cayley number x. Note that —L,R.(x) = X, so that this transformation
also keeps x fixed. On the other hand, if y is an imaginary Cayley number
orthogonal to x, then

_LxRx(y) = —XyxX = XXy = —JY,

since orthogonal imaginaries anti-commute by Fact 6. Thus —L,R, is the
identity on the 2-plane spanned by 1 and x, and is minus the identity
on the orthogonal 6-plane. Viewed just on the imaginary Cayley numbers,
this transformation is reflection about the line through x.

But it is easy to see that the set of reflections through all lines in
R7 generates SO(7). Hence the transformations R, and L., as x ranges over
all imaginary unit Cayley numbers, generate SO(8), as claimed.

Thus the subgroup G of transformations C in SO(8), for which one
can find A and B in SO(8) satisfying B(mu) = C(m) A(u) for all Cayley

AL R B et £, T b Dt s e
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numbers m and u, must be all of SO(8). In a similar fashion, one can
preassign either 4 or B and find the other two, completing the proof of
existence for the Triality Principle.

To prove uniqueness up to sign change for the Triality Principle,
suppose C is the identity. Thus B(mu) = m A(u) for all m,ue Ca. Put
m = 1 to learn that B(u) = A(u). So now A(mu) = m A(u). Put u = 1 to get
A(m) = m A(1) = ma, where we define a = A(1). Then put this back in the
previous equation to get (mu)a = m(ua). Since this holds for all m, u e Ca,
the element a must be real. Since A4 is orthogonal, a = +1. Thus 4 = B
= =1, proving uniqueness up to sign change when C = I. Uniqueness up
to sign change for all C e SO(8) follows by composition. A similar argument
gives uniqueness up to sign change when 4 or B is preassigned, completing
the proof of the Triality Principle. QED

Preassigning C and using the Triality Principle to select A and B
then completes the proof of Lemma 7.3: there is a symmetry of our Hopf
fibration inducing any preassigned orientation preserving isometry of the
base which keeps L, fixed. QED

We next use Lemma 7.3 to sharpen itself.

LEMMA 7.7. There is a symmetry of our H opf fibration inducing any
preassigned orientation preserving isometry of the base. In particular, there is a
symmetry taking any fibre to any other.

On the base space S® we take the north pole to be Ly and the south
pole to be L,. Then the equator will consist of all L, for which
|m| = 1. Now consider the circle consisting of the points I, for real m.
We plan to show that this circle is contained in the orbit of L, under the
symmetry group of H. Since this circle meets the equator in two points,
Ly and L_;, we can then use (7.3) to conclude that the orbit of L,
is all of S°. Combining again with (7.3) will yield (7.7).

Consider the map A4,: Ca* — Ca? defined by
Ay(u, v) = (cosd u—sind v, sind u+cosp v).

These maps, for 0 < ¢ < 2w, provide a circle group of isometries of Ca?.
We claim '

(7.8) Each A, is a symmetry of our Hopf fibration.
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EQUATOR §7 = {L,:|m| =1}

8 CIRCLE {L,,: m real}

L,

FIGURE 4

We must show that, given me Ca, there exists m' € Ca such that
A¢(Lm) — Lml. NOW
Ay(u, mu) = (cosd u—sind mu, sind u+ cosd mu)

= ((cos$ —sind m) u, (sin +cos¢ m) u).

Let W = (cosd—sind m) u
and m = (sind+cosd m) (cosd—sind m)~*.
Then my = [(sind +cosd m) (cosp —sind m)_ 11 [(cosd —sind m) u] .

The product on the right hand side may be reassociated because all the
elements lie in the subalgebra of Ca spanned by the two elements m and u.
As noted in section 5, such a subalgebra must be associative. But then
clearly

3
;
#|
:
i
!
3
%

mu = (sind+cosd m)u,
so that we have
Ay(u, mu) = (', mu').

Thus A44(L,) = L., so each A, is a symmetry of our Hopf fibration,
as claimed. : :
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Since Ay(Lo) = Liany, We see that the orbit of L, under the various
A, 1s the circle (L, : m real). As indicated above, this is enough to complete
the proof of (7.7). QED

LEMMA 7.9. No symmetry of our Hopf fibration can induce an orientation
reversing isometry of the base.

Suppose there were such a symmetry. Using Lemma 7.7, we can assume it
takes the fibre L, = {(u,0)} to itself. Then it must be of the form
(u, v) — (A(u), B(v)) with A, Be O(8), and as we saw in (7.3) there must
exist a C € O(8) such that B(mu) = C(m) A(u) for all m, u € Ca.

Composing our symmetry with an appropriate one guaranteed by
Lemma 7.3 we can assume that C(m) = m. Thus B(mu) = m A(u). Put
m = 1 to conclude that A = B. Thus A(mu) = m A(u). Put u = 1 to conclude
that A(m) = m A(1) = m a. Then put this back in the previous equation to
get (mu)a = m(ua). But mu = um by Fact 4 of section 5. Hence

(um)a = m(u a) .
Now replace u by u and m by m to get
(um)a = m(ua) forall wu meCa.

But this equation is impossible, which we see as follows.

Simply choose an automorphism of the Cayley numbers, see (5.4), which
moves the element a to a unit quaternion. Apply such an automorphism
to the above equation, and now consider that equation only for the
quaternions:

(um)a = m(ua) forall u,meH.

But the quaternions are associative, so we remove the parentheses, then
cancel the a and learn that

um = mu forall umeH,

which is of course false. QED

Proof of (7.1). Let G again denote the group of all symmetries of the
Hopf fibration H:S? ¢ S'> — 8% Consider the homomorphism G — O(9),
which takes each ge G to its induced action on the base space S®. By K
Lemma 7.9, the image lies in SO(9). By Lemma 7.7, the homomorphism |
is onto. By Lemma 7.2, it is two-to-one. Thus G is a double covering of
SO(9). It remains to show that this covering is nontrivial.
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i It will be sufficient to look only at the symmetries of H which take the
| fibre Lo = {1, 0)} to itself, and hence are of the form (u, v) — (A(w), B(v)).
. We already know that there must be a C e SO(8) such that B(mu) = C(m) A(u)
§ for all myueCa To show that G is a nontrivial double covering of
 50(9), we must find a loop of Cs which lifts to a non-loop of (A, B)’s.
-, This can be done by using the Moufang identities, just as in the
proof of the Triality Principle. Recall from that proof that if x 1s an
| imaginary Cayley number of unit length, then A = L., B = —L, and
. € = LR, “works”, that is, — L, (mu) = LR, (m) L,(u). Now let x describe a
§  semi-circular path in the i, j-plane from i to —i. At the beginning of the
© path, C(m) = imi, while at the end of the path Clm) = (—iym(—i) = imi.
Thus C describes a loop in SO(8). At the beginning of the pati;{AW), B(v))
| — (iu, —iv), while at the end (A(w), Bw)) = (—iu, iv). Hence (4, B) describes a
~ non-loop in G. Thus G is the non-trivial double covering Spin(9) of SO(9).
| QED

Here is a further indication of the extent of symmetry of the Hopf
' fibration H: S7 & §*3 — S® Orient the fibres.

PROPOSITION 7.10. Let P and Q be any two fibres of H. Then a
! preassigned orientation preserving rigid motion of P onto Q can be
d  cxiended to a symmetry of H. In particular, the symmetries act transitively

on S'3.

By Lemma 7.7, the symmetries act transitively on fibres, so we may

take P = Q = L,. To preassign an orientation preserving rigid motion of

" L, onto itself is to preassign the map A4 € SO(§) in the Triality Principle,
which then promises the desired symmetry of H. QED
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