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AJOUT, DECEMBRE 1985

En complément au corollaire 2, notons qu’un groupe I est intérieurement
moyennable dés qu’il satisfait 4 I'une des conditions suivantes:

(viii) I' agit sur un ensemble non vide X muni d’'une moyenne I-invariante 1]
de telle sorte que I'isotropie I(x) soit intérieurement moyennable pour
tout x € X.

(ix) T possede un sous-groupe intérieurement moyennable I d’indice fini.

(x) Il existe une suite exacte 1 - I" - I' - I'” — 1 avec I'” intérieurement
moyennable, de méme que {gel |[ghg'h~'el’} pour tout
hell —T". ¥

L’assertion (ix) résulte de (viii), pour l'action de I" sur X = I'/T"; elle répond
partiellement a la derniére question du § 2. L’assertion (x) résulte aussi de (viii),
pour laction de I'" sur I'” — 1. L’assertion (viii) est « du type Fubini » et se
montre comme suit (voir aussi la proposition 3.5 de I’article de Rosenblatt cité
ci-dessous). ‘

Soient ¥ = {xeX|I(x) =1} e¢ Z =X — Y; soit D un domaine
fondamental, c’est-a-dire un sous-ensemble de X rencontrant chaque I'-orbite
en un unique point. Si u(Y) # 0 alors I' est moyennable car, aprés norma-
lisation, § — p(SD) est une moyenne invariante sur I'. Si p(Y) = 0 on choisit
pour tout x € Z N D une moyenne intérieurement invariante p, sur I°(I(x)— 1);
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;\_ pour f . lw(r— 1) - déﬁmt f’ = loo(Z) par f(gx) = f(ghg—l)dux(h)

I(x)

pour geI et xeD n Z; alors f r—»J f(z)dp(z) est une moyenne inté-
Z

rieurement invariante sur [®(I'—1).

I’assertion (viii) a une variante classique: si I' agit sur un ensemble X
possédant une moyenne I'-invariante p de telle sorte que I(x) est moyennable
~pour tout xeX, alors I' est moyennable (méme preuve, avec f(gx)

= J f(gh)dp(h)). On peut donc généraliser la troisiéme condition du corol-
I(x)

laire 3 en

(iii") Si ' possede un sous-groupe non moyennable I" tel que le centrali-
sateur I, = {heI'|gh = hg} est moyennable pour tout g€ r -1,
alors I” n’est pas intérieurement moyennable

(considérer 'action de I sur X = I' — 1). Il en résulte par exemple que
SO(3) n’est pas intérieurement moyennable (considérer I'" = T). Il en résulte
aussi qu’il existe un groupe (construit par Ol'shanskii) dont tous les sous-
groupes propres sont cycliques et qui n’est pas intérieurement moyennable.

Enfin, il nous parait utile de compléter comme suit les références.
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