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AJOUT, DÉCEMBRE 1985

En complément au corollaire 2, notons qu'un groupe F est intérieurement
moyennable dès qu'il satisfait à l'une des conditions suivantes :

(viii) r agit sur un ensemble non vide X muni d'une moyenne F-invariante p
de telle sorte que l'isotropie I(x) soit intérieurement moyennable pour
tout x g X.

(ix) T possède un sous-groupe intérieurement moyennable T' d'indice fini.

(x) Il existe une suite exacte 1 -> F - T -> F" -> 1 avec T" intérieurement
moyennable, de même que { g e T | ghg~ 1/z~1 g F} pour tout
h g T - F.

L'assertion (ix) résulte de (viii), pour l'action de F sur X F/F' ; elle répond
partiellement à la dernière question du § 2. L'assertion (x) résulte aussi de (viii),
pour l'action de F sur F" - 1. L'assertion (viii) est « du type Fubini » et se

montre comme suit (voir aussi la proposition 3.5 de l'article de Rosenblatt cité
ci-dessous).

Soient Y {x e X \ I(x) 1} et Z X — Y; soit D un domaine
fondamental, c'est-à-dire un sous-ensemble de X rencontrant chaque T-orbite
en un unique point. Si p(7) ^ 0 alors F est moyennable car, après
normalisation, S i-> p(SD) est une moyenne invariante sur F. Si p(Y) 0 on choisit

pour tout xe Z n D une moyenne intérieurement invariante [ix sur /°°(/(x) -1) ;
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pour /eP(r-l) on définit /e/°°(Z) par f(ghg Vp#)
I(X)

pour g eF et xeD nZ; alors / f(z)d\i(z) est une moyenne

intérieurement invariante sur lœ(F— 1).

L'assertion (viii) a une variante classique: si F agit sur un ensemble X

possédant une moyenne F-invariante ji de telle sorte que I(x) est moyennable

pour tout xeX, alors F est moyennable (même preuve, avec f(gx)

f{gh)d\ix(h)). On peut donc généraliser la troisième condition du corol-
I(x)

laire 3 en

(iii') Si T possède un sous-groupe non moyennable F tel que le centrali¬

sateur Ig {h e F | gh hg} est moyennable pour tout g eT — 1,

alors F n'est pas intérieurement moyennable

(considérer l'action de F sur X F - 1). Il en résulte par exemple que

50(3) n'est pas intérieurement moyennable (considérer F' F). Il en résulte

aussi qu'il existe un groupe (construit par Ol'shanskii) dont tous les sous-

groupes propres sont cycliques et qui n'est pas intérieurement moyennable.
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