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150 E. BEDOS ET P. DE LA HARPE

Preuve. Soit p: G — U(H) une représentation unitaire contenant fai-
blement la représentation triviale €: G — U(C) = S!. Alors la restriction n |
de p a SL(3,R) contient faiblement la représentation triviale de SL(3, R).
Ce groupe possédant la propriéte T [DK], il existe un vecteur unité 3;
& e H avec n(h)§ = & pour tout he SL(3, R). Notons f: G — C la fonction
définie par f(g) = (p(9)€|&), qui vaut 1 sur SL(3, R). On a f(hgh™!) = f(g) : |
pour tout he SL(3,R) et pour tout ge G. Comme l'action de SL(3,R) I
sur R® posséde un orbite dense (le complémentaire de I'origine), il en résulte | |
que f est constante sur G, donc que p contient fortement & Ainsi G ||
possede la propriété T. , (

Comme I' est de covolume fini dans G, il posséde aussi la pro- i |
priété T. 0|

Le lemme 4 fournit un nouvel exemple de produit semi-direct
1-272°>-SL3B,2) x Z° - SL(3,Z) - 1 (B)

avec noyau moyennable et les deux autres groupes non intérieurement ' |
moyennables. '
En posant enfin

I' =F, x Z3,
I =F, x (SL(3,Z) x Z?),
I"=Z x SL(3,Z),

on obtient par produit direct a partir de (A) et (B) une extension scindée |

1->TI">T'->1I"->1
J

ou I'” et I'” sont intérieurement moyennables et ou I' ne I'est pas. On trouve
d’autres résultats sur la moyennabilité intérieure des produits semi-directs
dans [Ch2]. )

Soit I'" un sous-groupe d’indice fini d’un groupe I'. Quelles sont les f
relations entre la moyennabilité intérieure de I et celle de I"? (Voir ajout.)

§ 3. EXEMPLES DE GROUPES NON INTERIEUREMENT MOYENNABLES

Le corollaire 3 (i) fournit a volonté des groupes non intérieurement
moyennables qui apparaissent naturellement en géométrie.

En effet, soit G un groupe de Lie réel connexe SCmi-simple a centre
trivial dont chaque composante simple est de rang réel au moins 2, et soit I
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un réseau dans G; plus simplement, soit par exemple ' = PSL(n, Z) avec
n>3. On sait que I' est un groupe a classes de conjugaison infinies
(chap. I de [Ra]), qu’il possede la propriété T [DK], et quil n’est donc pas
intérieurement moyennable. Pour le facteur associé, voir [C3].

Voici d’autres exemples.

THEOREME 5. Si un groupe I admet Tune au moins des descriptions
suivantes, alors T nest pas intérieurement moyennable et le facteur MI')"
_ est plein.

(@) T est un sous-groupe de PSL(2,R) qui nest pas résoluble.

, b) T est un sous-groupe de PSL(2, C) qui ne contient pas de sous-groupe
" résoluble d’indice fini.

' (0 T est un produit libre H*K ou H posséde au moins 2 et K
au moins 3 éléments.

d T = H%K est un produit libre avec amalgamation sur un sous-groupe
A#{1} de H et K tel que, pour tout sous-ensemble fini F
de T — {1}, ilexiste geT avec g 'Fgn A = Q.

) T = HNN(H, A, ®) est une extension d la G. Higman, B.H. Neumann
et H. Neumann avec | HJ/A| > 3 telle que, pour tout sous-ensemble fini
F de T — {1}, ilexiste gel avec g 'Fgn A = Q.

() T est un produit direct dun nombre fini de groupes apparaissant dans
les classes (a) a (e).

q, La liste de ce théoréme est en substance bien connue. Pour les groupes
de (a) et (b) qui sont discrets, voir [HJ]. Pour ceux de (c) et de nombreux
groupes de (a), voir [Ak]. Pour la plupart des groupes de (d) et (e), voir
[B1] et [B2]. Pour (f), voir le corollaire 3 (ii). Ce que nous croyons étre
§ nouveau ci-dessous est ’'usage d’un argument simple commun a presque tous
les cas du théoréme (seul cas plus compliqué: classe (b) lorsqu’il y a de la
& 2-torsion).

Un homéomorphisme ¢ d’un espace topologique séparé Q est dit hyper-
bolique s’il existe deux points fixes distincts s,,r, de ¢ dans Q avec les
propriétés suivantes:
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pour tout voisinage S de s, et pour tout voisinage R de r,, il existe
un entier n, > 0 tel que " (Q—S) = R pour tout n > n,.

Un tel homéomorphisme ¢ n’a pas d’autres points fixes que sa source s,
et son but r,; pour tout entier k € Z — {0}, on vérifie que = @* est aussi ,
hyperbolique avec

s So si k>0 ot To si k>0
= r =
v r. si k<0 ¥ si k<0,

Nous excluons désormais le cas ou Q ne contient pas au moins 3 points
distincts; il existe un homéomorphisme hyperbolique de 'Q, cet espace est | |
donc toujours infini. "

LEMME 6. Soit ¢ un homéomorphisme hyperbolique d’un espace topo-

- 7 r e . . . ! . / . . 3’
logique séparé infini Q; soient S' (respectivement R’) un voisinage de s, |

(respectivement 1,), et F un sous-ensemble fini de Q — {s,,7,}. Alors ||
il existe un voisinage S de s contenu dans S’ et un entier k >1 ;
tels que 'homéomorphisme = @ ait les propriétés "

i) S=8 e R=Q—Y(S) R,
() S = ¥(s),
(iii) F est dans lintérieur de D = (S) — S,
(iv) Q — {s,,7y} = [TV"D) ou [] désigne une réunion disjointe.

neZ

Preuve. Comme Q est séparé, il existe des voisinages disjoints deux a deux § |

S”, V, R" de s,, F, r, respectivement avec §” = §’ et R” = R'. Par hyper-

bolicité de ¢ vers la source, il existe un entier n, > 0 tel que ¢~ "(S") = §”
no—l . ::
pour tout entier n = ny. On pose S = N @ /(S") de sorte que S = §” et i
j=0

S <= o@(S). Par hyperbolicité¢ de ¢ vers le but, il existe un entier k > 0 tel que
0(Q—S) = R”, donc en particulier tel que S U V < @"(S) pour tout n > k. B
On pose y = @* et R = Q — Y(S) = Y(Q—S). Reste a vérifier (iv).

Soit D = (S) — S. Il est évident que les ensembles *(D) sont disjoints
deux a deux (neZ). Soit weQ — {s,,r,}. Vu que y"(0) tend vers s,
(respectivement r,) quand n tend vers —oo (respectivement co), il existe
me Z avec Y™ Yw) € S et Y"™(w) ¢ S, donc avec y™(w) € D. O

L’espace Q étant comme plus haut, deux homéomorphismes hyperboliques
¢ et ¥ de Q sont transverses §’ils n’ont pas de point fixe commun. Dans
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B cc cas, il existe une suite infinie (n;)j=1,2,.. dentiers telle que les homéo-
:- B morphismes hyperboliques "o " (j=1, 2, ..) soient transverses deux a deux.

PROPOSITION 7. Soient Q un espace topologique séparé infini et I' un

groupe d’homéomorphismes de € contenant deux homéomorphismes hyper-

. boliques transverses. S'il existe une application [-équivariante §:T — {1} — Q
* (pour laction de 1" sur lui-méme par automorphismes intérieurs ), alors T
\ nest pas intérieurement moyennable.

Preuve. Soient g, h e I deux éléments hyperboliques transverses. Quitte a
. remplacer g par une puissance convenable, on déduit du lemme qu’il existe
. un voisinage S, de s, tel que

(i) sy, r, sont dans lintérieur de D, = g(S,) — S,

i) @ — {s,,r,} = Ll g"D,)

neZ
Quitte a remplacer ensuite h par une puissance convenable, on s’assure
de méme qu’il existe un voisinage S, de s, tel que
(i) S, et R, = Q — A(S,) sont dans D,
(iv) Q — {s,, 7} = LI (D)) avec D, = Q — (S,UR,).

neZ

Posons enfin
T ={kel — {1} |8(k)eS, UR,}.

- OnaQ = (S,UR,) Ug(S,UR,), donc I' — {1} = Ty gTg~t. On a aussi
~$,UR, = D, donc les h*(S,UR,) sont des parties de Q disjointes deux a
_ deux, et par suite les h"Th™" sont disjoints deux a deux dans I'(neZ).
% Par suite I' ne satisfait pas la condition (Td'), donc I' n’est pas inté-
¢ rieurement moyennable. (Voir la preuve de (M) < (Ta) au § 1.) O

Preuve du théoréme.

' Classe (a). On choisit pour Q le disque unité ferme¢ du plan complexe
‘ sur lequel PSL(2, R), déguisé en PSU(1, 1), agit par transformations lin€aires
B2 fractionnaires. On définit 8(k) comme étant lattracteur de k si k est hyper-

E bolique et le point fixe de k dans Q sinon. L’hypotheése que I' n’est pas
résoluble implique que I' contient deux hyperboliques transverses (détails

| dans [Ha]). Notons que le choix de & est limité; pour tout ge I’ — {1},
| on doit en effet avoir en vertu de I'équivariance gd(g) = 8(ggg— 1) = (g).

‘ Classe (b). On choisit pour Q la réunion de l'espace hyperbolique de
dimension 3 (dont PSL(2, C) est le groupe des isométries préservant 1’orien-
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tation) et de son bord (sur lequel I’action de PSL(2, C) s’étend naturellement);
Q est donc une boule fermée de dimension 3.

Supposons d’abord que I' ne contienne aucun élément g # 1 avec
g*> = 1. On définit §(k) comme pour la classe (a) si k est hyperbolique ou
parabolique. Sinon, k est elliptique: c’est une rotation d’angle ®, € ]0, [
autour d’une droite hyperbolique d,; on choisit pour 8(k) le point a Iinfini
de d, donné par la régle du tire-bouchon.

Pour le cas général, reprenons la preuve légérement plus compliquée de
[HJ]. On choisit deux hyperboliques g, h € I' avec les propriétés suivantes:

(1) Il existe un domaine D, limit¢é par deux hyperplans. de Q tel que
Q— {s,,r,} =11 g"(D,); onpose E = {s,,r,} U 11 g"(D,).

neZ n pair
(2) Il existe un domaine D, limité par deux hyperplans de Q tel que
Q — D, = D,. On note S, la composante connexe de Q — D, contenant
S -
(3) Toute droite hyperbolique de Q dont les deux points a I'infini sont
dans E ne rencontre pas Q — D, .

On définit alors T comme I'ensemble des k € I' ayant au moins un point fixe
dans E et n’ayant pas de point fixe dans S,,.

Classes (c), (d), (e). L’espace Q est la réunion du graphe X et de I’espace L
de ses bouts, comme définis dans [Ha]. On prend pour 8(k) I'attracteur de k
dans L si k est hyperbolique et le point fixe de k dans X si k est
elliptique. O

CorOLLAIRE 8. Si I' est un groupe admettant une présentation avec
n > 3 générateurs et une seule relation, alors 1" west pas intérieurement
moyennable.

Preuve. Si la relation ne contient qu'un générateur, I" est décrit comme
dans la classe (¢) du théoréme 5. Si la relation contient au moins deux
générateurs, on peut la supposer cycliquement réduite, et il suffit de contempler
les lemme 11.8, théoréme 5.1 (cas 1 de la preuve) et théoréme 11.9
dans [Z]. O

Soit I" le groupe des classes d’applications d’une surface close orientable
de genre g > 3. (On suppose g = 3 pour que I' soit a centre trivial [Ma].)
Le théoréme 5 s’applique-t-il 2 I', avec une preuve en termes de l’action
naturelle de I" sur la compactification de Thurston de I’espace de Teich-
miiller de la surface?
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