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Preuve. Soit p : G - U(H) une représentation unitaire contenant
faiblement la représentation triviale s: G -> 17(C) S1. Alors la restriction n
de p à SL(3, R) contient faiblement la représentation triviale de SL(3, R).

Ce groupe possédant la propriété T [DK], il existe un vecteur unité
^ g H avec n(h)^ Ç pour tout h g SL(3, R). Notons / : G - C la fonction
définie par f(g) (p{g%| Ç), qui vaut 1 sur SL(3, R). On a /(hgh'1) /(g)
pour tout h g SL(3, R) et pour tout <7 g G. Comme l'action de <SL(3, R)

sur R3 possède un orbite dense (le complémentaire de l'origine), il en résulte

que / est constante sur G, donc que p contient fortement s. Ainsi G

possède la propriété T.

Comme F est de covolume fini dans G, il possède aussi la
propriété T.

Le lemme 4 fournit un nouvel exemple de produit semi-direct

1 -> Z3 SL(3, Z) X Z3 SL(3, Z) - 1 (B)

avec noyau moyennable et les deux autres groupes non intérieurement
moyennables.

En posant enfin

r^F.xz3,
r f2 x (sl(3, z) x z3),
F" Z x SL(3, Z),

on obtient par produit direct à partir de (A) et (B) une extension scindée

1 - r -> r -> r" - 1

où F et T" sont intérieurement moyennables et où T ne l'est pas. On trouve
d'autres résultats sur la moyennabilité intérieure des produits semi-directs

dans [Ch2].
Soit F un sous-groupe d'indice fini d'un groupe F. Quelles sont les

relations entre la moyennabilité intérieure de F' et celle de T? (Voir ajout.)

§ 3. Exemples de groupes non intérieurement moyennables

Le corollaire 3 (i) fournit à volonté des groupes non intérieurement

moyennables qui apparaissent naturellement en géométrie.
En effet, soit G un groupe de Lie réel connexe semi-simple à centre

trivial dont chaque composante simple est de rang réel au moins 2, et soit F
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un réseau dans G; plus simplement, soit par exemple T PSUn, Z) avec

n ^ 3. On sait que F est un groupe à classes de conjugaison infinies

(chap. I de [Ra]), qu'il possède la propriété T [DK], et qu'il n'est donc pas

intérieurement moyennable. Pour le facteur associé, voir [C3].

Voici d'autres exemples.

Théorème 5. Si un groupe T admet Tune au moins des descriptions

suivantes, alors T n'est pas intérieurement moyennable et le facteur UT)"

est plein.

(a) T est un sous-groupe de PSIfl, R) qui n'est pas résoluble.

(b) F est un sous-groupe de PSLfl, Ç) gui ne contient pas de sous-groupe

résoluble d'indice fini.

(c) T est un produit libre H*K où H possède au moins 2 et K

au moins 3 éléments.

(d) T H%K est un produit libre avec amalgamation sur un sous-groupe

A / {1} de H et K tel que, pour tout sous-ensemble fini F

de T — {1}, il existe geT avec g~xFg n A 0.
(e) T HNN{H, A, 0) est une extension à la G. Higman, B.H. Neumann

et H. Neumann avec \ H/A | ^ 3 telle que, pour tout sous-ensemble fini
F de T — {1}, il existe geT avec g~1Fg n A 0.

(f) T est un produit direct d'un nombre fini de groupes apparaissant dans

les classes (a) à (e).

La liste de ce théorème est en substance bien connue. Pour les groupes

4 de (a) et (b) qui sont discrets, voir [HJ]. Pour ceux de (c) et de nombreux

J groupes de (a), voir [Ak]. Pour la plupart des groupes de (d) et (e), voir

[Bl] et [B2]. Pour (f), voir le corollaire 3 (ii). Ce que nous croyons être

nouveau ci-dessous est l'usage d'un argument simple commun à presque tous
les cas du théorème (seul cas plus compliqué: classe (b) lorsqu'il y a de la

2-torsion).

Un homéomorphisme cp d'un espace topologique séparé Q. est dit
hyperbolique s'il existe deux points fixes distincts de cp dans Q avec les

propriétés suivantes :
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pour tout voisinage S de et pour tout voisinage R de r9, il existe

un entier n0 > 0 tel que cpw(0 — S) c R pour tout n ^ n0.

Un tel homéomorphisme (p n'a pas d'autres points fixes que sa source s9

et son but rv; pour tout entier keZ — {0}, on vérifie que \|/ cpfc est aussi

hyperbolique avec

fs, si k>0 f rv si k > 0

^ { r9 si k < 0
Ct r* { si k < 0.

Nous excluons désormais le cas où Q, ne contient pas au moins 3 points
distincts; s'il existe un homéomorphisme hyperbolique de D, cet espace est

donc toujours infini.

Lemme 6. Soit (p un homéomorphisme hyperbolique d'un espace
topologique séparé infini Q ; soient S' (respectivement R') un voisinage de s9

(respectivement rv), et F un sous-ensemble fini de £l — {sv,rv}. Alors

il existe un voisinage S de s contenu dans S' et un entier k ^ 1

tels que rhoméomorphisme \|/ cpfc ait les propriétés

(i) S a S' et R Q - \|f{S) c R',
(ii) S cz \|/(S),

(iii) F est dans l'intérieur de D \|/(S) — S,

(iv) Q — } U \|fn(D) où U désigne une réunion disjointe.
neZ

Preuve. Comme £3 est séparé, il existe des voisinages disjoints deux à deux

S", V, R" de s9, F, r9 respectivement avec S" a S' et R" c= R'. Par hyper-
bolicité de cp vers la source, il existe un entier n0 > 0 tel que (p~"(S") c= S"

no~ 1

pour tout entier n ^ n0. On pose S n cp ~j(S") de sorte que S cz S" et
j= o

S cz cp(S). Par hyperbolicité de cp vers le but, il existe un entier k > 0 tel que
cp"(lQ — S) cz Rdonc en particulier tel que S u V cz cp"(5) pour tout n ^ k.

On pose v|/ cpfe et R Q — \|/(S) \|/(Q — 5"). Reste à vérifier (iv).

Soit D \)/(5) — S. Il est évident que les ensembles \|fn(D) sont disjoints
deux à deux (neZ). Soit oo gO- Vu que \|/"(co) tend vers

(respectivement r^) quand n tend vers — oo (respectivement oo), il existe

me Z avec \|/m~ x(co) e S et \|/m(œ) ^ S, donc avec \|/m(cö) e D.

L'espace Q étant comme plus haut, deux homéomorphismes hyperboliques
cp et y\f de Q, sont transverses s'ils n'ont pas de point fixe commun. Dans
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ce cas, il existe une suite infinie («,);= 1,2,... d'entiers telle que les homeo-

morphismes hyperboliques <p»hh> ""'(/= 1» 2,...) soient transverses deux à deux.

v Proposition 7. Soient £2 un espace topologique séparé infini et F un

groupe cThoméomorphismes de £1 contenant deux homéomorphismes

hyperboliques transverses. S'il existe une application F-équivariante SiT — {1}->Q
(pour l'action de F sur lui-même par automorphismes intérieurs), alors F

n'est pas intérieurement moyennable.

Preuve. Soient g,heF deux éléments hyperboliques transverses. Quitte à

remplacer g par une puissance convenable, on déduit du lemme quil existe

un voisinage Sg de sg tel que

(i) sh, rh sont dans l'intérieur de Dg g(Sg) - Sg

(ii) Cl - {sg,rg} Ud"(Dg)-
neZ

Quitte à remplacer ensuite h par une puissance convenable, on s'assure

de même qu'il existe un voisinage Sh de tel que

(iii) Sh et Rh Cl - h(Sh) sont dans Dg

(iv) fl - {sh, rh}Ii hn{Dh) avec Dh Cl - (ShvRh).
neZ

Posons enfin

T{leT - {1} | ô(/c) e Sfl u

On a Cl (SguRg)ug(SgvRg), donc - {1} u gTg'1. On a aussi

Sgu Rg c= Dh, donc les hn(SguRg) sont des parties de £1 disjointes deux à

deux, et par suite les hnTh~n sont disjoints deux à deux dans T(neZ).

i Par suite F ne satisfait pas la condition (Ta), donc F n'est pas inté-

rieurement moyennable. (Voir la preuve de (M) o (Ta) au § 1.)
%

Preuve du théorème.

Classe (a). On choisit pour Q le disque unité fermé du plan complexe

sur lequel PSL(2, R), déguisé en PSU(1, 1), agit par transformations linéaires

fractionnaires. On définit ô(/c) comme étant l'attracteur de k si k est

hyperbolique et le point fixe de k dans £1 sinon. L'hypothèse que T n'est pas
résoluble implique que F contient deux hyperboliques transverses (détails
dans [Ha]). Notons que le choix de 8 est limité; pour tout geF — {1},
on doit en effet avoir en vertu de l'équivariance gb(g) h(ggg_1) b(g).

Classe (b). On choisit pour £1 la réunion de l'espace hyperbolique de

dimension 3 (dont PSL(2, C) est le groupe des isométries préservant l'orien-
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tation) et de son bord (sur lequel l'action de PSL{2, C) s'étend naturellement) ;

Q est donc une boule fermée de dimension 3.

Supposons d'abord que Y ne contienne aucun élément g ^ 1 avec
g2 î. On définit 8(/c) comme pour la classe (a) si k est hyperbolique ou
parabolique. Sinon, k est elliptique : c'est une rotation d'angle 0fe g ]0, 7u[

autour d'une droite hyperbolique dk ; on choisit pour 8(/c) le point à l'infini
de dk donné par la règle du tire-bouchon.

Pour le cas général, reprenons la preuve légèrement plus compliquée de

[HJ]. On choisit deux hyperboliques g,heY avec les propriétés suivantes:

(1) Il existe un domaine Dg limité par deux hyperplans de Q tel que

- K' rg}II g\Dgy,onpose {s3, u II
neZ n pair

(2) Il existe un domaine Dh limité par deux hyperplans de Q tel que
Q. — Dh c= Dg. On note Sh la composante connexe de £2 — Dh contenant
sh-

(3) Toute droite hyperbolique de £2 dont les deux points à l'infini sont
dans E ne rencontre pas Q, — Dh.

On définit alors T comme l'ensemble des keT ayant au moins un point fixe
dans E et n'ayant pas de point fixe dans Sh.

Classes (c), (d), (e). L'espace Q est la réunion du graphe X et de l'espace L
de ses bouts, comme définis dans [Ha]. On prend pour 8(fc) l'attracteur de k
dans L si k est hyperbolique et le point fixe de k dans X si k est

elliptique.

Corollaire 8. Si T est un groupe admettant une présentation avec

n ^ 3 générateurs et une seule relation, alors T n'est pas intérieurement

moyennable.

Preuve. Si la relation ne contient qu'un générateur, Y est décrit comme
dans la classe (c) du théorème 5. Si la relation contient au moins deux

générateurs, on peut la supposer cycliquement réduite, et il suffit de contempler
les lemme 11.8, théorème 5.1 (cas 1 de la preuve) et théorème 11.9

dans [Z].

Soit T le groupe des classes d'applications d'une surface close orientable
de genre g ^ 3. (On suppose g > 3 pour que Y soit à centre trivial [Ma].)
Le théorème 5 s'applique-t-il à Y, avec une preuve en termes de l'action
naturelle de Y sur la compactification de Thurston de l'espace de
Teichmüller de la surface
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