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146 E. BEDOS ET P. DE LA HARPE

qui est CCI, c’est-a-dire le cas ou MI')” est un facteur, ou encore autrement
dit le cas ou C*MI), p(I') agit irréductiblement sur [*(I). On sait que
'intersection d’une C*-algébre irréductible avec l'algébre & des opérateurs
compacts est ou bien nulle, ou bien égale 4 % (corollaire 4.1.10 de [Dil]). §
Par suite (P) est équivalent pour un groupe CCI a
(P) A n CHI)) = {0} |

D’autre part, un résultat de Connes (théoréme 2.1 de [C2]) exprime que
MI')" posséde la propriété gamma si et seulement si
(C) A n CHMI), pT)") = {0} .

Enfin, on a évidemment
C¥ouI)) = C*(?»(I" ), p(F)) < CHMIY, p(F)").

Par suite, si le facteur MI')” posséde la propriété gamma, alors le groupe I |
est intérieurement moyennable. Cette implication est a l’origine du travail |
d’Effros, comme nous I'avons déja signalé dans I'introduction.

2) Soit I' un groupe CCI satisfaisant la condition (F) avec de plus |
sup| F,| < oo, par exemple un groupe faiblement commutatif (voir §2) i
Pour tout n > 1, notons ¥, la fonction caractéristique de F,, qui est un
¢lément de trace nulle dans le facteur MI')". Pour tout g eI, il existe un
entier n, avec gF,g”' = F,, donc tel que g et x, commutent dans AI)",! |
pour n > n,. Par suite MI')" posséde la propriété gamma (proposition 1.10: |
de [Di2]). |

On peut sans doute encore montrer que MI)” posséde la propriéte
gamma lorsque I" est un groupe CCI satisfaisant la « condition de Fglner {

forte » suivante:

(F;) 1l existe une suite (F,),»; de sous-ensembles finis non vides d
[ — {1} telle que, pour tout gelI, il existe un entier n, ave
gF,g~' = F,pour n > n,.

a o

3) Pour d’autres relations entre la moyennabilit¢ intérieure de I' et les
propriétés de MI')”, voir [Chl]. :

§ 2. CONDITIONS SUFFISANTES

Rappelons qu’un groupe satisfait la propriété T de Kazhdan si la repré-
sentation triviale € (de dimension 1) est isolée dans le dual unitaire du J§
groupe, ou encore si toute représentation unitaire du groupe contenant
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B faiblement € contient nécessairement € au sens fort (lemme 1 de [DK]).
P Rappelons aussi qu’un groupe I est dit faiblement commutatif si, pour toute
: partie finie F de T, il existe g # 1 dans I' commutant aux éléments de F
B (cest la condition (¢) du lemme 6.1.1 de [MvN]). Un groupe I' # {1}
| ; de génération finie est faiblement commutatif si et seulement si son centre
| nest pas réduit 2 un élément. Mais il existe des groupes CCI faiblement
& commutatifs ; citons:

— Le groupe des permutations de N a supports finis, de méme que son
produit direct avec tout groupe CCL

__ La somme restreinte d’une famille infinie dénombrable de groupes CCIL

— Les groupes construits par McDuff [MD] pour exhiber une infinité
non dénombrable de facteurs finis continus non isomorphes deux a deux.

COROLLAIRE 2. Pour quun groupe T soit intérieurement moyennable,
il suffit qu’il vérifie Pune des conditions suivantes:

(i) I' est moyennable.
(i) Il existe dans T — {1} une classe de conjugaison finie.

(i) T est un produit direct T' x I avec I intérieurement moyennable
et non réduit a {1}.
(iv) Il existe une suite exacte 1 —->1'"->T ->I" -1 avec I' intérieu-
rement moyennable et T moyennable.

(v) T posséde une famille (T';),.; de sous-groupes intérieurement moyennables,
avec I' = U I;.

iel

(vi) ' est faiblement commutatif.

5 (vii) I' est CCI et le facteur MI')" posséde la propriété gamma.

|7  Prewve. La suffisance de (i) est standard (lemmes 1.1.1 et 1.1.3 de [Gr]),
celle de (if) est banale, et celle de (v) se montre comme pour le cas
moyennable (théoréme 1.2.7 de [Gr]).

B Pour (iii), consideérons une moyenne intérieurement invariante ' sur I".

On définit une moyenne intérieurement invariante p sur I’ en posant
pour toute partie S de I' — {1}:

S = S (- {1hx{1)

4§10 si §'=0Q,
HS) = { W(S’) sinon.
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Supposons la condition (iv) vérifiee. Le groupe Aut(I”) de tous les
automorphismes de I"” opére naturellement sur le convexe compact non vide C
des moyennes intérieurement invariantes sur I, et 'action de tout auto-
morphisme intérieur est banale par définition; par suite le quotient Out(I"”)
= Aut(I")/Int(I"") opére sur C. L’homomorphisme naturel I'” — Out(I") associé
a la suite exacte fournit donc une action affine de I'” sur C. Comme I
est moyennable, I'action posséde un point fixe p qui est une moyenne
intérieurement invariante sur I' & support dans I — {1}.

Nous avons déja discuté la suffisance de (vii) a la fin du §1, et celle
de (vi) en résulte par le lemme 6.1.1 de [MVN]. On peut aussi observer
que tout groupe dénombrable faiblement commutatif possede une suite de
Fglner (F,),>; comme a la condition (F) du théoréme 1, avec de plus
| F,| = 1 pour toutn > 1. O

La condition (vi) permet notamment de retrouver 'exemple du théoréme 3
de [CC], qui est la somme restreinte d’une famille infinie dénombrable de
groupes libres non abéliens. (C’est un exemple de groupe intérieurement
moyennable dont la C*-algébre réduite est simple a trace unique.)

COROLLAIRE 3. Pour quun groupe T soit non intérieurement moyennable,
il suffit qu’il vérifie l'une des conditions suivantes :

(i) ' est CCI et satisfait la propriété T.

(i) Il existe une suite exacte 1 ->I"->T —>T"—->1 avec I' et I
non intérieurement moyennables.

(iii) T posséde un sous-groupe libre non abélien F tel que le centralisateur
I,={feF|gf = fg} est abélien pour tout gel' avec g # 1.

.

Preuve. Supposons la condition (i) vérifiée et considérons la représen-
tation P de I' dans [2(IN@C3: elle ne contient pas fortement ¢, car I' est
CCI; elle ne contient donc pas non plus faiblement ¢, car ' a la pro-
priété T. On a donc la négation de la condition (R) du théoréme 1.

Pour (ii), montrons la contraposée, et supposons donc quil existe une
moyenne intérieurement invariante p sur I' — {1}. Si le support de p
rencontre I" — {1}, le groupe I" est intérieurement moyennable. Sinon, on
définit une moyenne intérieurement invariante p” sur I'” en posant p“(S)
= p(n~%(S)) pour tout S = I, o m désigne la surjection de I' sur I". |

Pour (iii), nous renvoyons a I'exemple 2 de la section 5 dans [HaS]. [
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. La suffisance de (i) est due a Connes, Akemann et Walter [AW];
est aussi un cas particulier du théoréme 2 de [LR]. La suffisance de (ii1)
est due a Akemann; elle est utilisée pour l'exemple 5 de [Ak], qui est
un produit semi-direct de Z @ Z et d’'un groupe libre non abélien sur deux
générateurs. (Cest un exemple de groupe non intérieurement moyennable
dont la C*-algébre réduite n’est pas simple et posséde plusieurs traces;
pour d’autres exemples, voir le théoréme 4 de [CC], et le produit semi-direct
de Z3 et SL(3,Z) considéré ci-dessous. Notons encore que tout groupe
moyennable non trivial est intérieurement moyennable avec C*-algébre réduite
non simple; enfin, les groupes du §3 ci-dessous sont non intérieurement
moyennables et ont des C*-algébres reduites simples 4 trace unique. La
réponse a la question (1) de la section 2 de [Ha] est donc aussi négative

que possible.)

EXEMPLES AVEC PRODUITS SEMI-DIRECTS
On considére un produit semi-direct I' donné sous la forme d’une
extension scindée

1-TI"'>T->I"->1.
_J

Lorsque le produit est direct, les corollaires 2 et 3 montrent que I' est
intérieurement moyennable si et seulement si I'un au moins des groupes
", T” est. La situation pour les produits semi-directs est différente.

Pour tout ne{2,3,.., 0}, notons F, le groupe non abélien libre a
n générateurs. Ce groupe m'est pas intérieurement moyennable. (Cest le
lemme 6.2.2 de [MvN]; voir aussi la section 5 de [HaS] et le § 3 ci-dessous.)
Soit m: F, - Z une surjection. Son noyau est isomorphe a F,, d’ou un
produit semi-direct

1-F,-oF,»>Z->1 (A)
J
avec I = F_ et ' = F, non intérieurement moyennables, bien que I'" = Z

‘soit moyennable.

Nous avons déja fait allusion & un produit semi-direct de Z @ Z et
% F_;_ pour lequel I" est moyennable alors que I' et I ne sont pas inte-
§ . ricurement moyennables. Avant de décrire un second exemple, montrons:

LEMME 4. Les produits semi-directs

G=SLBRXR> et I'=S8SL3,2Z) x Z3
possédent la propriéeté T de Kazhdan.
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Preuve. Soit p: G — U(H) une représentation unitaire contenant fai-
blement la représentation triviale €: G — U(C) = S!. Alors la restriction n |
de p a SL(3,R) contient faiblement la représentation triviale de SL(3, R).
Ce groupe possédant la propriéte T [DK], il existe un vecteur unité 3;
& e H avec n(h)§ = & pour tout he SL(3, R). Notons f: G — C la fonction
définie par f(g) = (p(9)€|&), qui vaut 1 sur SL(3, R). On a f(hgh™!) = f(g) : |
pour tout he SL(3,R) et pour tout ge G. Comme l'action de SL(3,R) I
sur R® posséde un orbite dense (le complémentaire de I'origine), il en résulte | |
que f est constante sur G, donc que p contient fortement & Ainsi G ||
possede la propriété T. , (

Comme I' est de covolume fini dans G, il posséde aussi la pro- i |
priété T. 0|

Le lemme 4 fournit un nouvel exemple de produit semi-direct
1-272°>-SL3B,2) x Z° - SL(3,Z) - 1 (B)

avec noyau moyennable et les deux autres groupes non intérieurement ' |
moyennables. '
En posant enfin

I' =F, x Z3,
I =F, x (SL(3,Z) x Z?),
I"=Z x SL(3,Z),

on obtient par produit direct a partir de (A) et (B) une extension scindée |

1->TI">T'->1I"->1
J

ou I'” et I'” sont intérieurement moyennables et ou I' ne I'est pas. On trouve
d’autres résultats sur la moyennabilité intérieure des produits semi-directs
dans [Ch2]. )

Soit I'" un sous-groupe d’indice fini d’un groupe I'. Quelles sont les f
relations entre la moyennabilité intérieure de I et celle de I"? (Voir ajout.)

§ 3. EXEMPLES DE GROUPES NON INTERIEUREMENT MOYENNABLES

Le corollaire 3 (i) fournit a volonté des groupes non intérieurement
moyennables qui apparaissent naturellement en géométrie.

En effet, soit G un groupe de Lie réel connexe SCmi-simple a centre
trivial dont chaque composante simple est de rang réel au moins 2, et soit I
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