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146 E. BÉDOS ET P. DE LA HARPE

qui est CCI, c'est-à-dire le cas où ^(r)" est un facteur, ou encore autrement
dit le cas où C*(À,(r), p(r)) agit irréductiblement sur /2(r). On sait que
l'intersection d'une C*-algèbre irréductible avec l'algèbre Jf des opérateurs

compacts est ou bien nulle, ou bien égale à Jf (corollaire 4.1.10 de [Dil]).
Par suite (P) est équivalent pour un groupe CCI à

(F) X n C*(oc(r)) {0}.

D'autre part, un résultat de Connes (théorème 2.1 de [C2]) exprime que |

X(r)" possède la propriété gamma si et seulement si

(C) x n c*(Mry, P(rr) {0}.
Enfin, on a évidemment

c*(oc(n) c= c*(^(r), p(H) c: C*{x(ry, P(ry).

Par suite, si le facteur À,(r)" possède la propriété gamma, alors le groupe T |

est intérieurement moyennable. Cette implication est à l'origine du travail f

d'Effros, comme nous l'avons déjà signalé dans l'introduction.

2) Soit T un groupe CCI satisfaisant la condition (F) avec de plus \

sup | Fn | < oo, par exemple un groupe faiblement commutatif (voir § 2). \

Pour tout n ^ 1, notons %n la fonction caractéristique de Fn, qui est un j

élément de trace nulle dans le facteur À,(r)". Pour tout g e T, il existe un
entier ng avec gFng~y Fn, donc tel que g et %n commutent dans X(r)", î

pour ng. Par suite X(r)" possède la propriété gamma (proposition 1.10

de [Di2]). [
$

On peut sans doute encore montrer que À,(r)" possède la propriété

gamma lorsque T est un groupe CCI satisfaisant la « condition de Feiner
forte » suivante :

(Ff) Il existe une suite (FJ,,^ de sous-ensembles finis non vides de

T — {1} telle que, pour tout g e T, il existe un entier ng avec

gF„g'1 F„ pour n^ng.

3) Pour d'autres relations entre la moyennabilité intérieure de T et les

propriétés de ^(r)r/, voir [Chi].

§ 2. Conditions suffisantes

Rappelons qu'un groupe satisfait la propriété T de Kazhdan si la repré

sentation triviale s (de dimension 1) est isolée dans le dual unitaire du

groupe, ou encore si toute représentation unitaire du groupe contenant
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faiblement s contient nécessairement s au sens fort (lemme 1 de [DK]).

Rappelons aussi qu'un groupe T est dit faiblement commutatif si, pour toute

partie finie F de r, il existe g # 1 dans T commutant aux éléments de F

(c'est la condition (c) du lemme 6.1.1 de [MvN]). Un groupe T ^ {1}

de génération finie est faiblement commutatif si et seulement si son centre

n'est pas réduit à un élément. Mais il existe des groupes CCI faiblement

commutatifs ; citons :

— Le groupe des permutations de N à supports finis, de même que son

produit direct avec tout groupe CCI.

— La somme restreinte d'une famille infinie dénombrable de groupes CCI.

— Les groupes construits par McDufï [MD] pour exhiber une infinité

non dénombrable de facteurs finis continus non isomorphes deux à deux.

Corollaire 2. Pour qu'un groupe T soit intérieurement moyennable,

il suffit qu'il vérifie l'une des conditions suivantes:

(i) T est moyennable.

(ii) Il existe dans F — {1} une classe de conjugaison finie.

(iii) T est un produit direct F x T" avec T' intérieurement moyennable

et non réduit à {1}.

(iv) Il existe une suite exacte 1 - F -» T -> F' - 1 avec F intérieu¬

rement moyennable et F' moyennable.

(v) T possède une famille (rf)ieJ de sous-groupes intérieurement moyennables,

avec T u rf.

(vi) T est faiblement commutatif.

(vii) T est CCI et le facteur X(r)" possède la propriété gamma.

Preuve. La suffisance de (i) est standard (lemmes 1.1.1 et 1.1.3 de [Gr]),
celle de (ii) est banale, et celle de (v) se montre comme pour le cas

moyennable (théorème 1.2.7 de [Gr]).
Pour (iii), considérons une moyenne intérieurement invariante \i' sur F.

On définit une moyenne intérieurement invariante p sur T en posant
pour toute partie S de T — {1} :

S' Sn((T-{1})X{1})



148 E. BÉDOS ET P. DE LA HARPE

Supposons la condition (iv) vérifiée. Le groupe Aut(F) de tous les

automorphismes de F opère naturellement sur le convexe compact non vide C

des moyennes intérieurement invariantes sur F, et l'action de tout auto-

morphisme intérieur est banale par définition; par suite le quotient Out(F)
Aut(F)/Int(F) opère sur C. L'homomorphisme naturel F' -> Out(F) associé

à la suite exacte fournit donc une action affine de F' sur C. Comme F
est moyennable, l'action possède un point fixe p qui est une moyenne
intérieurement invariante sur T à support dans F — {1}.

Nous avons déjà discuté la suffisance de (vii) à la fin du § 1, et celle

de (vi) en résulte par le lemme 6.1.1 de [MvN]. On peut aussi observer

que tout groupe dénombrable faiblement commutatif possède une suite de

F01ner (Fn)n>1 comme à la condition (F) du théorème 1, avec de plus
| Fn | 1 pour tout n ^ 1.

La condition (vi) permet notamment de retrouver l'exemple du théorème 3

de [CC], qui est la somme restreinte d'une famille infinie dénombrable de

groupes libres non abéliens. (C'est un exemple de groupe intérieurement

moyennable dont la C*-algèbre réduite est simple à trace unique.)

Corollaire 3. Pour qu'un groupe T soit non intérieurement moyennable,

il suffit qu'il vérifie l'une des conditions suivantes :

(i) T est CCI et satisfait la propriété T.

(ii) Il existe une suite exacte 1 -> F - T F -» 1 avec T' et T"

non intérieurement moyennables.

(iii) T possède un sous-groupe libre non abélien F tel que le centralisateur

I {f eF\gf fg} est abélien pour tout g eT avec g ^ 1.

Preuve. Supposons la condition (i) vérifiée et considérons la représentation

ß de T dans /2(r)0C5: elle ne contient pas fortement 8, car T est

CCI; elle ne contient donc pas non plus faiblement 8, car T a la

propriété T. On a donc la négation de la condition (jR) du théorème 1.

Pour (ii), montrons la contraposée, et supposons donc qu'il existe une

moyenne intérieurement invariante p sur T — {1}. Si le support de p

rencontre F — {1}, le groupe F est intérieurement moyennable. Sinon, on

définit une moyenne intérieurement invariante p" sur T" en posant p"(S)

p(7r-1(S')) pour tout S c F', où n désigne la surjection de T sur F.
Pour (iii), nous renvoyons à l'exemple 2 de la section 5 dans [HaS].
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La suffisance de (i) est due à Connes, Akemann et Walter [AW];

c'est aussi un cas particulier du théorème 2 de [LR]. La suffisance de (iii)

est due à Akemann; elle est utilisée pour l'exemple 5 de [Ak], qui est

un produit semi-direct de Z © Z et d'un groupe libre non abélien sur deux

générateurs. (C'est un exemple de groupe non intérieurement moyennable

dont la C*-algèbre réduite n'est pas simple et possède plusieurs traces;

pour d'autres exemples, voir le théorème 4 de [CC], et le produit semi-direct

de Z3 et SU},Z)considéré ci-dessous. Notons encore que tout groupe

moyennable non trivial est intérieurement moyennable avec C*-algèbre réduite

non simple ; enfin, les groupes du § 3 ci-dessous sont non intérieurement

moyennables et ont des C*-algèbres réduites simples à trace unique. La

réponse à la question (1) de la section 2 de [Ha] est donc aussi négative

que possible.)

Exemples avec produits semi-directs

On considère un produit semi-direct T donné sous la forme d'une

extension scindée

i -> r -> r - r" -* 1.

Lorsque le produit est direct, les corollaires 2 et 3 montrent que T est

intérieurement moyennable si et seulement si l'un au moins des groupes

F, T" l'est. La situation pour les produits semi-directs est différente.

Pour tout ne{2, 3,..., oo}, notons F„ le groupe non abélien libre à

n générateurs. Ce groupe n'est pas intérieurement moyennable. (C'est le

lemme 6.2.2 de [MvN] ; voir aussi la section 5 de [HaS] et le § 3 ci-dessous.)

Soit 7c:F2 - Z une surjection. Son noyau est isomorphe à Fœ, d'où un

produit semi-direct

1->F00->F2-»Z->1 (A)

avec F Fœ et T F2 non intérieurement moyennables, bien que F' Z
soit moyennable.

Nous avons déjà fait allusion à un produit semi-direct de Z © Z et

F2 pour lequel F est moyennable alors que T et F' ne sont pas
intérieurement moyennables. Avant de décrire un second exemple, montrons:

I Lemme 4. Les produits semi-directs

I G SL{3, R) X R3 et T SL(3, Z) x Z3

»possèdent la propriété T de Kazhdan.
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Preuve. Soit p : G - U(H) une représentation unitaire contenant
faiblement la représentation triviale s: G -> 17(C) S1. Alors la restriction n
de p à SL(3, R) contient faiblement la représentation triviale de SL(3, R).

Ce groupe possédant la propriété T [DK], il existe un vecteur unité
^ g H avec n(h)^ Ç pour tout h g SL(3, R). Notons / : G - C la fonction
définie par f(g) (p{g%| Ç), qui vaut 1 sur SL(3, R). On a /(hgh'1) /(g)
pour tout h g SL(3, R) et pour tout <7 g G. Comme l'action de <SL(3, R)

sur R3 possède un orbite dense (le complémentaire de l'origine), il en résulte

que / est constante sur G, donc que p contient fortement s. Ainsi G

possède la propriété T.

Comme F est de covolume fini dans G, il possède aussi la
propriété T.

Le lemme 4 fournit un nouvel exemple de produit semi-direct

1 -> Z3 SL(3, Z) X Z3 SL(3, Z) - 1 (B)

avec noyau moyennable et les deux autres groupes non intérieurement
moyennables.

En posant enfin

r^F.xz3,
r f2 x (sl(3, z) x z3),
F" Z x SL(3, Z),

on obtient par produit direct à partir de (A) et (B) une extension scindée

1 - r -> r -> r" - 1

où F et T" sont intérieurement moyennables et où T ne l'est pas. On trouve
d'autres résultats sur la moyennabilité intérieure des produits semi-directs

dans [Ch2].
Soit F un sous-groupe d'indice fini d'un groupe F. Quelles sont les

relations entre la moyennabilité intérieure de F' et celle de T? (Voir ajout.)

§ 3. Exemples de groupes non intérieurement moyennables

Le corollaire 3 (i) fournit à volonté des groupes non intérieurement

moyennables qui apparaissent naturellement en géométrie.
En effet, soit G un groupe de Lie réel connexe semi-simple à centre

trivial dont chaque composante simple est de rang réel au moins 2, et soit F
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