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L'Enseignement Mathématique, t. 32 (1986), p. 139-157

MOYENNABILITÉ INTÉRIEURE DES GROUPES:

DÉFINITIONS ET EXEMPLES

par Erik Bédos et Pierre de la Harpe

Dans leur étude des facteurs finis continus, Murray et von Neumann

ont introduit la propriété gamma [MvN]. Elle leur a permis en particulier
de montrer qu'il existe deux facteurs finis continus non isomorphes (agissant

dans des espaces de Hilbert séparables), respectivement associés à un groupe
localement fini et à un groupe libre. (Un troisième facteur ne sera mis en

évidence par J. Schwartz que vingt ans plus tard: 1943-1963

Etant donné un groupe dénombrable T avec classes de conjugaison

(autres que {1}) infinies, Effros a introduit une notion de moyennabilité

intérieure [E] et a considéré les implications
9

T intérieurement moyennable ^(T)" a la propriété gamma

T non intérieurement moyennable => ^(T)" n'a pas la propriété gamma,

où ^(T)" désigne le facteur associé à T. La seconde implication est facile
à vérifier ([E], et ci-dessous), mais la première n'est toujours pas démontrée.

(De fait nous avons autant envie d'en chercher un contre-exemple qu'une

preuve, mais ceci n'est pas notre objet ici.) Mentionnons encore qu'un facteur
fini continu n'a pas la propriété gamma si et seulement s'il est plein [C2],
et qu'on a donc

T non intérieurement moyennable => XÇT)" est plein

L'objet du présent travail est d'étudier pour elle-même la notion de

moyennabilité intérieure. Malgré des particularités essentielles, elle partage
avec la notion usuelle de moyennabilité la qualité d'avoir un grand nombre
de définitions équivalentes: existence d'une moyenne convenable, de suites
de divers types, inexistence de décomposition paradoxale, propriété de

contenance faible... Le théorème du § 1 expose en détail ces équivalences.



140 E. BÉDOS ET P. DE LA HARPE

Ensuite, au § 2, nous énumérons quelques conditions suffisantes pour qu'un
groupe soit intérieurement moyennable (r moyennable, T faiblement com-
mutatif, ou ne le soit pas (conséquence de la propriété T, existence de

sous-groupes libres convenables,...). Nous étudions aussi le comportement de

la moyennabilité intérieure par extensions et produits semi-directs.

Enfin, le troisième paragraphe est de nature plus géométrique, et nous y
indiquons de multiples exemples de groupes non intérieurement moyennables :

sous-groupes non presque résolubles de PSL(2, C), produits libres, et variantes.

Beaucoup des résultats qui suivent sont déjà connus. Nous les avons
répétés en espérant que notre texte puisse être pris comme une introduction
au sujet. Dans le même but, nous avons systématiquement omis de considérer
des groupes munis de topologies non triviales; pour ceci, voir [Pi] et [LR].

Nous remercions chaleureusement G. Skandalis pour l'intérêt qu'il a

manifesté à ce travail et pour les nombreuses améliorations qu'il nous a

suggérées.

§ 1. Définitions équivalentes de la moyennabilité intérieure

On se donne un groupe (discret) T, non réduit à un élément. Pour
simplifier la suite, nous supposons T dénombrable; mais l'usage de suites

généralisées nous permettrait de généraliser sans peine à des groupes plus
grands.

Une moyenne intérieurement invariante sur T est une mesure positive
Animent additive de masse totale 1 sur F — {1} qui est invariante par
automorphismes intérieurs. On peut envisager une telle moyenne comme une

application définie sur les sous-ensembles de F — {1} à valeurs dans [0, 1],

ou comme une forme linéaire positive normalisée sur l'espace de Banach

/°°(r-{l}). (Pour l'équivalence, voir [HeS], théorème 20.30.) Nous voulons
montrer dans ce paragraphe que T possède une moyenne intérieurement
invariante si et seulement s'il possède certaines autres propriétés, avant l'énoncé

desquelles nous rappelons quelques faits et fixons nos notations.
Le groupe T opère dans l'espace de Hilbert /2(r) par les représentations

régulières gauche X et droite p, ainsi que par la représentation adjointe a:

{Mgfc)(h) Ug-'h),
(pm)(h) m),
(a(^)(/r) ïig-'hg),geT, Ç e /2(F),
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On a afo) Mg)p(g) P (dMd)pourtout Nous notons S la fonction

caractéristique de {1} dans T,etß la restriction de a à l'orthogonal

/2(D©Cô de 5 dans Z2(r). On a donc a ß © s, où s désigné la

représentation triviale de T dans C.

L'espace de Banach ll{T)desfonctions sommables sur s'identifie

naturellement à un sous-espace (non fermé si F est infini) de Z2(r) invariant

par a. Nous notons ZJ(r)+ le cône des fonctions q e IHF) avec r\(g) S* 0

pour tout g e T.

Nous écrivons | S | le cardinal d'un ensemble fini S et SAT la différence

symétrique de deux sous-ensembles S, T de T.

i En vue de la condition (R) ci-dessous, notons que T est à classes de

i conjugaison infinies, ou en abrégé CCI, si et seulement si ß ne contient pas s

I (au sens fort). En effet, si T - {1} contient une classe de conjugaison

finie F, alors #ß contient un vecteur non nul fixé par ß(r), à savoir la

fonction caractéristique de F. Réciproquement, si le vecteur non nul ^ de

Hp est fixé par ß(r), alors l'ensemble fini {g e T | | <^(g) \ > —} est non vide

pour un entier n assez grand, et il est réunion de classes de conjugaison.

Nous écrivons P5 la projection orthogonale de l2(T) sur C5. Si M,..., N

sont des ensembles d'opérateurs sur /2(r), alors C*(M,..., N) désigne la

C*-algèbre engendrée par la réunion M u u N dans l'algèbre d opérateurs

limy
On dit qu'une bijection cp : S -> T entre sous-ensembles de F est intérieure

par morceaux s'il existe un sous-ensemble fini {/1,..., fk} F avec (p(g)

e {fi9fî\ •••> fkdfk1} Pour tout 9 e s> c'est-à-dire s'il existe une partition
S H sj avec <P(0) fj9fj1 Pour g g Sj et j g {1,..., /c}.

1

Théorème 1. Si T est un groupe dénombrable, les conditions suivantes

sont équivalentes :

(M) Il existe une moyenne intérieurement invariante sur T.

(Dx) Il existe une suite (r|n)n^i dans Z1^)4" avec

1°) fin(l) 0 et II fin II
X - 1 Pour tout U

2°) lim II oi{g)r[n — fi„ Il i 0 pour tout g e G.
n-> oo

D2)Il existe une suite (£,„)„^ i dans avec

1°) yi) 0 et 11 Il 2 1 pour tout 1,

2°) lim II a(g)E,„ — £,„ || 2 0 pour tout g eG.
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(F) Il existe une suite (Fn)n>1 de sous-ensembles finis non vides de

r — {1} telle que lim | (gFng~1)AFn || Fn |
_1 0 pour tout g e T.

«-» 00

(R) La représentation ß de F contient faiblement e.

(P) On a Pô t C*(a(r)).

(Ta) Il n'existe pas de partition F — {1} ]J S2 qui soit paradoxale, I
c'est-à-dire telle que la partie Sj soit donnée avec une bijection |
(P,-: r — {1} -» Sj intérieure par morceaux (j—1, 2). [.

Preuve. Nous établissons les équivalences

(M) (D,)§(3) 0 (4)

i)
(5)

(Ta) (F) (R) (â (P).

D'autres cheminements sont possibles. Par exemple, l'implication (D2) => (Ta) [

se montre comme le «lemme des 14e»: voir le lemme 6.2.2 de [MvN] ï

ou le lemme 4.3.3 de [Sa]. Voir aussi [Pa] pour (P) => (M).

(1) Preuve de (M) o (DJ. L'équivalence est due à Effros [E], qui reprend
un argument maintenant bien connu de Day (théorème 1 du N° 5 dans

[Da] — voir aussi [Gr], § 2.4 et [Ey], § III). Le fait essentiel ici est que
l'ensemble des vecteurs de norme 1 dans P(F — {1})+ est dense dans l'ensemble
des moyennes formes linéaires positives normalisées) sur /°°(r—{1})
pour la topologie faible a(/°°(r —{1})*, /°°(r — {1})).

(2) Preuve de (DJo(D2). Si (r\n)n>1 est comme dans (DJ, on pose
^n(o) {nn(d))1/2 et on obtient (DJ. Réciproquement, si (^n)n>1 est comme
dans (D2), on pose r|n(g) \ t,n(g)\2 et on obtient (DJ. Les conditions (2°)

résultent de l'inégalité de Holder et des inégalités suivantes, valables pour
a, b, p e R avec a ^ 0, b ^ 0, p ^ 1 (ici p 2) :

| a — b \p < | ap — bp | ^ p | a — b | ap~Y + bp_1 |

On laisse au lecteur le plaisir de remplacer (D2) par (Dp) dans l'énoncé.

(3) Preuve de (M) o (Ta). Pour l'application (M) => (Ta), on montre
banalement la contraposée. Supposons en effet qu'il existe une partition F — {1}

Si LI iS2 et des bijections cpj.F — {1} -> Sj intérieures par morceaux
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(j=l,2). S'il existait une moyenne intérieurement invariante p sur F, on

aurait p(r-{l}) p^), et 1 p(r~{l}) p(Sx) + p(S2) 2 qui est

absurde. Donc la condition (M) n'est pas vérifiée.

L'implication (Ta) => (M) est un cas particulier d'un résultat de Tarski

(théorème 16.12 (ii) de [Ta]) pour lequel nous renvoyons à une rédaction

expositoire motivée par le présent travail [HaS].
La négation de la condition (Ta) admet plusieurs variantes. Nous

renvoyons à [HaS] pour certaines d'entre elles, mais en citons néanmoins une

qu'on peut dégager de [MvN].
(Ta') Il existe S a F — {1}, un entier*n ^ 2 et al9..., an_l5 an,b1,..., bn-1

eF avec les afiaj1 disjoints deux à deux (l^j^ri) et avec F — {1}
— u bkSbk 1

•

(4) Preuve de (D1)<^>(F). Il est évident que (F) implique (D^. En effet,
si (Fn)n>l est comme dans (F), on pose q„ | Fn | ~1%n où %n est la fonction
caractéristique de Fn, de sorte que || a(g)r[n — H« Il i I gFng~1AFn || Fn | _1

pour tout g eF.

L'implication (D1)=^>(F) suit sa «variante moyennable » due à F01ner
[Fo], simplifiée par Namioka [Na], et reformulée par Connes (N° 2.1 de

[Cl]). Répétons ceci :

Lemme. Pour tout nombre réel a > 0, notons Ea : R - R la fonction
caractéristique de ]a, oo[. Soit S un ensemble et soit l\S)+ le cône
des fonctions sommables de S dans R+

On se donne r|0, qx,..., qk g T(S)+ avec q0 ^ 0 et s > 0. Si
Il Hj — Ho II î < 8 II 'Ho II î Pour j 1> -, K alors il existe a > 0 avec
Eatno) # 0 et

TE II £«0lj) - £„(110) Il 1 «S 8 II £„(r|0) Il

Kj=i

Preuve du lemme. On a pour t,t' e R+

*00

I Ea(t) - Ea(t') I da I t - t' I

J 0

donc pour q, q' e l\S) +

00

Il Ea{r\) - Ea(r|')Il || rj — ri' ||
x

0
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par Fubini. Par suite

I
0

" E"^ Ea(r\o)Il1 da- Il ff./ - r|0 II î < e II rio II i

8 ^a(Tlo) Il
1 da

et il existe a>0avec les propriétés voulues. q
Preuve de (DJ => (F).Onse donne g,,..., gkeT et s > 0, et on choisit

g
6 avec 0 < S < -, Si T vérifie (DJ, il existe un vecteur unité p e /X(F — {1})+

avec II a(éjr| — r| || x < 5 pour j 1,..., k. Vu le lemme (appliqué à r|0 p
et rp ajjr|), il existe a>0avec £a(r|) ^ 0 et

Il EMgM) - Ur\) Il < *8 II EM II < 8 II £a(r|) ||1

pour j 1,k.Soit£ p 1Qn, <x>D c r — {1} le support de £a(p),
qui est non vide car £a(p) ri 0. Le support de £a(aJJp) est gjFgJ1
et l'inégalité précédente implique

| gjFgJ-'AF|H £a(<x(0jTi) - £a(p) || x < s | £ |

Pour j 1, -, k. On obtient une suite de Feiner en variant le sous-ensemble
fini {ôh, -, Qk de T et le nombre s.

Pour un résultat plus général, voir [Ro].

(5) Preuve de (DJ <s> (R). Cette équivalence n'est qu'une reformulation.
En effet, (R)signifiequ'il existe une suite de vecteurs de norme 1

dans /2(r)©CÔ telle que lim {ß(g)L\L) 1 pour tout g e T. Et ceci s'écrit
»-»• 00

aussi lim || ß{g)E„ — En|| 2 0, vu l'identité II £' — £ || 1 2 — 2Re(t' \ E)
n~* oo

pour deux vecteurs E' et E de norme unité.

(6) Preuve de (R) o (P). D'abord une observation générale : soit cr : A
-* L{Ha) une représentation d'une C*-algèbre A contenant faiblement une
représentation k: A-*L(Hn),et soit P la projection orthogonale de H„ © H.
sur Hn; alors P (ct®ti) (A).

En effet, s il existait a e A avec P (a©Jt) (a), on aurait a(a) 0 et
n(a) 1, en contradiction avec l'hypothèse de contenance faible Ker(cj)
<= Ker(it). Pour l'équivalence entre cette définition de la contenance faible
et celle utilisée ci-dessus en (5), voir si nécessaire les Nos 3.4.4-5 et 18 1 3-4
de [Dil],
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L'implication (R) => (P) résulte de cette observation (pour a=ß et 7u e).

Avant de montrer la réciproque, introduisons la condition

(0 II existe une famille finie {gx,gk} c r et un entier n ^ 1 tels que,

pour tout vecteur unité £, e Hß /2(r)0C5, on ait

t Re(ß(g^H^--.
j= i n

Preuve de (g) => non(P). Supposons que F satisfait (g) et posons

xX <%,) + (%,)* e C*(a(r)) c L(/2(r)).
]= i

Cet opérateur autoadjoint laisse invariants les sous-espaces et He Cô

de /2(r). La condition (g) exprime que sa compression à ifß vérifie

Xß ^ 2 ^/c — et sa compression à He est évidemment 2/c. La fonction /
définie par /(t) 1 pour t ^ 2 et /(2/c) 0 est donc continue sur

le spectre de X, et on peut identifier Xp et f(X). Par suite X$ e C*(a(r))

et P5 -y- (X — Xp) e C*(oc(r)), de sorte que la condition (P) n'est pas
z/c

satisfaite.

Preuve de (P) => (R). Si la condition (P) est satisfaite, la négation de (g)
l'est aussi: pour toute famille finie {gl9...,gk} de F, il existe une suite
fcn)n> i de vecteurs unité dans avec lim (ß(^-)^„| £n) 1 pour j 1,..., k.

n~* oo

Ceci implique bien que la condition (P) est vérifiée.

Cette preuve nous a été communiquée par G. Skandalis; elle s'inspire
de la preuve de (d) => (c), pour le théorème 2.1 de [C2].

La preuve du théorème 1 est ainsi achevée. On dit qu'un groupe
T té {1} est intérieurement moyennable s'il satisfait les conditions du théorème.
On convient que le groupe réduit à un élément est intérieurement moyennable.

Terminons ce paragraphe par quelques observations sur la propriété
gamma.

1) Si M est un ensemble d'opérateurs sur /2(L), nous notons M" l'algèbre
de von Neumann qu'il engendre. Considérons le cas particulier d'un groupe F
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qui est CCI, c'est-à-dire le cas où ^(r)" est un facteur, ou encore autrement
dit le cas où C*(À,(r), p(r)) agit irréductiblement sur /2(r). On sait que
l'intersection d'une C*-algèbre irréductible avec l'algèbre Jf des opérateurs

compacts est ou bien nulle, ou bien égale à Jf (corollaire 4.1.10 de [Dil]).
Par suite (P) est équivalent pour un groupe CCI à

(F) X n C*(oc(r)) {0}.

D'autre part, un résultat de Connes (théorème 2.1 de [C2]) exprime que |

X(r)" possède la propriété gamma si et seulement si

(C) x n c*(Mry, P(rr) {0}.
Enfin, on a évidemment

c*(oc(n) c= c*(^(r), p(H) c: C*{x(ry, P(ry).

Par suite, si le facteur À,(r)" possède la propriété gamma, alors le groupe T |

est intérieurement moyennable. Cette implication est à l'origine du travail f

d'Effros, comme nous l'avons déjà signalé dans l'introduction.

2) Soit T un groupe CCI satisfaisant la condition (F) avec de plus \

sup | Fn | < oo, par exemple un groupe faiblement commutatif (voir § 2). \

Pour tout n ^ 1, notons %n la fonction caractéristique de Fn, qui est un j

élément de trace nulle dans le facteur À,(r)". Pour tout g e T, il existe un
entier ng avec gFng~y Fn, donc tel que g et %n commutent dans X(r)", î

pour ng. Par suite X(r)" possède la propriété gamma (proposition 1.10

de [Di2]). [
$

On peut sans doute encore montrer que À,(r)" possède la propriété

gamma lorsque T est un groupe CCI satisfaisant la « condition de Feiner
forte » suivante :

(Ff) Il existe une suite (FJ,,^ de sous-ensembles finis non vides de

T — {1} telle que, pour tout g e T, il existe un entier ng avec

gF„g'1 F„ pour n^ng.

3) Pour d'autres relations entre la moyennabilité intérieure de T et les

propriétés de ^(r)r/, voir [Chi].

§ 2. Conditions suffisantes

Rappelons qu'un groupe satisfait la propriété T de Kazhdan si la repré

sentation triviale s (de dimension 1) est isolée dans le dual unitaire du

groupe, ou encore si toute représentation unitaire du groupe contenant
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faiblement s contient nécessairement s au sens fort (lemme 1 de [DK]).

Rappelons aussi qu'un groupe T est dit faiblement commutatif si, pour toute

partie finie F de r, il existe g # 1 dans T commutant aux éléments de F

(c'est la condition (c) du lemme 6.1.1 de [MvN]). Un groupe T ^ {1}

de génération finie est faiblement commutatif si et seulement si son centre

n'est pas réduit à un élément. Mais il existe des groupes CCI faiblement

commutatifs ; citons :

— Le groupe des permutations de N à supports finis, de même que son

produit direct avec tout groupe CCI.

— La somme restreinte d'une famille infinie dénombrable de groupes CCI.

— Les groupes construits par McDufï [MD] pour exhiber une infinité

non dénombrable de facteurs finis continus non isomorphes deux à deux.

Corollaire 2. Pour qu'un groupe T soit intérieurement moyennable,

il suffit qu'il vérifie l'une des conditions suivantes:

(i) T est moyennable.

(ii) Il existe dans F — {1} une classe de conjugaison finie.

(iii) T est un produit direct F x T" avec T' intérieurement moyennable

et non réduit à {1}.

(iv) Il existe une suite exacte 1 - F -» T -> F' - 1 avec F intérieu¬

rement moyennable et F' moyennable.

(v) T possède une famille (rf)ieJ de sous-groupes intérieurement moyennables,

avec T u rf.

(vi) T est faiblement commutatif.

(vii) T est CCI et le facteur X(r)" possède la propriété gamma.

Preuve. La suffisance de (i) est standard (lemmes 1.1.1 et 1.1.3 de [Gr]),
celle de (ii) est banale, et celle de (v) se montre comme pour le cas

moyennable (théorème 1.2.7 de [Gr]).
Pour (iii), considérons une moyenne intérieurement invariante \i' sur F.

On définit une moyenne intérieurement invariante p sur T en posant
pour toute partie S de T — {1} :

S' Sn((T-{1})X{1})
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Supposons la condition (iv) vérifiée. Le groupe Aut(F) de tous les

automorphismes de F opère naturellement sur le convexe compact non vide C

des moyennes intérieurement invariantes sur F, et l'action de tout auto-

morphisme intérieur est banale par définition; par suite le quotient Out(F)
Aut(F)/Int(F) opère sur C. L'homomorphisme naturel F' -> Out(F) associé

à la suite exacte fournit donc une action affine de F' sur C. Comme F
est moyennable, l'action possède un point fixe p qui est une moyenne
intérieurement invariante sur T à support dans F — {1}.

Nous avons déjà discuté la suffisance de (vii) à la fin du § 1, et celle

de (vi) en résulte par le lemme 6.1.1 de [MvN]. On peut aussi observer

que tout groupe dénombrable faiblement commutatif possède une suite de

F01ner (Fn)n>1 comme à la condition (F) du théorème 1, avec de plus
| Fn | 1 pour tout n ^ 1.

La condition (vi) permet notamment de retrouver l'exemple du théorème 3

de [CC], qui est la somme restreinte d'une famille infinie dénombrable de

groupes libres non abéliens. (C'est un exemple de groupe intérieurement

moyennable dont la C*-algèbre réduite est simple à trace unique.)

Corollaire 3. Pour qu'un groupe T soit non intérieurement moyennable,

il suffit qu'il vérifie l'une des conditions suivantes :

(i) T est CCI et satisfait la propriété T.

(ii) Il existe une suite exacte 1 -> F - T F -» 1 avec T' et T"

non intérieurement moyennables.

(iii) T possède un sous-groupe libre non abélien F tel que le centralisateur

I {f eF\gf fg} est abélien pour tout g eT avec g ^ 1.

Preuve. Supposons la condition (i) vérifiée et considérons la représentation

ß de T dans /2(r)0C5: elle ne contient pas fortement 8, car T est

CCI; elle ne contient donc pas non plus faiblement 8, car T a la

propriété T. On a donc la négation de la condition (jR) du théorème 1.

Pour (ii), montrons la contraposée, et supposons donc qu'il existe une

moyenne intérieurement invariante p sur T — {1}. Si le support de p

rencontre F — {1}, le groupe F est intérieurement moyennable. Sinon, on

définit une moyenne intérieurement invariante p" sur T" en posant p"(S)

p(7r-1(S')) pour tout S c F', où n désigne la surjection de T sur F.
Pour (iii), nous renvoyons à l'exemple 2 de la section 5 dans [HaS].
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La suffisance de (i) est due à Connes, Akemann et Walter [AW];

c'est aussi un cas particulier du théorème 2 de [LR]. La suffisance de (iii)

est due à Akemann; elle est utilisée pour l'exemple 5 de [Ak], qui est

un produit semi-direct de Z © Z et d'un groupe libre non abélien sur deux

générateurs. (C'est un exemple de groupe non intérieurement moyennable

dont la C*-algèbre réduite n'est pas simple et possède plusieurs traces;

pour d'autres exemples, voir le théorème 4 de [CC], et le produit semi-direct

de Z3 et SU},Z)considéré ci-dessous. Notons encore que tout groupe

moyennable non trivial est intérieurement moyennable avec C*-algèbre réduite

non simple ; enfin, les groupes du § 3 ci-dessous sont non intérieurement

moyennables et ont des C*-algèbres réduites simples à trace unique. La

réponse à la question (1) de la section 2 de [Ha] est donc aussi négative

que possible.)

Exemples avec produits semi-directs

On considère un produit semi-direct T donné sous la forme d'une

extension scindée

i -> r -> r - r" -* 1.

Lorsque le produit est direct, les corollaires 2 et 3 montrent que T est

intérieurement moyennable si et seulement si l'un au moins des groupes

F, T" l'est. La situation pour les produits semi-directs est différente.

Pour tout ne{2, 3,..., oo}, notons F„ le groupe non abélien libre à

n générateurs. Ce groupe n'est pas intérieurement moyennable. (C'est le

lemme 6.2.2 de [MvN] ; voir aussi la section 5 de [HaS] et le § 3 ci-dessous.)

Soit 7c:F2 - Z une surjection. Son noyau est isomorphe à Fœ, d'où un

produit semi-direct

1->F00->F2-»Z->1 (A)

avec F Fœ et T F2 non intérieurement moyennables, bien que F' Z
soit moyennable.

Nous avons déjà fait allusion à un produit semi-direct de Z © Z et

F2 pour lequel F est moyennable alors que T et F' ne sont pas
intérieurement moyennables. Avant de décrire un second exemple, montrons:

I Lemme 4. Les produits semi-directs

I G SL{3, R) X R3 et T SL(3, Z) x Z3

»possèdent la propriété T de Kazhdan.
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Preuve. Soit p : G - U(H) une représentation unitaire contenant
faiblement la représentation triviale s: G -> 17(C) S1. Alors la restriction n
de p à SL(3, R) contient faiblement la représentation triviale de SL(3, R).

Ce groupe possédant la propriété T [DK], il existe un vecteur unité
^ g H avec n(h)^ Ç pour tout h g SL(3, R). Notons / : G - C la fonction
définie par f(g) (p{g%| Ç), qui vaut 1 sur SL(3, R). On a /(hgh'1) /(g)
pour tout h g SL(3, R) et pour tout <7 g G. Comme l'action de <SL(3, R)

sur R3 possède un orbite dense (le complémentaire de l'origine), il en résulte

que / est constante sur G, donc que p contient fortement s. Ainsi G

possède la propriété T.

Comme F est de covolume fini dans G, il possède aussi la
propriété T.

Le lemme 4 fournit un nouvel exemple de produit semi-direct

1 -> Z3 SL(3, Z) X Z3 SL(3, Z) - 1 (B)

avec noyau moyennable et les deux autres groupes non intérieurement
moyennables.

En posant enfin

r^F.xz3,
r f2 x (sl(3, z) x z3),
F" Z x SL(3, Z),

on obtient par produit direct à partir de (A) et (B) une extension scindée

1 - r -> r -> r" - 1

où F et T" sont intérieurement moyennables et où T ne l'est pas. On trouve
d'autres résultats sur la moyennabilité intérieure des produits semi-directs

dans [Ch2].
Soit F un sous-groupe d'indice fini d'un groupe F. Quelles sont les

relations entre la moyennabilité intérieure de F' et celle de T? (Voir ajout.)

§ 3. Exemples de groupes non intérieurement moyennables

Le corollaire 3 (i) fournit à volonté des groupes non intérieurement

moyennables qui apparaissent naturellement en géométrie.
En effet, soit G un groupe de Lie réel connexe semi-simple à centre

trivial dont chaque composante simple est de rang réel au moins 2, et soit F
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un réseau dans G; plus simplement, soit par exemple T PSUn, Z) avec

n ^ 3. On sait que F est un groupe à classes de conjugaison infinies

(chap. I de [Ra]), qu'il possède la propriété T [DK], et qu'il n'est donc pas

intérieurement moyennable. Pour le facteur associé, voir [C3].

Voici d'autres exemples.

Théorème 5. Si un groupe T admet Tune au moins des descriptions

suivantes, alors T n'est pas intérieurement moyennable et le facteur UT)"

est plein.

(a) T est un sous-groupe de PSIfl, R) qui n'est pas résoluble.

(b) F est un sous-groupe de PSLfl, Ç) gui ne contient pas de sous-groupe

résoluble d'indice fini.

(c) T est un produit libre H*K où H possède au moins 2 et K

au moins 3 éléments.

(d) T H%K est un produit libre avec amalgamation sur un sous-groupe

A / {1} de H et K tel que, pour tout sous-ensemble fini F

de T — {1}, il existe geT avec g~xFg n A 0.
(e) T HNN{H, A, 0) est une extension à la G. Higman, B.H. Neumann

et H. Neumann avec \ H/A | ^ 3 telle que, pour tout sous-ensemble fini
F de T — {1}, il existe geT avec g~1Fg n A 0.

(f) T est un produit direct d'un nombre fini de groupes apparaissant dans

les classes (a) à (e).

La liste de ce théorème est en substance bien connue. Pour les groupes

4 de (a) et (b) qui sont discrets, voir [HJ]. Pour ceux de (c) et de nombreux

J groupes de (a), voir [Ak]. Pour la plupart des groupes de (d) et (e), voir

[Bl] et [B2]. Pour (f), voir le corollaire 3 (ii). Ce que nous croyons être

nouveau ci-dessous est l'usage d'un argument simple commun à presque tous
les cas du théorème (seul cas plus compliqué: classe (b) lorsqu'il y a de la

2-torsion).

Un homéomorphisme cp d'un espace topologique séparé Q. est dit
hyperbolique s'il existe deux points fixes distincts de cp dans Q avec les

propriétés suivantes :
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pour tout voisinage S de et pour tout voisinage R de r9, il existe

un entier n0 > 0 tel que cpw(0 — S) c R pour tout n ^ n0.

Un tel homéomorphisme (p n'a pas d'autres points fixes que sa source s9

et son but rv; pour tout entier keZ — {0}, on vérifie que \|/ cpfc est aussi

hyperbolique avec

fs, si k>0 f rv si k > 0

^ { r9 si k < 0
Ct r* { si k < 0.

Nous excluons désormais le cas où Q, ne contient pas au moins 3 points
distincts; s'il existe un homéomorphisme hyperbolique de D, cet espace est

donc toujours infini.

Lemme 6. Soit (p un homéomorphisme hyperbolique d'un espace
topologique séparé infini Q ; soient S' (respectivement R') un voisinage de s9

(respectivement rv), et F un sous-ensemble fini de £l — {sv,rv}. Alors

il existe un voisinage S de s contenu dans S' et un entier k ^ 1

tels que rhoméomorphisme \|/ cpfc ait les propriétés

(i) S a S' et R Q - \|f{S) c R',
(ii) S cz \|/(S),

(iii) F est dans l'intérieur de D \|/(S) — S,

(iv) Q — } U \|fn(D) où U désigne une réunion disjointe.
neZ

Preuve. Comme £3 est séparé, il existe des voisinages disjoints deux à deux

S", V, R" de s9, F, r9 respectivement avec S" a S' et R" c= R'. Par hyper-
bolicité de cp vers la source, il existe un entier n0 > 0 tel que (p~"(S") c= S"

no~ 1

pour tout entier n ^ n0. On pose S n cp ~j(S") de sorte que S cz S" et
j= o

S cz cp(S). Par hyperbolicité de cp vers le but, il existe un entier k > 0 tel que
cp"(lQ — S) cz Rdonc en particulier tel que S u V cz cp"(5) pour tout n ^ k.

On pose v|/ cpfe et R Q — \|/(S) \|/(Q — 5"). Reste à vérifier (iv).

Soit D \)/(5) — S. Il est évident que les ensembles \|fn(D) sont disjoints
deux à deux (neZ). Soit oo gO- Vu que \|/"(co) tend vers

(respectivement r^) quand n tend vers — oo (respectivement oo), il existe

me Z avec \|/m~ x(co) e S et \|/m(œ) ^ S, donc avec \|/m(cö) e D.

L'espace Q étant comme plus haut, deux homéomorphismes hyperboliques
cp et y\f de Q, sont transverses s'ils n'ont pas de point fixe commun. Dans
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ce cas, il existe une suite infinie («,);= 1,2,... d'entiers telle que les homeo-

morphismes hyperboliques <p»hh> ""'(/= 1» 2,...) soient transverses deux à deux.

v Proposition 7. Soient £2 un espace topologique séparé infini et F un

groupe cThoméomorphismes de £1 contenant deux homéomorphismes

hyperboliques transverses. S'il existe une application F-équivariante SiT — {1}->Q
(pour l'action de F sur lui-même par automorphismes intérieurs), alors F

n'est pas intérieurement moyennable.

Preuve. Soient g,heF deux éléments hyperboliques transverses. Quitte à

remplacer g par une puissance convenable, on déduit du lemme quil existe

un voisinage Sg de sg tel que

(i) sh, rh sont dans l'intérieur de Dg g(Sg) - Sg

(ii) Cl - {sg,rg} Ud"(Dg)-
neZ

Quitte à remplacer ensuite h par une puissance convenable, on s'assure

de même qu'il existe un voisinage Sh de tel que

(iii) Sh et Rh Cl - h(Sh) sont dans Dg

(iv) fl - {sh, rh}Ii hn{Dh) avec Dh Cl - (ShvRh).
neZ

Posons enfin

T{leT - {1} | ô(/c) e Sfl u

On a Cl (SguRg)ug(SgvRg), donc - {1} u gTg'1. On a aussi

Sgu Rg c= Dh, donc les hn(SguRg) sont des parties de £1 disjointes deux à

deux, et par suite les hnTh~n sont disjoints deux à deux dans T(neZ).

i Par suite F ne satisfait pas la condition (Ta), donc F n'est pas inté-

rieurement moyennable. (Voir la preuve de (M) o (Ta) au § 1.)
%

Preuve du théorème.

Classe (a). On choisit pour Q le disque unité fermé du plan complexe

sur lequel PSL(2, R), déguisé en PSU(1, 1), agit par transformations linéaires

fractionnaires. On définit ô(/c) comme étant l'attracteur de k si k est

hyperbolique et le point fixe de k dans £1 sinon. L'hypothèse que T n'est pas
résoluble implique que F contient deux hyperboliques transverses (détails
dans [Ha]). Notons que le choix de 8 est limité; pour tout geF — {1},
on doit en effet avoir en vertu de l'équivariance gb(g) h(ggg_1) b(g).

Classe (b). On choisit pour £1 la réunion de l'espace hyperbolique de

dimension 3 (dont PSL(2, C) est le groupe des isométries préservant l'orien-
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tation) et de son bord (sur lequel l'action de PSL{2, C) s'étend naturellement) ;

Q est donc une boule fermée de dimension 3.

Supposons d'abord que Y ne contienne aucun élément g ^ 1 avec
g2 î. On définit 8(/c) comme pour la classe (a) si k est hyperbolique ou
parabolique. Sinon, k est elliptique : c'est une rotation d'angle 0fe g ]0, 7u[

autour d'une droite hyperbolique dk ; on choisit pour 8(/c) le point à l'infini
de dk donné par la règle du tire-bouchon.

Pour le cas général, reprenons la preuve légèrement plus compliquée de

[HJ]. On choisit deux hyperboliques g,heY avec les propriétés suivantes:

(1) Il existe un domaine Dg limité par deux hyperplans de Q tel que

- K' rg}II g\Dgy,onpose {s3, u II
neZ n pair

(2) Il existe un domaine Dh limité par deux hyperplans de Q tel que
Q. — Dh c= Dg. On note Sh la composante connexe de £2 — Dh contenant
sh-

(3) Toute droite hyperbolique de £2 dont les deux points à l'infini sont
dans E ne rencontre pas Q, — Dh.

On définit alors T comme l'ensemble des keT ayant au moins un point fixe
dans E et n'ayant pas de point fixe dans Sh.

Classes (c), (d), (e). L'espace Q est la réunion du graphe X et de l'espace L
de ses bouts, comme définis dans [Ha]. On prend pour 8(fc) l'attracteur de k
dans L si k est hyperbolique et le point fixe de k dans X si k est

elliptique.

Corollaire 8. Si T est un groupe admettant une présentation avec

n ^ 3 générateurs et une seule relation, alors T n'est pas intérieurement

moyennable.

Preuve. Si la relation ne contient qu'un générateur, Y est décrit comme
dans la classe (c) du théorème 5. Si la relation contient au moins deux

générateurs, on peut la supposer cycliquement réduite, et il suffit de contempler
les lemme 11.8, théorème 5.1 (cas 1 de la preuve) et théorème 11.9

dans [Z].

Soit T le groupe des classes d'applications d'une surface close orientable
de genre g ^ 3. (On suppose g > 3 pour que Y soit à centre trivial [Ma].)
Le théorème 5 s'applique-t-il à Y, avec une preuve en termes de l'action
naturelle de Y sur la compactification de Thurston de l'espace de
Teichmüller de la surface
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AJOUT, DÉCEMBRE 1985

En complément au corollaire 2, notons qu'un groupe F est intérieurement
moyennable dès qu'il satisfait à l'une des conditions suivantes :

(viii) r agit sur un ensemble non vide X muni d'une moyenne F-invariante p
de telle sorte que l'isotropie I(x) soit intérieurement moyennable pour
tout x g X.

(ix) T possède un sous-groupe intérieurement moyennable T' d'indice fini.

(x) Il existe une suite exacte 1 -> F - T -> F" -> 1 avec T" intérieurement
moyennable, de même que { g e T | ghg~ 1/z~1 g F} pour tout
h g T - F.

L'assertion (ix) résulte de (viii), pour l'action de F sur X F/F' ; elle répond
partiellement à la dernière question du § 2. L'assertion (x) résulte aussi de (viii),
pour l'action de F sur F" - 1. L'assertion (viii) est « du type Fubini » et se

montre comme suit (voir aussi la proposition 3.5 de l'article de Rosenblatt cité
ci-dessous).

Soient Y {x e X \ I(x) 1} et Z X — Y; soit D un domaine
fondamental, c'est-à-dire un sous-ensemble de X rencontrant chaque T-orbite
en un unique point. Si p(7) ^ 0 alors F est moyennable car, après
normalisation, S i-> p(SD) est une moyenne invariante sur F. Si p(Y) 0 on choisit

pour tout xe Z n D une moyenne intérieurement invariante [ix sur /°°(/(x) -1) ;



MOYENNABILITÉ INTÉRIEURE 157

pour /eP(r-l) on définit /e/°°(Z) par f(ghg Vp#)
I(X)

pour g eF et xeD nZ; alors / f(z)d\i(z) est une moyenne

intérieurement invariante sur lœ(F— 1).

L'assertion (viii) a une variante classique: si F agit sur un ensemble X

possédant une moyenne F-invariante ji de telle sorte que I(x) est moyennable

pour tout xeX, alors F est moyennable (même preuve, avec f(gx)

f{gh)d\ix(h)). On peut donc généraliser la troisième condition du corol-
I(x)

laire 3 en

(iii') Si T possède un sous-groupe non moyennable F tel que le centrali¬

sateur Ig {h e F | gh hg} est moyennable pour tout g eT — 1,

alors F n'est pas intérieurement moyennable

(considérer l'action de F sur X F - 1). Il en résulte par exemple que

50(3) n'est pas intérieurement moyennable (considérer F' F). Il en résulte

aussi qu'il existe un groupe (construit par Ol'shanskii) dont tous les sous-

groupes propres sont cycliques et qui n'est pas intérieurement moyennable.

Enfin, il nous paraît utile de compléter comme suit les références.

Ol'shanskii, A. Yu. On the problem of the existence of an invariant mean on a

group. Russian Math. Surveys 35 (4) (1980), 180-181.

Paterson, A. L. T. Non amenability and Borel paradoxical decompositions for locally
compact groups. Proc. Amer. Math. Soc. 96 (1986), 89-90.

Pier, J. P. Amenable locally compact groups. Wiley 1984.

Rosenblatt, J. M. Uniqueness of invariant means for measure-preserving transforma¬
tions. Trans. Amer. Math. Soc. 265 (1981), 623-636.

Wagon, S. The Banach-Tarski paradox. Cambridge Univ. Press 1985.
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