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MOYENNABILITE INTERIEURE DES GROUPES:
DEFINITIONS ET EXEMPLES

par Erik BEpos et Pierre DE LA HARPE

Dans leur étude des facteurs finis continus, Murray et von Neumann
ont introduit la propriété gamma [MvN]. Elle leur a permis en particulier
de montrer qu’il existe deux facteurs finis continus non isomorphes (agissant
dans des espaces de Hilbert séparables), respectivement associés a un groupe
localement fini et a un groupe libre. (Un troisiéme facteur ne sera mis en
évidence par J. Schwartz que vingt ans plus tard: 1943-1963!)

Etant donné un groupe dénombrable I' avec classes de conjugaison
(autres que {1}) infinies, Effros a introduit une notion de moyennabilité
intérieure [E] et a considéré les implications

I' intérieurement moyennable L MI')” a la propriété gamma,

I non intérieurement moyennable = A(I')” n’a pas la propriété gamma ,

ou MT)” désigne le facteur associé a I'. La seconde implication est facile
a vérifier ([E], et ci-dessous), mais la premiére n’est toujours pas démontrée.
(De fait nous avons autant envie d’en chercher un contre-exemple qu’'une
preuve, mais ceci n’est pas notre objet ici.) Mentionnons encore qu’un facteur
fini continu n’a pas la propriété gamma si et seulement s’il est plein [C2],
et quon a donc

I' non intérieurement moyennable = A(I')" est plein .

L’objet du présent travail est d’étudier pour elle-méme la notion de
# moyennabilite inteérieure. Malgré des particularités essentielles, elle partage
i avec la notion usuelle de moyennabilité la qualité d’avoir un grand nombre
de définitions équivalentes: existence d’une moyenne convenable, de suites
BB de divers types, inexistence de décomposition paradoxale, propriété de
contenance faible... Le théoreme du § 1 expose en détail ces équivalences.

8 RS SV O S L e = s eir
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Ensuite, au § 2, nous énumérons quelques conditions suffisantes pour quun
groupe soit intérieurement moyennable (I" moyennable, I faiblement com-
mutatif, ..) ou ne le soit pas (conséquence de la propriété T, existence de ||
sous-groupes libres convenables, ...). Nous étudions aussi le comportement de
la moyennabilité intérieure par extensions et produits semi-directs. i
Enfin, le troisiéme paragraphe est de nature plus géométrique, et nous y |
indiquons de multiples exemples de groupes non intérieurement moyennables:
sous-groupes non presque résolubles de PSL(2, C), produits libres, et variantes. |
Beaucoup des résultats qui suivent sont déja connus. Nous les avons
répétés en espérant que notre texte puisse étre pris comme une introduction
au sujet. Dans le méme but, nous avons systématiquement omis de considérer
des groupes munis de topologies non triviales; pour ceci, voir [Pi] et [LR]. .
Nous remercions chaleureusement G. Skandalis pour l'intérét qu’il a
manifesté 4 ce travail et pour les nombreuses améliorations qu’il nous a
suggérées.

§ 1. DEFINITIONS EQUIVALENTES DE LA MOYENNABILITE INTERIEURE

On se donne un groupe (discret) I', non réduit & un élément. Pour |
simplifier la suite, nous supposons I' dénombrable; mais I'usage de suites
generalisees nous permettrait de généraliser sans peine a des groupes plus |
grands.

Une moyenne intérieurement invariante sur I' est une mesure positive ]
finiment additive de masse totale 1 sur I'—{1} qui est invariante par |
automorphismes intérieurs. On peut envisager une telle moyenne comme une
application définie sur les sous-ensembles de I'—{1} a valeurs dans [0, 1],
ou comme une forme linéaire positive normalisée sur 'espace de Banach |
[°(I'—{1}). (Pour I’équivalence, voir [HeS], théoréme 20.30.) Nous voulons |
montrer dans ce paragraphe que I' possede une moyenne intérieurement |
invariante si et seulement s’il posséde certaines autres propriétés, avant I'énoncé |
desquelles nous rappelons quelques faits et fixons nos notations. ¢

Le groupe I' opére dans I'espace de Hilbert I*T) par les représentations
réguliéres gauche A et droite p, ainsi que par la représentation adjointe o: ’*

(Mg)) () = &g 'h),

(p(g)E) (h) = E(hg),
(Ug)E) (h) = E(g~*hg), geT, Eel¥I), heTl.
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On a a(g) = Mg)p(g) = p(g)Mg) pour tout g € I'. Nous notons 9 la fonction
caractéristique de {1} dans T, et B la restriction de o a lorthogonal
§. H, = P(INOCS de b dans (). On a donc oo = B @ ¢ ou & désigne la
§  représentation triviale de I' dans C.
§ L’espace de Banach I'(I') des fonctions sommables sur I' s’identifie
. naturellement & un sous-espace (non fermé si I" est infini) de (') invariant
par o. Nous notons ()" le cone des fonctions M € 1Y) avec n(g) = 0
“ pour tout g e T.
| Nous écrivons | S| le cardinal d’'un ensemble fini S et SAT la différence
| symétrique de deux sous-ensembles S, T de I
En vue de la condition (R) ci-dessous, notons que I' est & classes de
; conjugaison infinies, ou en abrégé CCI, si et seulement si B ne contient pas €
l  (2u sens fort). En effet, si I' — {1} contient une classe de conjugaison
finie F, alors Hy contient un vecteur non nul fixé par B(I), a savoir la
fonction caractéristique de F. Réciproquement, si le vecteur non nul § de

1
H, est fixé par B(I'), alors I'ensemble fini {geT || &4g)| > =} est non vide
n

pour un entier n assez grand, et il est réunion de classes de conjugaison.

Nous écrivons P; la projection orthogonale de () sur Cé. Si M, .., N
sont des ensembles d’opérateurs sur [*(), alors C*(M, .., N) designe la
C*-algébre engendrée par la réunion M U ... U N dans I’algébre d’opérateurs
LE(T)

On dit qu'une bijection @: S — T entre sous-ensembles de I" est intérieure
par morceaux sil existe un sous-ensemble fini {f;,.., fx} = I avec ¢(g)
e{f,9f 7% ... f19f '} pour tout g €S, Cest-d-dire il existe une partition

' ’:S = [I S;avecolg) = figf; ' pourgeS;etjell, ..k}

1<j<k

'k TatorREME 1. Si I' est un groupe dénombrable, les conditions suivantes
& sont équivalentes :

Il existe une moyenne intérieurement invariante sur I

I existe une suite (M,),»; dans 'T)" avec
1° n(l)=0 et M,y =1 pourtout n=1,
2°) lim | (g, — Nl 1 = O pour tout geG.

Il existe une suite (£,),>; dans [*(I') avec
19 E(1) =0 et |E, Il =1 pourtout n=1,
2°) lim || (@), — &E. Il 2 = O pour tout geG.

n— o
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(F) Il existe une suite (F,),», de sous-ensembles finis non vides de ;
I' — {1} telle que lim |(gF,g Y)AF, | F,| ™t = 0 pour tout gel.

(R)  Lareprésentation B de I contient faiblement e.
(P) Ona P;¢ CHo(I)) i
(Ta) Il wexiste pas de partition T — {1} = S, |[ S, qui soit paradoxale,

cest-a-dire telle que la partie S,
@;: ' — {1} > S; intérieure par morceaux (j=1,2).

soit donnée avec une bijection ]

Preuve. Nous établissons les équivalences

o € o) 2 oy

3) ¢ OF OF

Q@ p.

(Ta) (F) (R)
D’autres cheminements sont possibles. Par exemple, 'implication (D,) = (Ta)
se montre comme le «lemme des 14 € »: voir le lemme 6.2.2 de [MvN] il
ou le lemme 4.3.3 de [Sa]. Voir aussi [Pa] pour (P) = (M).

(1) Preuve de (M) <> (D;). L’équivalence est due a Effros [E], qui reprend
un argument maintenant bien connu de Day (théoréme 1 du N° 5 dans
[Da] — voir aussi [Gr], § 2.4 et [Ey], § III). Le fait essentiel ici est que E
'ensemble des vecteurs de norme 1 dans I'(I"—{1})" est dense dans I’ensemble
des moyennes (= formes linéaires positives normalisées) sur [°(I'—{1})
pour la topologie faible o(I°(I'— {1})*, I°(I'—{1})).

(2) Prewve de (D;)<(D,). Si (n,),»; est comme dans (D,), on pose
E.(9) = (Ma(9))/ et on obtient (D,). Réciproquement, si (§,),», est comme
dans (D,), on pose n,(g9) = | &,(9)|* et on obtient (D;). Les conditions (2°)
résultent de l'inégalité de Holder et des inégalités suivantes, valables pour

a,bpeRaveca>0,b>0,p > 1 (ici p=2):
la—b|? < |a?—bP| < pla—b|a™t + b7,

| On laisse au lecteur le plaisir de remplacer (D,) par (D,) dans I’énoncé.

(3) Preuve de (M) < (Ta). Pour 'application (M) => (Ta), on montre bana-
lement la contraposée. Supposons en effet qu’il existe une partition I' — {1}
= S, 115, et des bijections ¢;: I — {1} — S, intérieures par morceaux
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(j=1,2). Sil existait une moyenne intérieurement invariante p sur I', on
B curait p(l—{1}) = p(S;), et 1 = pC—{1}) = p(Sy) + WS;) = 2 qui est
| @ absurde. Donc la condition (M) n’est pas vérifiée.

| 81 L’implication (Ta) = (M) est un cas particulier d’un résultat de Tarski
(théoréme 16.12 (ii) de [Ta]) pour lequel nous renvoyons a une rédaction
| expositoire motivée par le présent travail [HaS].

La négation de la condition (Ta) admet plusieurs variantes. Nous ren-
',., voyons a [HaS] pour certaines d’entre elles, mais en citons néanmoins une
E qu'on peut dégager de [MVN].

§i (Ta) Tlexiste S =T — {1}, un entier' n > 2 €t @y, ., @y_1, Ay, by vy Dy
» eI avec les a;Sa; ! disjoints deux 4 deux (1<j<n) et avec I' — {1}

— U kabk_l .
: 1<k<sn-—-1
(4) Preuve de (D{)< (F). 1l est évident que (F) implique (D,). En effet,
. si (F,),> est comme dans (F), on pose 1, = | F,| ~ %, ou x, est la fonction

[ caractéristique de F,, de sorte que || o(g)n, — M, |1 = | gF.9 'AF, | F,| 1
~pour toutgel.

) L’implication (D) = (F) suit sa « variante moyennable » due a Fglner
. [Fo], simplifiée par Namioka [Na], et reformulée par Connes (N° 2.1 de
- [C1]). Répeétons ceci:

4 LEMME. Pour tout nombre réel a > 0, notons E,:R — R la fonction
| icaracterzstzque de Ja, o[. Soit S wun ensemble et soit 1'(S)* le cone

des fonctions sommables de S dans R,

l: On se donne Mg, My, - ,nkell(S)+ avec Mo #0 e €£>0. Si

II Ni—MNolli <elmollys pour j=1,.,k alors il existe a> 0 avec

1% E d{No) #0 et

; EM;) — EMo) Il 1 <&l EMo) ||+ -

?v'lb—-

Preuve du lemme. On a pourt,t' eR.

F|Ea(t)—Ea(t')|da= 6=t

0

jdonc pour m, 0’ e I}(S) "

JO | Em) — En) |1da = |n—7n'],
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par Fubini. Par suite

© 1 k 1 k |
fo Ejzl I Es;) — Euo) || 1 da = z;l Iy —=molls <ellnoll,

= SJ I EdMo) [l 1 da

0

et il existe a > 0 avec les propriétés voulues. ]
Preuve de (D,) = (F). On se donne gdi,--9r€l et e > 0, et on choisit

€ , ‘ |

davec0 < § < o SiI" vérifie (D, ), il existe un vecteur unité n e MC—{1hH* |

avec | ag;)n — ||, < 8 pourj = 1,.., k. Vule lemme (appliqué d , = n |
et m; = ofg;)n), il existe a > 0 avec E (1) # 0 et

| Efolg;m) — Em) Iy < kS (| ESm) II; < & ESn) |,

pour j = 1,...k Soit F =mn"'(Ja,0)) =T — {1} le support de E,(n), -]
qui est non vide car E,(n) # 0. Le support de E(a(g;)n) est g;Fg;t |
et I'inégalité précédente implique N

|9;Fg9; "AF | = || E(o(g;n) — Em) Il ; < | F|

pourj = 1,.., k. On obtient une suite de Fdlner en variant le sous-ensemble
fini {g,, .., g, } de " et le nombre &. '
Pour un résultat plus général, voir [Ro].

(5) Preuve de (D,) < (R). Cette équivalence n’est qu'une reformulation.
En effet, (R) signifie qu’il existe une suite (€x)n>1 de vecteurs de norme 1 1
dans I*(I')@OCS telle que lim (B9)E.1E,) = 1 pour tout geT. Et ceci sécrit

avssi” lim | B@)g, — &, I = 0, vu Tidentité | & — &3 = 2 — 2R |9

pour deux vecteurs &' et & de norme unité.

(6) Preuve de (R)< (P). D’abord une observation générale: soit o: A
— L(H,) une représentation d’'une C*-algébre A contenant faiblement une
représentation w: A — L(H,), et soit P la projection orthogonale de H ) H,
sur H,; alors P ¢ (c@n) (A).

En effet, §'il existait ae A avec P = (c@®mn) (a), on aurait o(a) = 0 et
m(a) = 1, en contradiction avec I’hypothése de contenance faible Ker(o)
< Ker(r). Pour I'équivalence entre cette définition de la contenance faible
et celle utilisée ci-dessus en (5), voir si nécessaire les N° 3.4.4-5 et 18.1.3-4
de [Dil].
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Il L'implication (R) = (P) résulte de cette observation (pour oc=f et T=¢).
1§% Avant de montrer la réciproque, introduisons la condition

| ©) 1l existe une famille finie {g,, .., g,} = I et un entier n > 1 tels que,

pour tout vecteur unité { € Hy = = [A(NOCSH, on ait
1
2 RelpigElE) < k-

Preuve de (Q) = non(P). Supposons que I satisfait (Q) et posons

k

X = Y ag;) + alg;)* € C¥ou)) = L(IXI)).

j=1

. Cet opérateur autoadjoint laisse invariants les sous-espaces Hg et H, = Co
“de (). La condition (Q) exprime que sa compression X, a Hy vérifie

1 L L :
Xp<2 <k — —>, et sa compression a H, est évidemment 2k. La fonction f
n

définie par f(t) = 1 pour t < 2 (k — i—) et f(2k) = 0 est donc continue sur
le spectre de X, et on peut identifier X, et f(X). Par suite X;e C*(o(I)
et Py = —(X—X;)e CHo(I)), de sorte que la condition (P) n’est pas
satisfaite.

Preuve de (P) = (R). Si la condition (P) est satisfaite, la négation de (Q)
lest aussi: pour toute famille finie {g,,.., g,} de I, il existe une suite
(4)nz1 de vecteurs unité dans Hy avec lim (B(g;)&,1&,) = 1 pourj = 1, .., k.

- Ceci implique bien que la condition (R) est vérifiée.
Cette preuve nous a été communiquée par G. Skandalis; elle s’inspire
de la preuve de (d) = (c), pour le théoréme 2.1 de [C2].

La preuve du théoréme 1 est ainsi achevée. On dit quun groupe
I # {1} est intérieurement moyennable 'l satisfait les conditions du théoréme.
On convient que le groupe réduit & un élément est intérieurement moyennable.

x ¥ %

Terminons ce paragraphe par quelques observations sur la propriété
B2 gamma.

1) Si M est un ensemble d’ opérateurs sur /*(I'), nous notons M” I'algébre
de von Neumann qu’il engendre. Considérons le cas particulier d’un groupe I
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qui est CCI, c’est-a-dire le cas ou MI')” est un facteur, ou encore autrement
dit le cas ou C*MI), p(I') agit irréductiblement sur [*(I). On sait que
'intersection d’une C*-algébre irréductible avec l'algébre & des opérateurs
compacts est ou bien nulle, ou bien égale 4 % (corollaire 4.1.10 de [Dil]). §
Par suite (P) est équivalent pour un groupe CCI a
(P) A n CHI)) = {0} |

D’autre part, un résultat de Connes (théoréme 2.1 de [C2]) exprime que
MI')" posséde la propriété gamma si et seulement si
(C) A n CHMI), pT)") = {0} .

Enfin, on a évidemment
C¥ouI)) = C*(?»(I" ), p(F)) < CHMIY, p(F)").

Par suite, si le facteur MI')” posséde la propriété gamma, alors le groupe I |
est intérieurement moyennable. Cette implication est a l’origine du travail |
d’Effros, comme nous I'avons déja signalé dans I'introduction.

2) Soit I' un groupe CCI satisfaisant la condition (F) avec de plus |
sup| F,| < oo, par exemple un groupe faiblement commutatif (voir §2) i
Pour tout n > 1, notons ¥, la fonction caractéristique de F,, qui est un
¢lément de trace nulle dans le facteur MI')". Pour tout g eI, il existe un
entier n, avec gF,g”' = F,, donc tel que g et x, commutent dans AI)",! |
pour n > n,. Par suite MI')" posséde la propriété gamma (proposition 1.10: |
de [Di2]). |

On peut sans doute encore montrer que MI)” posséde la propriéte
gamma lorsque I" est un groupe CCI satisfaisant la « condition de Fglner {

forte » suivante:

(F;) 1l existe une suite (F,),»; de sous-ensembles finis non vides d
[ — {1} telle que, pour tout gelI, il existe un entier n, ave
gF,g~' = F,pour n > n,.

a o

3) Pour d’autres relations entre la moyennabilit¢ intérieure de I' et les
propriétés de MI')”, voir [Chl]. :

§ 2. CONDITIONS SUFFISANTES

Rappelons qu’un groupe satisfait la propriété T de Kazhdan si la repré-
sentation triviale € (de dimension 1) est isolée dans le dual unitaire du J§
groupe, ou encore si toute représentation unitaire du groupe contenant
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B faiblement € contient nécessairement € au sens fort (lemme 1 de [DK]).
P Rappelons aussi qu’un groupe I est dit faiblement commutatif si, pour toute
: partie finie F de T, il existe g # 1 dans I' commutant aux éléments de F
B (cest la condition (¢) du lemme 6.1.1 de [MvN]). Un groupe I' # {1}
| ; de génération finie est faiblement commutatif si et seulement si son centre
| nest pas réduit 2 un élément. Mais il existe des groupes CCI faiblement
& commutatifs ; citons:

— Le groupe des permutations de N a supports finis, de méme que son
produit direct avec tout groupe CCL

__ La somme restreinte d’une famille infinie dénombrable de groupes CCIL

— Les groupes construits par McDuff [MD] pour exhiber une infinité
non dénombrable de facteurs finis continus non isomorphes deux a deux.

COROLLAIRE 2. Pour quun groupe T soit intérieurement moyennable,
il suffit qu’il vérifie Pune des conditions suivantes:

(i) I' est moyennable.
(i) Il existe dans T — {1} une classe de conjugaison finie.

(i) T est un produit direct T' x I avec I intérieurement moyennable
et non réduit a {1}.
(iv) Il existe une suite exacte 1 —->1'"->T ->I" -1 avec I' intérieu-
rement moyennable et T moyennable.

(v) T posséde une famille (T';),.; de sous-groupes intérieurement moyennables,
avec I' = U I;.

iel

(vi) ' est faiblement commutatif.

5 (vii) I' est CCI et le facteur MI')" posséde la propriété gamma.

|7  Prewve. La suffisance de (i) est standard (lemmes 1.1.1 et 1.1.3 de [Gr]),
celle de (if) est banale, et celle de (v) se montre comme pour le cas
moyennable (théoréme 1.2.7 de [Gr]).

B Pour (iii), consideérons une moyenne intérieurement invariante ' sur I".

On définit une moyenne intérieurement invariante p sur I’ en posant
pour toute partie S de I' — {1}:

S = S (- {1hx{1)

4§10 si §'=0Q,
HS) = { W(S’) sinon.
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Supposons la condition (iv) vérifiee. Le groupe Aut(I”) de tous les
automorphismes de I"” opére naturellement sur le convexe compact non vide C
des moyennes intérieurement invariantes sur I, et 'action de tout auto-
morphisme intérieur est banale par définition; par suite le quotient Out(I"”)
= Aut(I")/Int(I"") opére sur C. L’homomorphisme naturel I'” — Out(I") associé
a la suite exacte fournit donc une action affine de I'” sur C. Comme I
est moyennable, I'action posséde un point fixe p qui est une moyenne
intérieurement invariante sur I' & support dans I — {1}.

Nous avons déja discuté la suffisance de (vii) a la fin du §1, et celle
de (vi) en résulte par le lemme 6.1.1 de [MVN]. On peut aussi observer
que tout groupe dénombrable faiblement commutatif possede une suite de
Fglner (F,),>; comme a la condition (F) du théoréme 1, avec de plus
| F,| = 1 pour toutn > 1. O

La condition (vi) permet notamment de retrouver 'exemple du théoréme 3
de [CC], qui est la somme restreinte d’une famille infinie dénombrable de
groupes libres non abéliens. (C’est un exemple de groupe intérieurement
moyennable dont la C*-algébre réduite est simple a trace unique.)

COROLLAIRE 3. Pour quun groupe T soit non intérieurement moyennable,
il suffit qu’il vérifie l'une des conditions suivantes :

(i) ' est CCI et satisfait la propriété T.

(i) Il existe une suite exacte 1 ->I"->T —>T"—->1 avec I' et I
non intérieurement moyennables.

(iii) T posséde un sous-groupe libre non abélien F tel que le centralisateur
I,={feF|gf = fg} est abélien pour tout gel' avec g # 1.

.

Preuve. Supposons la condition (i) vérifiée et considérons la représen-
tation P de I' dans [2(IN@C3: elle ne contient pas fortement ¢, car I' est
CCI; elle ne contient donc pas non plus faiblement ¢, car ' a la pro-
priété T. On a donc la négation de la condition (R) du théoréme 1.

Pour (ii), montrons la contraposée, et supposons donc quil existe une
moyenne intérieurement invariante p sur I' — {1}. Si le support de p
rencontre I" — {1}, le groupe I" est intérieurement moyennable. Sinon, on
définit une moyenne intérieurement invariante p” sur I'” en posant p“(S)
= p(n~%(S)) pour tout S = I, o m désigne la surjection de I' sur I". |

Pour (iii), nous renvoyons a I'exemple 2 de la section 5 dans [HaS]. [
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. La suffisance de (i) est due a Connes, Akemann et Walter [AW];
est aussi un cas particulier du théoréme 2 de [LR]. La suffisance de (ii1)
est due a Akemann; elle est utilisée pour l'exemple 5 de [Ak], qui est
un produit semi-direct de Z @ Z et d’'un groupe libre non abélien sur deux
générateurs. (Cest un exemple de groupe non intérieurement moyennable
dont la C*-algébre réduite n’est pas simple et posséde plusieurs traces;
pour d’autres exemples, voir le théoréme 4 de [CC], et le produit semi-direct
de Z3 et SL(3,Z) considéré ci-dessous. Notons encore que tout groupe
moyennable non trivial est intérieurement moyennable avec C*-algébre réduite
non simple; enfin, les groupes du §3 ci-dessous sont non intérieurement
moyennables et ont des C*-algébres reduites simples 4 trace unique. La
réponse a la question (1) de la section 2 de [Ha] est donc aussi négative

que possible.)

EXEMPLES AVEC PRODUITS SEMI-DIRECTS
On considére un produit semi-direct I' donné sous la forme d’une
extension scindée

1-TI"'>T->I"->1.
_J

Lorsque le produit est direct, les corollaires 2 et 3 montrent que I' est
intérieurement moyennable si et seulement si I'un au moins des groupes
", T” est. La situation pour les produits semi-directs est différente.

Pour tout ne{2,3,.., 0}, notons F, le groupe non abélien libre a
n générateurs. Ce groupe m'est pas intérieurement moyennable. (Cest le
lemme 6.2.2 de [MvN]; voir aussi la section 5 de [HaS] et le § 3 ci-dessous.)
Soit m: F, - Z une surjection. Son noyau est isomorphe a F,, d’ou un
produit semi-direct

1-F,-oF,»>Z->1 (A)
J
avec I = F_ et ' = F, non intérieurement moyennables, bien que I'" = Z

‘soit moyennable.

Nous avons déja fait allusion & un produit semi-direct de Z @ Z et
% F_;_ pour lequel I" est moyennable alors que I' et I ne sont pas inte-
§ . ricurement moyennables. Avant de décrire un second exemple, montrons:

LEMME 4. Les produits semi-directs

G=SLBRXR> et I'=S8SL3,2Z) x Z3
possédent la propriéeté T de Kazhdan.
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Preuve. Soit p: G — U(H) une représentation unitaire contenant fai-
blement la représentation triviale €: G — U(C) = S!. Alors la restriction n |
de p a SL(3,R) contient faiblement la représentation triviale de SL(3, R).
Ce groupe possédant la propriéte T [DK], il existe un vecteur unité 3;
& e H avec n(h)§ = & pour tout he SL(3, R). Notons f: G — C la fonction
définie par f(g) = (p(9)€|&), qui vaut 1 sur SL(3, R). On a f(hgh™!) = f(g) : |
pour tout he SL(3,R) et pour tout ge G. Comme l'action de SL(3,R) I
sur R® posséde un orbite dense (le complémentaire de I'origine), il en résulte | |
que f est constante sur G, donc que p contient fortement & Ainsi G ||
possede la propriété T. , (

Comme I' est de covolume fini dans G, il posséde aussi la pro- i |
priété T. 0|

Le lemme 4 fournit un nouvel exemple de produit semi-direct
1-272°>-SL3B,2) x Z° - SL(3,Z) - 1 (B)

avec noyau moyennable et les deux autres groupes non intérieurement ' |
moyennables. '
En posant enfin

I' =F, x Z3,
I =F, x (SL(3,Z) x Z?),
I"=Z x SL(3,Z),

on obtient par produit direct a partir de (A) et (B) une extension scindée |

1->TI">T'->1I"->1
J

ou I'” et I'” sont intérieurement moyennables et ou I' ne I'est pas. On trouve
d’autres résultats sur la moyennabilité intérieure des produits semi-directs
dans [Ch2]. )

Soit I'" un sous-groupe d’indice fini d’un groupe I'. Quelles sont les f
relations entre la moyennabilité intérieure de I et celle de I"? (Voir ajout.)

§ 3. EXEMPLES DE GROUPES NON INTERIEUREMENT MOYENNABLES

Le corollaire 3 (i) fournit a volonté des groupes non intérieurement
moyennables qui apparaissent naturellement en géométrie.

En effet, soit G un groupe de Lie réel connexe SCmi-simple a centre
trivial dont chaque composante simple est de rang réel au moins 2, et soit I
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un réseau dans G; plus simplement, soit par exemple ' = PSL(n, Z) avec
n>3. On sait que I' est un groupe a classes de conjugaison infinies
(chap. I de [Ra]), qu’il possede la propriété T [DK], et quil n’est donc pas
intérieurement moyennable. Pour le facteur associé, voir [C3].

Voici d’autres exemples.

THEOREME 5. Si un groupe I admet Tune au moins des descriptions
suivantes, alors T nest pas intérieurement moyennable et le facteur MI')"
_ est plein.

(@) T est un sous-groupe de PSL(2,R) qui nest pas résoluble.

, b) T est un sous-groupe de PSL(2, C) qui ne contient pas de sous-groupe
" résoluble d’indice fini.

' (0 T est un produit libre H*K ou H posséde au moins 2 et K
au moins 3 éléments.

d T = H%K est un produit libre avec amalgamation sur un sous-groupe
A#{1} de H et K tel que, pour tout sous-ensemble fini F
de T — {1}, ilexiste geT avec g 'Fgn A = Q.

) T = HNN(H, A, ®) est une extension d la G. Higman, B.H. Neumann
et H. Neumann avec | HJ/A| > 3 telle que, pour tout sous-ensemble fini
F de T — {1}, ilexiste gel avec g 'Fgn A = Q.

() T est un produit direct dun nombre fini de groupes apparaissant dans
les classes (a) a (e).

q, La liste de ce théoréme est en substance bien connue. Pour les groupes
de (a) et (b) qui sont discrets, voir [HJ]. Pour ceux de (c) et de nombreux
groupes de (a), voir [Ak]. Pour la plupart des groupes de (d) et (e), voir
[B1] et [B2]. Pour (f), voir le corollaire 3 (ii). Ce que nous croyons étre
§ nouveau ci-dessous est ’'usage d’un argument simple commun a presque tous
les cas du théoréme (seul cas plus compliqué: classe (b) lorsqu’il y a de la
& 2-torsion).

Un homéomorphisme ¢ d’un espace topologique séparé Q est dit hyper-
bolique s’il existe deux points fixes distincts s,,r, de ¢ dans Q avec les
propriétés suivantes:
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pour tout voisinage S de s, et pour tout voisinage R de r,, il existe
un entier n, > 0 tel que " (Q—S) = R pour tout n > n,.

Un tel homéomorphisme ¢ n’a pas d’autres points fixes que sa source s,
et son but r,; pour tout entier k € Z — {0}, on vérifie que = @* est aussi ,
hyperbolique avec

s So si k>0 ot To si k>0
= r =
v r. si k<0 ¥ si k<0,

Nous excluons désormais le cas ou Q ne contient pas au moins 3 points
distincts; il existe un homéomorphisme hyperbolique de 'Q, cet espace est | |
donc toujours infini. "

LEMME 6. Soit ¢ un homéomorphisme hyperbolique d’un espace topo-

- 7 r e . . . ! . / . . 3’
logique séparé infini Q; soient S' (respectivement R’) un voisinage de s, |

(respectivement 1,), et F un sous-ensemble fini de Q — {s,,7,}. Alors ||
il existe un voisinage S de s contenu dans S’ et un entier k >1 ;
tels que 'homéomorphisme = @ ait les propriétés "

i) S=8 e R=Q—Y(S) R,
() S = ¥(s),
(iii) F est dans lintérieur de D = (S) — S,
(iv) Q — {s,,7y} = [TV"D) ou [] désigne une réunion disjointe.

neZ

Preuve. Comme Q est séparé, il existe des voisinages disjoints deux a deux § |

S”, V, R" de s,, F, r, respectivement avec §” = §’ et R” = R'. Par hyper-

bolicité de ¢ vers la source, il existe un entier n, > 0 tel que ¢~ "(S") = §”
no—l . ::
pour tout entier n = ny. On pose S = N @ /(S") de sorte que S = §” et i
j=0

S <= o@(S). Par hyperbolicité¢ de ¢ vers le but, il existe un entier k > 0 tel que
0(Q—S) = R”, donc en particulier tel que S U V < @"(S) pour tout n > k. B
On pose y = @* et R = Q — Y(S) = Y(Q—S). Reste a vérifier (iv).

Soit D = (S) — S. Il est évident que les ensembles *(D) sont disjoints
deux a deux (neZ). Soit weQ — {s,,r,}. Vu que y"(0) tend vers s,
(respectivement r,) quand n tend vers —oo (respectivement co), il existe
me Z avec Y™ Yw) € S et Y"™(w) ¢ S, donc avec y™(w) € D. O

L’espace Q étant comme plus haut, deux homéomorphismes hyperboliques
¢ et ¥ de Q sont transverses §’ils n’ont pas de point fixe commun. Dans
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B cc cas, il existe une suite infinie (n;)j=1,2,.. dentiers telle que les homéo-
:- B morphismes hyperboliques "o " (j=1, 2, ..) soient transverses deux a deux.

PROPOSITION 7. Soient Q un espace topologique séparé infini et I' un

groupe d’homéomorphismes de € contenant deux homéomorphismes hyper-

. boliques transverses. S'il existe une application [-équivariante §:T — {1} — Q
* (pour laction de 1" sur lui-méme par automorphismes intérieurs ), alors T
\ nest pas intérieurement moyennable.

Preuve. Soient g, h e I deux éléments hyperboliques transverses. Quitte a
. remplacer g par une puissance convenable, on déduit du lemme qu’il existe
. un voisinage S, de s, tel que

(i) sy, r, sont dans lintérieur de D, = g(S,) — S,

i) @ — {s,,r,} = Ll g"D,)

neZ
Quitte a remplacer ensuite h par une puissance convenable, on s’assure
de méme qu’il existe un voisinage S, de s, tel que
(i) S, et R, = Q — A(S,) sont dans D,
(iv) Q — {s,, 7} = LI (D)) avec D, = Q — (S,UR,).

neZ

Posons enfin
T ={kel — {1} |8(k)eS, UR,}.

- OnaQ = (S,UR,) Ug(S,UR,), donc I' — {1} = Ty gTg~t. On a aussi
~$,UR, = D, donc les h*(S,UR,) sont des parties de Q disjointes deux a
_ deux, et par suite les h"Th™" sont disjoints deux a deux dans I'(neZ).
% Par suite I' ne satisfait pas la condition (Td'), donc I' n’est pas inté-
¢ rieurement moyennable. (Voir la preuve de (M) < (Ta) au § 1.) O

Preuve du théoréme.

' Classe (a). On choisit pour Q le disque unité ferme¢ du plan complexe
‘ sur lequel PSL(2, R), déguisé en PSU(1, 1), agit par transformations lin€aires
B2 fractionnaires. On définit 8(k) comme étant lattracteur de k si k est hyper-

E bolique et le point fixe de k dans Q sinon. L’hypotheése que I' n’est pas
résoluble implique que I' contient deux hyperboliques transverses (détails

| dans [Ha]). Notons que le choix de & est limité; pour tout ge I’ — {1},
| on doit en effet avoir en vertu de I'équivariance gd(g) = 8(ggg— 1) = (g).

‘ Classe (b). On choisit pour Q la réunion de l'espace hyperbolique de
dimension 3 (dont PSL(2, C) est le groupe des isométries préservant 1’orien-
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tation) et de son bord (sur lequel I’action de PSL(2, C) s’étend naturellement);
Q est donc une boule fermée de dimension 3.

Supposons d’abord que I' ne contienne aucun élément g # 1 avec
g*> = 1. On définit §(k) comme pour la classe (a) si k est hyperbolique ou
parabolique. Sinon, k est elliptique: c’est une rotation d’angle ®, € ]0, [
autour d’une droite hyperbolique d,; on choisit pour 8(k) le point a Iinfini
de d, donné par la régle du tire-bouchon.

Pour le cas général, reprenons la preuve légérement plus compliquée de
[HJ]. On choisit deux hyperboliques g, h € I' avec les propriétés suivantes:

(1) Il existe un domaine D, limit¢é par deux hyperplans. de Q tel que
Q— {s,,r,} =11 g"(D,); onpose E = {s,,r,} U 11 g"(D,).

neZ n pair
(2) Il existe un domaine D, limité par deux hyperplans de Q tel que
Q — D, = D,. On note S, la composante connexe de Q — D, contenant
S -
(3) Toute droite hyperbolique de Q dont les deux points a I'infini sont
dans E ne rencontre pas Q — D, .

On définit alors T comme I'ensemble des k € I' ayant au moins un point fixe
dans E et n’ayant pas de point fixe dans S,,.

Classes (c), (d), (e). L’espace Q est la réunion du graphe X et de I’espace L
de ses bouts, comme définis dans [Ha]. On prend pour 8(k) I'attracteur de k
dans L si k est hyperbolique et le point fixe de k dans X si k est
elliptique. O

CorOLLAIRE 8. Si I' est un groupe admettant une présentation avec
n > 3 générateurs et une seule relation, alors 1" west pas intérieurement
moyennable.

Preuve. Si la relation ne contient qu'un générateur, I" est décrit comme
dans la classe (¢) du théoréme 5. Si la relation contient au moins deux
générateurs, on peut la supposer cycliquement réduite, et il suffit de contempler
les lemme 11.8, théoréme 5.1 (cas 1 de la preuve) et théoréme 11.9
dans [Z]. O

Soit I" le groupe des classes d’applications d’une surface close orientable
de genre g > 3. (On suppose g = 3 pour que I' soit a centre trivial [Ma].)
Le théoréme 5 s’applique-t-il 2 I', avec une preuve en termes de l’action
naturelle de I" sur la compactification de Thurston de I’espace de Teich-
miiller de la surface?
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AJOUT, DECEMBRE 1985

En complément au corollaire 2, notons qu’un groupe I est intérieurement
moyennable dés qu’il satisfait 4 I'une des conditions suivantes:

(viii) I' agit sur un ensemble non vide X muni d’'une moyenne I-invariante 1]
de telle sorte que I'isotropie I(x) soit intérieurement moyennable pour
tout x € X.

(ix) T possede un sous-groupe intérieurement moyennable I d’indice fini.

(x) Il existe une suite exacte 1 - I" - I' - I'” — 1 avec I'” intérieurement
moyennable, de méme que {gel |[ghg'h~'el’} pour tout
hell —T". ¥

L’assertion (ix) résulte de (viii), pour l'action de I" sur X = I'/T"; elle répond
partiellement a la derniére question du § 2. L’assertion (x) résulte aussi de (viii),
pour laction de I'" sur I'” — 1. L’assertion (viii) est « du type Fubini » et se
montre comme suit (voir aussi la proposition 3.5 de I’article de Rosenblatt cité
ci-dessous). ‘

Soient ¥ = {xeX|I(x) =1} e¢ Z =X — Y; soit D un domaine
fondamental, c’est-a-dire un sous-ensemble de X rencontrant chaque I'-orbite
en un unique point. Si u(Y) # 0 alors I' est moyennable car, aprés norma-
lisation, § — p(SD) est une moyenne invariante sur I'. Si p(Y) = 0 on choisit
pour tout x € Z N D une moyenne intérieurement invariante p, sur I°(I(x)— 1);
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;\_ pour f . lw(r— 1) - déﬁmt f’ = loo(Z) par f(gx) = f(ghg—l)dux(h)

I(x)

pour geI et xeD n Z; alors f r—»J f(z)dp(z) est une moyenne inté-
Z

rieurement invariante sur [®(I'—1).

I’assertion (viii) a une variante classique: si I' agit sur un ensemble X
possédant une moyenne I'-invariante p de telle sorte que I(x) est moyennable
~pour tout xeX, alors I' est moyennable (méme preuve, avec f(gx)

= J f(gh)dp(h)). On peut donc généraliser la troisiéme condition du corol-
I(x)

laire 3 en

(iii") Si ' possede un sous-groupe non moyennable I" tel que le centrali-
sateur I, = {heI'|gh = hg} est moyennable pour tout g€ r -1,
alors I” n’est pas intérieurement moyennable

(considérer 'action de I sur X = I' — 1). Il en résulte par exemple que
SO(3) n’est pas intérieurement moyennable (considérer I'" = T). Il en résulte
aussi qu’il existe un groupe (construit par Ol'shanskii) dont tous les sous-
groupes propres sont cycliques et qui n’est pas intérieurement moyennable.

Enfin, il nous parait utile de compléter comme suit les références.
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