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i TuEOREME 11. Soit & un pseudogroupe de transformations d’'un ‘ensemble
“non vide X, relatif a lalgébre P(X) de toutes les parties de X. Les

‘conditions suivantes sont équivalentes:

3

f ) O nestpas moyennable.

i) Il existe un entier n = > 2 et des parties Sy, . Su—155n> Tiseo Tno1
de X avec

— les S; sont équivalents deux a deux,

— S, est grand,

— T, est équivalent d une partie de Syk=1,..,n—1),

—(H Sj>c< U Tk>.
1<j<n 1<k<n—1

i) ® est (fortement) paradoxal : il existe une partition X =X,[]X,
avec X; = X(mod ©).

De plus, si ces conditions sont satisfaites, alors deux grandes parties quelconques

de X sont équivalentes modulo ©®.

On connait d’autres conditions équivalentes: voir par exemple [R1]
pour des conditions a la Fglner. Voir aussi le corollaire 3.5 de [R2]:
toute action d’un groupe de génération finie et de croissance SOus-e€xpo-

nentielle est moyennable.

5. UN DEVELOPPEMENT ET QUELQUES EXEMPLES CLASSIQUES

: Soit ® un pseudogroupe de transformations d’un espace (X, B) donné
| : avec un sous- —ensemble non vide U € B. (Le cas étudié plus haut correspond
| a a U= X.) Rappelons que nous notons &y le pseudogroupe de transformations
: de (U, By) défini par ®. On appelle moyenne invariante pour le systéme
1 (X, U, B, 6) une fonction p: B — [0, 0] telle que

W(U) = 3
wSuT) = wlS) + (T) pour S, TeBavec SNT = Q, 1
wT) = w(S) silexiste v:S— T dans G©.

La notion est due 4 von Neumann [vN].
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PROPOSITION 12.  On reprend les notations ci-dessus. Pour qu’il existe une |
moyenne invariante pour (X, U,B, ®), il faut et il suffit que &, soit |
moyennable.

Preuve. Supposons qu’il existe une moyenne u: By — [0, 1] invariante
par ®y. Soit SeB; il existe une B-partition S = 11 Sj, des sous- |

1<j<n ¢
ensembles U, , .., U, de U et des éléments Y;:S; > U;dans ® pourj = 1,..,n, |

n

on pose uy(S) = Z WU;); dans le cas contraire, on pose px(S) = oo. On

ji=1 .
vérifie que py: B — [0, 0] est une moyenne invariante pour (X, U, B, ®).
L'implication réciproque est (encore plus) banale. ]

Avec les notations de la preuve, on peut remarquer que py(X) < oo
si et seulement si la partie U est grande dans X.

Terminons en décrivant quelques exemples bien connus d’espaces para-
doxaux.

Exemple 1: groupes libres agissant librement

On considére le groupe libre non abélien F, a deux générateurs a et b,
qui agit sur lui-méme par multiplication a gauche. Grace a la proposition 3,
on s’assure que I’espace obtenu est paradoxal (au sens faible) en considérant le
sous-ensemble S de F,, constitué par les mots réduits de la forme a'w
avecn € Z,n # 0, w quelconque: en effet S, bS, b2S sont disjoints deux a deux,
etSuvaS =F,.

On peut vérifier la paradoxalité forte sans l'aide de la proposition 4.
Notons X; le sous-ensemble de F, contenant les puissances 4" de a
(ou neZ) et les mots réduits de la forme a™w avec ne, n#0, w# Q.
Le complémentaire X, de X, consiste en les mots réduits de la forme b"w
avec n€ Z, n # 0, w quelconque. On peut définir (presque comme dans [C])
deux bijections ¢;: F, — X;(j=1,2)

g sig=a"avec neZ
P4(9) = oug = a"wavecn>0,

a g sinon,

g si g =>b"w avecn >0,
?y(9) =

b~'g sinon,

qui montrent que le F,-espace F, est fortement paradoxal.
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1l en résulte que le groupe F, n’est pas moyennable.
Plus généralement, tout ensemble X sur lequel F, agit librement est

| ? paradoxal (voir [VN], page 82). En effet, on peut choisit un domaine

» fondamental T < X pour laction, de sorte que X et F, x T sont isomorphes
1 en tant que F,-espaces (avec F, agissant par multiplications a gauche sur le pre-
£ mier facteur de F, x T, et trivialement sur le second). Par suite, a tout para-
% doxe dans F, constitué de bijections v;: F; = T ;(i=1,2), on peut associer un
¢ paradoxe dans F, x T constitué des bijections y; X idr(j=1,2).

Comme exemples d’actions libres de F,, citons:

, 1) La multiplication 4 gauche dans un sur-groupe de F,.

7) Les actions de F, sur les sphéres S*"**(n>1) construites par Deligne et
| Sullivan [DS].
B Exemple 2: groupes libres agissant avec isotropies abéliennes

Considérons d’abord Paction de F, sur F, — {1} par automorphismes
intérieurs. L’espace obtenu est paradoxal: en effet, si S est I’ensemble des mots
_ réduits non vides de 1a forme a*wa' avec k, le Z et k, [ # 0, alors

1) SuaSa—tuva'Sa=F, — {1},
) biSbI AbSh* = O, jkeZ, j#k.

Notons qu’on a de plus S™! = S. Vu 1) et 2), il n'existe pas de moyenne
invariante sur F, — {1}: on dit que F, n’est pas intérieurement moyennable.

Plus généralement, tout ensemble Z, sur lequel F, agit de telle sorte
que les groupes d’isotropie sont abéliens, est paradoxal. Notons I(z) le
4 groupe d’isotropie d’un point z € Z pour une telle action, et posons

X={zeZ|lz)={1}}, Y=Z-X.

Vu lexemple 1, il suffit de vérifier que le F,-espace Y est paradoxal
; Pour tout ye Y, le groupe I(y) est infini cyclique; on en choisit un géne-
4 * rateur c(y).
| g Notons que

%
4 o)

7l

c(gy) € {gcn)g™ ", gey) ‘g™ "}

§ pour tout g € F, et pour tout y € Y. Posons

U={yeY|cyeS}.

! Les parties aU, U, a~ U recouvrent Y par 1) et les parties U sont disjointes
fieux a deux (jeZ) par 2). Donc Y est paradoxal par une application
immeédiate de la proposition 3.
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Mentionnons avant I'exemple 3 deux autres exemples d’actions de F,
a isotropies abéliennes

12 10
1) Le sous-groupe de SI(2, Z) engendré par <0 1) et (2 1> est 1s0-

morphe a F, (exemple 1 de [He]), donc F, agit naturellement sur Z @ Z
moins l'origine. Cette action est paradoxale. '

2) Soient G un groupe et H un sous-groupe libre non abélien de G. |
On suppose que le centralisateur I, = {he H | gh = hg} est abélien pour tout ]
ge G avec g # 1. Alors lactlon de H sur G — {1} par automorphlsmes
intérieurs est paradoxale. ]

Nous avons retrouvé ainsi la proposition 4 et I'exemple 5 de [Ak]: |
le groupe G de 2) n’est pas intérieurement moyennable, et en particulier |
le produit semi-direct de F, par Z @ Z défini par I'action de 1) n’est pas |
intérieurement moyennable.

Exemple 3 : déplacements euclidiens d'un domaine du systéme solaire

On se donne un ouvert borné E de l'univers, contenant la lune et une
pomme. 1
Soit B une boule de E de centre b. Dans laction sur B — {b} du
groupe des rotations SO(3), tous les groupes d’isotropie sont abéliens. Or |
SO(3) contient un sous-groupe isomorphe a F, (voir [Hf], ou [He]). Donc |
B — {b} est paradoxal pour SO(3). |

Si ® désigne le pseudogroupe des déplacements euclidiens de E, toute |
partiec X = E d’intérieur non vide contient une grande partic B — {b}. !
Deux parties de E d’intérieurs non vides sont donc ®-équivalentes par le ]
corollaire 7: c’est le théoréme III de lintroduction. Observons que, des
sections précédentes, nous n’avons utilis€ que la proposition. 3, le lemme 5 H
et le corollaire 7, qui sont indépendants du reste. |

La méme situation prévaut sur une sphére: la surface de mon jardin
est équivalente a celle de Rome modulo le (pseudo)groupe des rotations,
contrairement a 'opinion qui apparait a la page 18 de [GU]. En revanche, §
le pseudogroupe des déplacements d’un ouvert borné du plan euclidien est §
moyennable. Nous ignorons §’il a jamais été fait usage d’'un argument basé
sur ces faits dans la controverse sur la rotondité de la terre.

Remarque. Dans les exemples qui précédent, I’existence de paradoxes est
liée 4 la présence de groupes libres non abéliens.
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Considérons plus particulierement un groupe G, agissant sur lui-méme
par multiplication & gauche. La question suivante apparait implicitement
dans [VN] et explicitement dans [K2]: Pexistence d’un sous-groupe de G
isomorphe a F, est-elle équivalente a Pexistence d’'une décomposition para-
B doxale du G-espace G (i.e. a la non moyennabilité de G)?
| La réponse semble étre non: il existe des groupes paradoxaux (i.e. non
moyennables) sans sous-groupe libre. C'est par exemple le cas des groupes
de Burnside B(2, p) pour p impair et p assez grand, ou B(2, p) est le quotient
du groupe libre F, par les relations (w”=1),cr, voir [O] et [Ad].
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