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130 P. DE LA HARPE ET G. SKANDALIS

Lorsque B est une oc-algébre, on peut donc dire sans ambiguité que
® est paradoxal s'il Test faiblement ou/et fortement. La condition i1) du
théoréme 1 peut s’écrire: ®, est paradoxal pour p assez grand.

REMARQUE 6. Le lemme 5 est équivalent a I'énoncé suivant, plus classique, v’
du type Cantor-Bernstein:
S’il existe 6:S > R et &:5S > R dans ® avec R S’ et R < S, |
alors §' = S (mod 6). ]
Preuve. Posons v =88:S—>T et T"=S—R;ona TcPR < S |

Par le lemme 5 (appliqué dans S), il existe dans & un élément Y":S > R. ¢
Par suite (§') " 'y": S — S’ est une équivalence dans ®. ] f

COROLLAIRE 7. On suppose que B est une c-algébre. Soient
U V,U, V' e€B des grandes parties avec U U et V < V. Si G, |
et ®, sont paradoxaux, alors U’ = V' (mod 6).

Preuve. 1l suffit de montrer que U’ = X (mod ®). Comme U est grand,
il existe un entier N et une bijection o:X x {1} - U, dans ®, avec ||

U, €U x Iy. Comme G est paradoxal, il existe B: U x Iy —» U x {1} ¢l

dans ®y. La composition de a et B fournit une bijection y: X - T de &
avec T = U = U". On conclut en utilisant le lemme 5 (avec T'=X—U").

[]

Notons que nous aurions pu formuler ce corollaire sans introduire U
et V, car U est grand dans U’, et par suite G, est paradoxal vu la der- ,:
niére remarque de la section 2. Mais I'énoncé choisi correspond mieux a |
I'utilisation en vue, pour I'exemple 3 de la section 5. 1

4. PARADOXES RELATIFS A L’ALGEBRE DE TOUTES LES PARTIES

On se donne un ensemble X et un pseudogroupe ® de transformations
de X, ou plus précisément de (X, P(X)). L’outil nouveau est un lemme de
Kuratowski [K].

LEMME 8. On se donne un ensemble X, deux partitions X = § [T

= Ull V, ainsi que} deux bijections @:S—>T et Y:U - V. Alors il
existe deux partitions
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s= s, v= U v,

5 1sjs4 1<j<4

5; avec

V=28, V.= o(S2), Vi = Y(Ss), V= Vo(S,) -

: Preuve. Considérons la bijection de X sur X qui coincide avec @
sur S et avec ¢ ! sur T; cest une transformation de X sans point fixe
et dordre 2, que nous notons encore . On étend de méme V. Si
G = (Z/2Z) * (Z/2Z) désigne le groupe diédral infini, ¢ et { définissent une
- action de G sur X. |

| Soit G, le sous-groupe de G engendré par Vo, qui est cyclique infini
" et normal dans G; soit Y = X/G, lespace des orbites. Alors ¢ et ]
induisent sur Y la méme transformation, que nous notons p et qui satisfait
p? = idy. Cette transformation est sans point fixe: sinon, il existerait
xeX et neZ avec ¢(x) = (Y@)*(x); or e(Pe)" est conjugué soit a ¢ (st n
est pair) soit & \s (si n est impair), donc n’a pas de point fixe par hypothese
sur @ et . Vu laxiome du choix, il existe une partition ¥ = Y’ 1y
telle que p échange Y’ et Y". Si X = X' [] X est la partition image inverse
par la projection canonique X — Y, alors X' et X" sont échangés par @
et par \.

La bijection a:S — X' définie par a(x) € {x, ¢(x)} montre que S et X
sont équivalents modulo le pseudogroupe engendré par ¢, ce que nous
écrivons S = X' (mod ¢). Deméme X’ = V (mod V). Par suite S = V (mod G).
Plus précisément, on pose |

S1=SﬂX'(\V=V1

S, =SnX"n o) V,=TnX'nV
S3=8SnX'nU Va=VYS) n X" nV
S, =SnX"n o) Vo=UWT)n X"V
et on obtient 'affirmation du lemme. =
Remarques.

1) Le nombre 4 apparaissant dans le lemme 8 est le minimum possible [U].

1§ 2) La preuve ci-dessus est une variante de celle de Kuratowski. Le lemme
résulte d’un travail de Konig datant de 1916; voir le § 5 de [K6].

_ 3) La preuve montre ceci: étant données deux actions sans point fixe
I du groupe a deux éléments sur X, il existe un domaine fondamental commun

X =8,00S)uS;ulSy) =V, uV,u \ll_l(Vs) U \lf_l(V4)




132 P. DE LA HARPE ET G. SKANDALIS

L’analogue mesurable de I’affirmation de la remarque 3 n’est pas correct,
comme le montre ’exemple suivant.

On considére le cercle unité S' du plan complexe et deux réflexions o,
V de S? relatives 4 deux diamétres dont I’angle est un multiple irrationnel
de m Soit X lespace S' privé de I'ensemble dénombrable constitué par
les points fixes des transformations ((@V)"¢),.z; on munit X de la c-algebre
des ensembles mesurables au sens de Lebesgue. Il n’existe pas de sous-
ensemble mesurable X’ < X qui soit un domaine fondamental pour {idy, ¢}
et {idy,V}: en effet, un tel X’ serait invariant par la transformation
ergodique Y, ce qui est absurde, car @ et \y préservent la mesure de
Lebesgue.

ProrosiTioN 9. Si & est un pseudogroupe de transformations de X
relatif a la oc-algébre de toutes les parties, alors ® est virtuellement
paradoxal si et seulement si & est paradoxal.

Preuve. On suppose ® virtuellement paradoxal, c’est-a-dire ®, paradoxal ' |
pour un entier convenable p. En remplagant au besoin p par un entier
plus grand, on se raméne au cas d’une puissance de 2. Modulo une induction = |
¢vidente, il suffit donc de considérer le cas p = 2.

L’hypothése que X, est paradoxal signifie quil existe une partition ; §
X,=U]l]V avec U= X, (mod ®,) et V = X, (mod &,). En posant 5;
S=Xx{l} et T =X x {2}, on obtient évidemment X, = S[[ T avec
S = T (mod ®,). Le lemme 8 montre que S = V (mod ®,), donc que iy
X, = X (mod ®,). Cette derniére équivalence signifie précisément que X est |
paradoxal. [

Notons que notre proposition 9 résulte immédiatement du théoréme 11
et du corollaire 12 de [BT].

COROLLAIRE 10. Soit & comme d la proposition 9. Si ® est paradoxal,
deux grandes parties S,S' de X sont toujours équivalentes modulo ©.

Preuve. Vu le corollaire 7, il suffit de montrer que ®g est paradoxal
pour toute grande partie S de X.

Comme S est grand, il existe un entier N tel que X x {1} soit équivalent
modulo ®y a une partie de § x Iy = Sy. Comme ©® est paradoxal, ®g, lest
aussi (derniére remarque de la section 2); en d’autres termes, ®g est
virtuellement paradoxal. La proposition 9 montre que ®g est paradoxal. []

On a donc:
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i TuEOREME 11. Soit & un pseudogroupe de transformations d’'un ‘ensemble
“non vide X, relatif a lalgébre P(X) de toutes les parties de X. Les

‘conditions suivantes sont équivalentes:

3

f ) O nestpas moyennable.

i) Il existe un entier n = > 2 et des parties Sy, . Su—155n> Tiseo Tno1
de X avec

— les S; sont équivalents deux a deux,

— S, est grand,

— T, est équivalent d une partie de Syk=1,..,n—1),

—(H Sj>c< U Tk>.
1<j<n 1<k<n—1

i) ® est (fortement) paradoxal : il existe une partition X =X,[]X,
avec X; = X(mod ©).

De plus, si ces conditions sont satisfaites, alors deux grandes parties quelconques

de X sont équivalentes modulo ©®.

On connait d’autres conditions équivalentes: voir par exemple [R1]
pour des conditions a la Fglner. Voir aussi le corollaire 3.5 de [R2]:
toute action d’un groupe de génération finie et de croissance SOus-e€xpo-

nentielle est moyennable.

5. UN DEVELOPPEMENT ET QUELQUES EXEMPLES CLASSIQUES

: Soit ® un pseudogroupe de transformations d’un espace (X, B) donné
| : avec un sous- —ensemble non vide U € B. (Le cas étudié plus haut correspond
| a a U= X.) Rappelons que nous notons &y le pseudogroupe de transformations
: de (U, By) défini par ®. On appelle moyenne invariante pour le systéme
1 (X, U, B, 6) une fonction p: B — [0, 0] telle que

W(U) = 3
wSuT) = wlS) + (T) pour S, TeBavec SNT = Q, 1
wT) = w(S) silexiste v:S— T dans G©.

La notion est due 4 von Neumann [vN].
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