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130 P. DE LA HARPE ET G. SKANDALIS

Lorsque 53 est une a-algèbre, on peut donc dire sans ambiguïté que
(5 est paradoxal s'il l'est faiblement ou/et fortement. La condition ii) du
théorème 1 peut s'écrire : est paradoxal pour p assez grand.

Remarque 6. Le lemme 5 est équivalent à Vénoncé suivant, plus classique,
du type Cantor-Bernstein :

S'il existe 5 : S -> R et 5' : S" Rf dans © avec R c S' et R' c S,

alors S' S (mod ©).

Preuve. Posons y 5'ô : S - T et T S - R' ; on a T a R' c= S.

Par le lemme 5 (appliqué dans S), il existe dans (5 un élément y" : S - R'.
Par suite (ô')_1y": S -> S' est une équivalence dans (5.

Corollaire 7. On suppose que est une <j-algèbre. Soient
U, V,U',V'eSB des grandes parties avec U a U' et Va V. Si
et ($)v sont paradoxaux, alors U' V (mod ©).

Preuve. Il suffit de montrer que U' X (mod (5). Comme U est grand,
il existe un entier N et une bijection a :X x {1} - U1 dans (&N avec
U1 c= U x IN. Comme (5V est paradoxal, il existe ß: U x IN ^ U x {1}
dans La composition de a et ß fournit une bijection y: X T de ©
avec T cz U a U'. On conclut en utilisant le lemme 5 (avec T' X-U').

Notons que nous aurions pu formuler ce corollaire sans introduire U
et V, car U est grand dans U', et par suite est paradoxal vu la
dernière remarque de la section 2. Mais l'énoncé choisi correspond mieux à

l'utilisation en vue, pour l'exemple 3 de la section 5.

4. Paradoxes relatifs à l'algèbre de toutes les parties

On se donne un ensemble X et un pseudogroupe (5 de transformations
de X, ou plus précisément de (X, ^(X)). L'outil nouveau est un lemme de

Kuratowski [K].

Lemme 8. On se donne un ensemble X, deux partitions X 5 II T

u\A V, ainsi que deux bijections cp : S ^ T et \|r.U -> V. Alors il
existe deux partitions
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s= 0 Sj, LI Vj,
l^j<4

avec

Vl s,, v2 (P(S2), V3 MS3), ^(s4) •

Preuve. Considérons la bijection de X sur X qui coïncide avec 9

sur S et avec (p_1 sur T; c'est une transformation de X sans point fixe

et d'ordre 2, que nous notons encore (p. On étend de même \|/. Si

G (Z/2Z) * (Z/2Z) désigne le groupe diédral infini, <p et i|/ définissent une

action de G sur X.
Soit G0 le sous-groupe de G engendré par i|/q>, qui est cyclique infini

et normal dans G; soit Y X/G0 l'espace des orbites. Alors cp et \|/

induisent sur Y la même transformation, que nous notons p et qui satisfait

p2 idy. Cette transformation est sans point fixe: sinon, il existerait

xe X et ne Z avec cp(x) (\|/<p)"(x); or <PM><P)n est conjugué soit à cp (si n

est pair) soit à \|/ (si n est impair), donc n'a pas de point fixe par hypothèse

sur (p et \|/. Vu l'axiome du choix, il existe une partition Y Y' U Y"

telle que p échange Y' et Y". Si X X' U X" est la partition image inverse

par la projection canonique X -> Y, alors X' et X" sont échangés par 9
et par \|/.

La bijection a : S - X' définie par a(x) e {x, (p(x)} montre que S et X'
sont équivalents modulo le pseudogroupe engendré par 9, ce que nous

écrivons S X' (mod 9). De même X' V (mod \|/). Par suite S V (mod G).

Plus précisément, on pose

S± S nX' nV Vx

52 S nX" n 9(F) V2 T n X' n F

53 S n X' nU F3 \|/(S) n A" n F

54 SnI"n 9(G) F4 v|/(T) n X" n F

et on obtient l'affirmation du lemme.

«i
Remarques.

Il)
Le nombre 4 apparaissant dans le lemme 8 est le minimum possible [U].

2) La preuve ci-dessus est une variante de celle de Kuratowski. Le lemme

résulte d'un travail de König datant de 1916; voir le § 5 de [Kö].
3) La preuve montre ceci: étant données deux actions sans point fixe

du groupe à deux éléments sur X, il existe un domaine fondamental commun

X S, u 9(S2) u S3 u 9(S4) F1uF2U ^~1(F3) U y\f~\V4)
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L'analogue mesurable de l'affirmation de la remarque 3 n'est pas correct,
comme le montre l'exemple suivant.

On considère le cercle unité S1 du plan complexe et deux réflexions cp,

v|/ de S1 relatives à deux diamètres dont l'angle est un multiple irrationnel
de tu. Soit X l'espace S1 privé de l'ensemble dénombrable constitué par
les points fixes des transformations ((cp\)/)wcp)„eZ ; on munit X de la a-algèbre
des ensembles mesurables au sens de Lebesgue. Il n'existe pas de sous-
ensemble mesurable X' c= X qui soit un domaine fondamental pour {idz, (p}

et {idx,\|/}: en effet, un tel X' serait invariant par la transformation
ergodique \|/cp, ce qui est absurde, car cp et \J/ préservent la mesure de

Lebesgue.

Proposition 9. Si 0 est un pseudogroupe de transformations de X jj

relatif à la a-algèbre de toutes les parties, alors (5 est virtuellement [

paradoxal si et seulement si (5 est paradoxal \

Preuve. On suppose (£> virtuellement paradoxal, c'est-à-dire ($p paradoxal L

pour un entier convenable p. En remplaçant au besoin p par un entier ;

plus grand, on se ramène au cas d'une puissance de 2. Modulo une induction
évidente, il suffit donc de considérer le cas p 2.

L'hypothèse que X2 est paradoxal signifie qu'il existe une partition j

X2 U LJ V avec U X2 (mod ß>2) et V X2 (mod (ö2). En posant &

S I x {1} et T I x {2}, on obtient évidemment X2 S ]J T avec ;

S= T(mod(ö2). Le lemme 8 montre que S F(mod©2), donc que j.

X2 X (mod (ö2). Cette dernière équivalence signifie précisément que X est :

paradoxal. |
Notons que notre proposition 9 résulte immédiatement du théorème 11 |

et du corollaire 12 de [BT].

Corollaire 10. Soit © comme à la proposition 9. Si (5 est paradoxal,
deux grandes parties S, S' de X sont toujours équivalentes modulo (S.

Preuve. Vu le corollaire 7, il suffit de montrer que (Ss est paradoxal

pour toute grande partie S de X.
Comme S est grand, il existe un entier N tel que X x {1} soit équivalent

modulo (&N à une partie de S x IN SN. Comme © est paradoxal, (5Sn l'est

aussi (dernière remarque de la section 2); en d'autres termes, (5S est

virtuellement paradoxal. La proposition 9 montre que (Ss est paradoxal.

On a donc :
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Théorème 11. Soit © un pseudogroupe de transformations d'un ensemble

non vide X,relatif à l'algèbre $(X) de toutes les parties de X. Les

conditions suivantes sont équivalentes :

i) © n'est pas moyennable.

ii) Il existe un entier n>2 et des parties St1,Sn,T1, T„_ i
de X avec

— les Sj sont équivalents deux à deux,

— Sn est grand,

— Tk est équivalent à une partie de Sk(k= 1,..., n-1),

-( U S;W " 7,Y

iü) © est (fortement) paradoxal: il existe une partition X X1\}X2
avec Xj X(mod ©).

De plus, si ces conditions sont satisfaites, alors deux grandes parties quelconques

de X sont équivalentes modulo

On connaît d'autres conditions équivalentes: voir par exemple [RI]

pour des conditions à la F01ner. Voir aussi le corollaire 3.5 de [R2].

toute action d'un groupe de génération finie et de croissance sous-exponentielle

est moyennable.

5. Un développement et quelques exemples classiques

i Soit (b un pseudogroupe de transformations d'un espace (X, 93) donné

r avec un sous-ensemble non vide U g 53. (Le cas étudié plus haut correspond
1

à U—X) Rappelons que nous notons (5V le pseudogroupe de transformations

de (U, ïïu) défini par ©. On appelle moyenne invariante pour le système

(X, U, S, ®) une fonction p: 93 -> [0, oo] telle que

m 1,

\i(SkjT) \i(S) + p(T) pour S, T e 93 avec S n T 0
Ix(T) p(S) s'il existe y : S ^ T dans ©

La notion est due à von Neumann [vN].
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