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X — R, Y(X—R), .. Y "Y(X —R), y"(X) sont disjoints deux a deux. Posons
y = YV, et soit y” la bijection de source X qui coincide avec Y E)
| sur T, pour j = 1,.., N. Comme les buts de v' et y" sont disjoints, & est
O

;faiblement paradoxal.

Soient r et p des entiers avec r>p > 1. Comme nous l'avons déja
affirmé, il résulte de la proposition 3 que, si ®, est faiblement paradoxal,
“alors ®, Pest aussi. Plus généralement, soit ® un pseudogroupe de trans-
formations de (X, B) et soit U e B une grande partie de X; si ®y est
faiblement paradoxal, alors ® I'est aussi.

3. PARADOXES RELATIFS A UNE G-ALGEBRE

Un pseudogroupe ® de transformations de (X, %B), comme a la section 2,

est dit fortement paradoxal sil existe X, X, avec X = X, ][] x, et
" X; = X (mod ®) (j=1,2), ce que nous abrégeons par 2X = X (mod ©).

PROPOSITION 4. On suppose que B est une c-algébre. Alors ® est
faiblement paradoxal si et seulement si ® est fortement paradoxal.

Insistons sur le fait que ® est bien un pseudogroupe au sens précédent:
la condition v) de la section 1 concerne toujours des recollements finis,
méme si B est stable par réunions infinies dénombrables.

LEMME 5. Sl existe T, T'e®B avec TnT =@ e v:X->T

% dans ®, alors il existe y":X - X — T' dans ©.
g Preuve. Posons U = U yXT"), de sorte que y(U) = U — T'. On définit
| & k=0

7" € ® de source X par Yx = xsixe X — U et y'x = yx si xe U. Le but
RF dey est X—-U)uyU) =X — T O

Preuve de la proposition. Supposons & faiblement paradoxal: il existe
| deux éléments y: X > T et y¥: X - T de ® avec Tn T = . Alors ¥
et ’élément v du lemme 5 sont des bijections dans ® ayant X pour source
et dont les buts forment une partition de X. O
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Lorsque B est une oc-algébre, on peut donc dire sans ambiguité que
® est paradoxal s'il Test faiblement ou/et fortement. La condition i1) du
théoréme 1 peut s’écrire: ®, est paradoxal pour p assez grand.

REMARQUE 6. Le lemme 5 est équivalent a I'énoncé suivant, plus classique, v’
du type Cantor-Bernstein:
S’il existe 6:S > R et &:5S > R dans ® avec R S’ et R < S, |
alors §' = S (mod 6). ]
Preuve. Posons v =88:S—>T et T"=S—R;ona TcPR < S |

Par le lemme 5 (appliqué dans S), il existe dans & un élément Y":S > R. ¢
Par suite (§') " 'y": S — S’ est une équivalence dans ®. ] f

COROLLAIRE 7. On suppose que B est une c-algébre. Soient
U V,U, V' e€B des grandes parties avec U U et V < V. Si G, |
et ®, sont paradoxaux, alors U’ = V' (mod 6).

Preuve. 1l suffit de montrer que U’ = X (mod ®). Comme U est grand,
il existe un entier N et une bijection o:X x {1} - U, dans ®, avec ||

U, €U x Iy. Comme G est paradoxal, il existe B: U x Iy —» U x {1} ¢l

dans ®y. La composition de a et B fournit une bijection y: X - T de &
avec T = U = U". On conclut en utilisant le lemme 5 (avec T'=X—U").

[]

Notons que nous aurions pu formuler ce corollaire sans introduire U
et V, car U est grand dans U’, et par suite G, est paradoxal vu la der- ,:
niére remarque de la section 2. Mais I'énoncé choisi correspond mieux a |
I'utilisation en vue, pour I'exemple 3 de la section 5. 1

4. PARADOXES RELATIFS A L’ALGEBRE DE TOUTES LES PARTIES

On se donne un ensemble X et un pseudogroupe ® de transformations
de X, ou plus précisément de (X, P(X)). L’outil nouveau est un lemme de
Kuratowski [K].

LEMME 8. On se donne un ensemble X, deux partitions X = § [T

= Ull V, ainsi que} deux bijections @:S—>T et Y:U - V. Alors il
existe deux partitions
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