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X - R, y{X —R),..., yN~1{X — R),yN(X)sont disjoints deux à deux. Posons

y' y", et soit y" la bijection de source X qui coïncide avec y* fôj)

sur Tj pour j 1,N. Comme les buts de y' et y" sont disjoints, © est

faiblement paradoxal. ^

Soient ret pdesentiers avec r>p ^ 1. Comme nous l'avons déjà

affirmé, il résulte de la proposition 3 que, si ©p est faiblement paradoxal,

alors ©r l'est aussi. Plus généralement, soit © un pseudogroupe de

transformations de (X,©) et soit Ue© une grande partie de X; si ©D est

faiblement paradoxal, alors (5 l'est aussi.

3. Paradoxes relatifs à une ct-algèbre

Un pseudogroupe © de transformations de (.X, 93), comme à la section 2,

est dit fortement paradoxal s'il existe Xl,X2 avec X Xx JJ X2 et

X^Xtmod©) 0 1, 2), ce que nous abrégeons par 2X X (mod (S).

Proposition 4. On suppose que 93 est une G-algèbre. Alors © est

faiblement paradoxal si et seulement si © est fortement paradoxal

Insistons sur le fait que (S est bien un pseudogroupe au sens précédent :

la condition v) de la section 1 concerne toujours des recollements finis,

même si 93 est stable par réunions infinies dénombrables.

Lemme 5. S'il existe T, T e 93 avec T n T 0 et y : X -+ T
dans (5, alors il existe y" : X X — T' dans ©.

Preuve. Posons U u y\T'\ de sorte que y(U) U — T'. On définit
k^O

y" g (5 de source X par y'x x si x e X — U et y"x yx si xe U. Le but
de y" est (X-U) u y(U) X - V.

Preuve de la proposition. Supposons (5 faiblement paradoxal: il existe

deux éléments y: X -> T et y' : X -» T' de (5 avec T n Tf 0. Alors y'
et l'élément y" du lemme 5 sont des bijections dans (5 ayant X pour source
et dont les buts forment une partition de X.
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Lorsque 53 est une a-algèbre, on peut donc dire sans ambiguïté que
(5 est paradoxal s'il l'est faiblement ou/et fortement. La condition ii) du
théorème 1 peut s'écrire : est paradoxal pour p assez grand.

Remarque 6. Le lemme 5 est équivalent à Vénoncé suivant, plus classique,
du type Cantor-Bernstein :

S'il existe 5 : S -> R et 5' : S" Rf dans © avec R c S' et R' c S,

alors S' S (mod ©).

Preuve. Posons y 5'ô : S - T et T S - R' ; on a T a R' c= S.

Par le lemme 5 (appliqué dans S), il existe dans (5 un élément y" : S - R'.
Par suite (ô')_1y": S -> S' est une équivalence dans (5.

Corollaire 7. On suppose que est une <j-algèbre. Soient
U, V,U',V'eSB des grandes parties avec U a U' et Va V. Si
et ($)v sont paradoxaux, alors U' V (mod ©).

Preuve. Il suffit de montrer que U' X (mod (5). Comme U est grand,
il existe un entier N et une bijection a :X x {1} - U1 dans (&N avec
U1 c= U x IN. Comme (5V est paradoxal, il existe ß: U x IN ^ U x {1}
dans La composition de a et ß fournit une bijection y: X T de ©
avec T cz U a U'. On conclut en utilisant le lemme 5 (avec T' X-U').

Notons que nous aurions pu formuler ce corollaire sans introduire U
et V, car U est grand dans U', et par suite est paradoxal vu la
dernière remarque de la section 2. Mais l'énoncé choisi correspond mieux à

l'utilisation en vue, pour l'exemple 3 de la section 5.

4. Paradoxes relatifs à l'algèbre de toutes les parties

On se donne un ensemble X et un pseudogroupe (5 de transformations
de X, ou plus précisément de (X, ^(X)). L'outil nouveau est un lemme de

Kuratowski [K].

Lemme 8. On se donne un ensemble X, deux partitions X 5 II T

u\A V, ainsi que deux bijections cp : S ^ T et \|r.U -> V. Alors il
existe deux partitions
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