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ux) =1,
wSuT) = wS) + u(T) pour S, TeB avec SNnT =@,
wT) = w(S) silexiste y:S — T dans &.

Nous désignons par [°(X) l'espace de Banach des fonctions bornées a
valeurs réelles sur X avec la norme de la convergence uniforme, et par
1°(X, B) I'adhérence dans [°(X) du sous-espace vectoriel engendré par les
fonctions caractéristiques des éléments de B. Alors ® est moyennable si et
seulement s’il existe une forme linéaire positive normalisée ®-invariante sur
I*(X, B), forme que nous notons aussi p. (Rappel de vocabulaire: p est
positive si p(f) > 0 pour tout f el®(X,B) a valeurs positives ou nulles,
i est normalisée si p prend la valeur 1 sur la fonctien constante de valeur 1,
et p est ®-invariante si p(fy) = p(f) pour tout y: S — T dans ® et pour
tout f €1°(X, B) a support dans T.) Pour I'équivalence entre les deux défi-
nitions de moyennabilité, voir le théoréme 20.30 de [HS].

Ftant donné un entier p > 1, on laisse au lecteur le soin de vérifier
que ® est moyennable si et seulement si &, l'est. Plus généralement, si
® agit sur (X,B) et si UeB est une grande partie de X, alors ® est
moyennable si et seulement si &, est moyennable. (Voir aussi la propo-
sition 12.)

2. PARADOXES RELATIFS A UNE ALGEBRE

On considére a nouveau un ensemble non vide X, une algebre B de
parties de X, et un pseudogroupe ® de transformations de (X, B).

THEOREME 1. Les conditions suivantes sont équivalentes :
1) & nr’est pas moyennable;

1) ® est virtuellement paradoxal.

Preuve. S’il existe un entier p > 1 avec G, faiblement paradoxal, il est
_ évident que ®, n’est pas moyennable, et par suite ® n’est pas moyennable;
~ donc ii) implique 1).

Notons d®(X, B) le sous-espace vectoriel de [*(X, B) engendre par les
& | différences y — xy, avec y: S —» T dans ® et x la fonction caractéristique
Sl dc T. Notons C le cone convexe ouvert de [°(X, B) forme des fonctions f

-
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&
pour lesquelles inf f(x) > 0. Une moyenne ®-invariante sur (X, B) est une '

xeX ¢

forme linéaire continue p sur I°(X, B), telle que la restriction p|de(X, B)
soit nulle et telle que la restriction i | C soit a valeurs strictement positives.
En utilisant le théoréme de Hahn-Banach, on en déduit que la condition i) |
est équivalente 4 d°(X,B) N C # @. On suppose donc que d®(X, B) ren-
contre C, et il s’agit de montrer que ®, est faiblement paradoxal pour p i
assez grand. |
Comme C est ouvert, il existe des éléments v;:S; = T; dans G et des |
nombres rationnels n; tels que la fonction |

-m—l
Z nj(Xj_Xij)
j=1
soit dans C, ou y; désigne la fonction caractéristique de T;. En remplagant 1
quand il le faut y; par y; !, on peut rendre chaque n; positif. Quitte a
multiplier la fonction par un entier convenable, on peut aussi supposer
les n; entiers et la fonction minorée par la constante 1. En répétant les
Yj» on peut enfin supposer tous les n; égaux a 1. On a donc
n—1

n—1
L+ 2 < X %
ji=1 ji=1
pour un entier n convenable. Notons X; = 1 — x;v; la fonction caracté-
ristique de X — S; et ajoutons les X; a linégalité précédente; comme 1
x; < lety; <1 on obtient

n—1
n< f = .Zl(x,-+x;-)<2n—2.
=

On définit encore

Ry = {(%.9) € X203 14 < [0} | i

qui est dans B,,_, car c’est le sous-graphe de la fonction B-mesurable f,
et on note 7,: R, — X la projection canonique. L’inégalité n < f implique
X n - R fe '

Soit ®: X, ; — X,,_, lapplication injective définie par

O(x,j) = (yx, 2j—1) si xe§; et Dx,j) = (x,2) si X¢ES;.

Notons U I'image de @ et n,: U —» X la projection canonique. Pour tout
ye X, le cardinal de w1 '(y) est précisément f). Vu le lemme qui suit,
il existe ¥ € ®,,_, tel que le diagramme '
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X
N
Xon-2 > Xy SUS Ry Xpps

nl\X/nz

n

1 commute.

: Soit y la restriction a X, de ® ¥~ !, qui est dans ®,. Soit v, € ©,
5 litéré y" de v; on a y(X,) = X,_,, de sorte que les ensembles X, — X,_;,
VX —Xpo1)s o Y M X, —X,— 1), Y(X,), sont disjoints. Définissons y, € ,
? par y,(x,q) = v '(x,n). Alors y, et y, ont des buts disjoints, et &,
est bien faiblement paradoxal. |

L’existence de ¥ € &,,_, invoquée dans la preuve se justifie comme suit:
2n—2

LEMME 2. On considére un entier p > 1 et deux parties U,,U, de
X,, dans B,. Onnote m;:U; > X la restriction a U; de la projection
canonique X, = X x I, > X(j=1,2), et on note €, le pseudogroupe de
 transformations de (X ,,B,) engendré par les applications idy x 6 od o
est une bijection de I,.

Si les cardinaux de my'(x) et m;'(x) sont égaux pour tour xe X,
alors il existe W e €, tel que le diagramme

U, > U,

1:1\ / n

commute.

| z Preuve. 11 suffit de montrer le lemme lorsque U, est tel que (x, q) e U,
|} § implique (x, ) e U, pour t = 1,2, .., q (cas d’un sous-graphe). Toute bijection
U; —» U, faisant commuter le diagramme peut s’écrire (x, @) = (x, r(x, g)).
| II en existe une, unique, pour laquelle toutes les fonctions g r(x, q)
R 8 sont croissantes, x étant dans I'image de 7, ; on la note V.

‘ Pour tout te{l, .., p}, I'ensemble S, = {xeX|(x,t)e U;} est dans B,
I donc sa fonction caractéristique x, est B-mesurable. Comme r(x, q)

| = 1<Z< X{x), la fonction r est B ,-mesurable. Par suite I'application ¥ est
Itxg

| B ,-mesurable.
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Etant donnés ¢, s € I,,, 'ensemble
= {XEX | (xa q) € Ul et IP(xa q) = (X, S)}

est donc dans B. Si xe 4, ,, alors ¥(x, g) = (x,s). Ceci étant vrai pour
toute paire (g, s), il en résulte que ¥ € €. ]

Le critére suivant peut faciliter la vérification qu’un pseudogroupe donné
est faiblement (ou virtuellement) paradoxal. Il est du méme type que, par
exemple, le théoreme 2.7 de [Sh].

PropPoOSITION 3. Si & est un pseudogroupe de transformations d’un espace
(X, B), les conditions suivantes sont équivalentes :

i) ® est faiblement paradoxal.

ii) Il existe un entier n =2 et des partieS Sy, .. Sp—158p5 L1 s Ty
dans B avec
— les S; sont disjoints deux a deux
— S, est grand
— T, est équivalent d une partie de Syk=1,..,n—1)

—(H Sj>c< U Tk>.
1<j<n 1<’f<"_1 A

iii) Il existe y:X — R dans & telque X — R soit grand.

Preuve. L’implication i) = ii) est banale (avec n=2, T=X et 5,8,
les buts des bijections de la définition).

Si ii) est vrai, on peut supposer de plus les T, disjoints deux a deux:
sinon, on considere

,1'= Tl’ - T2 - T]_,..., = Tn 1 (T]_U...UTn_z).

Supposons la condition ii) vérifiée, avec les T, disjoints deux a deux.

Posons T = U T,, et choisissons dans ® une bijection o de source T
1<k<n—1

et de but §' < U §;, obtenue en recollant des €léments T; —» S < §;.
1<j<n—1 ' ’

Posons R = §' U (X—T), et notons v: X — R la bijection qui coincide avec o

sur T et avec lidentit¢é sur X — T. La condition iii) est vérifie, car

X — R contient la grande partie S,,. ;
Supposons enfin la condition iii) vérifiée. Comme X — R est-grand,

il existe dans G des éléments 3;:S; » T; avec §; = X — R et'les T;

disjoints deux & deux (j=1, .., N), tels que X = ]_[ T;. Les ensembles

ISJSN

|
4
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X — R, Y(X—R), .. Y "Y(X —R), y"(X) sont disjoints deux a deux. Posons
y = YV, et soit y” la bijection de source X qui coincide avec Y E)
| sur T, pour j = 1,.., N. Comme les buts de v' et y" sont disjoints, & est
O

;faiblement paradoxal.

Soient r et p des entiers avec r>p > 1. Comme nous l'avons déja
affirmé, il résulte de la proposition 3 que, si ®, est faiblement paradoxal,
“alors ®, Pest aussi. Plus généralement, soit ® un pseudogroupe de trans-
formations de (X, B) et soit U e B une grande partie de X; si ®y est
faiblement paradoxal, alors ® I'est aussi.

3. PARADOXES RELATIFS A UNE G-ALGEBRE

Un pseudogroupe ® de transformations de (X, %B), comme a la section 2,

est dit fortement paradoxal sil existe X, X, avec X = X, ][] x, et
" X; = X (mod ®) (j=1,2), ce que nous abrégeons par 2X = X (mod ©).

PROPOSITION 4. On suppose que B est une c-algébre. Alors ® est
faiblement paradoxal si et seulement si ® est fortement paradoxal.

Insistons sur le fait que ® est bien un pseudogroupe au sens précédent:
la condition v) de la section 1 concerne toujours des recollements finis,
méme si B est stable par réunions infinies dénombrables.

LEMME 5. Sl existe T, T'e®B avec TnT =@ e v:X->T

% dans ®, alors il existe y":X - X — T' dans ©.
g Preuve. Posons U = U yXT"), de sorte que y(U) = U — T'. On définit
| & k=0

7" € ® de source X par Yx = xsixe X — U et y'x = yx si xe U. Le but
RF dey est X—-U)uyU) =X — T O

Preuve de la proposition. Supposons & faiblement paradoxal: il existe
| deux éléments y: X > T et y¥: X - T de ® avec Tn T = . Alors ¥
et ’élément v du lemme 5 sont des bijections dans ® ayant X pour source
et dont les buts forment une partition de X. O
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