Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 32 (1986)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: UN RÉSULTAT DE TARSKI SUR LES ACTIONS MOYENNABLES DE

GROUPES ET LES PARTITIONS PARADOXALES

Autor: de la Harpe, Pierre / Skandalis, Georges

Kapitel: 1. DÉFINITIONS ET NOTATIONS

DOI: https://doi.org/10.5169/seals-55082

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Plutôt que de nous restreindre d'entrée aux moyennes définies sur $\mathfrak{P}(X)$, nous préférons considérer d'abord X comme fourni avec une algèbre \mathfrak{B} de parties de X (une algèbre est stable par réunions finies et par passage au complémentaire, et contient X). De plus, il est avantageux de considérer à priori un pseudogroupe \mathfrak{G} de transformations de (X,\mathfrak{B}) , comme défini dans la section 1. Le formalisme des pseudogroupes permet d'importantes simplifications d'écriture. Son avantage se voit aussi dans l'étude des sous-espaces (section 5): un pseudogroupe \mathfrak{G} de transformations de (X,\mathfrak{B}) définit en effet canoniquement un pseudogroupe \mathfrak{G}_U de transformations de (U,\mathfrak{B}_U) avec

$$\mathfrak{G}_U = \{ \gamma \in \mathfrak{G} \mid \gamma \colon S \to T \text{ avec } S \subset U \text{ et } T \subset U \}$$

$$\mathfrak{B}_U = \{ S \in \mathfrak{B} \mid S \subset U \}.$$

Après une section consacrée aux définitions et aux notations, les trois sections suivantes étudient successivement les cas où

- 2) B est une algèbre,
- 3) B est une σ-algèbre,
- 4) $\mathfrak{B} = \mathfrak{P}(X)$.

et

Pour le dernier cas, le théorème 11 résume une partie des résultats obtenus. La section 5 décrit quelques exemples classiques.

Nous remercions E. Bédos qui nous a signalé le livre de Tarski, P. L. Aubert la thèse de Sherman sur la moyennabilité des groupes [Sh] et J. Berney d'autres précisions bibliographiques. Nous renvoyons à [BH] pour l'intérêt du théorème I relativement à la notion de moyennabilité intérieure pour un groupe discret.

1. DÉFINITIONS ET NOTATIONS

On se donne un ensemble non vide X et une algèbre \mathfrak{B} de parties de X. Un pseudogroupe \mathfrak{G} de transformations de (X,\mathfrak{B}) est un ensemble de bijections $\gamma: S \to T$, où $S, T \in \mathfrak{B}$, qui satisfait

- i) l'identité $X \to X$ est dans \mathfrak{G} ;
- ii) si $\gamma: S \to T$ est dans \mathfrak{G} , l'inverse $\gamma^{-1}: T \to S$ l'est aussi;
- iii) si $\gamma: S \to T$ et $\delta: T \to U$ sont dans \mathfrak{G} , le composé $\delta \gamma: S \to U$ est dans \mathfrak{G} ;

- iv) si $\gamma: S \to T$ est dans \mathfrak{G} et si $S' \in \mathfrak{B}$ est contenu dans S, la restriction de γ à S' est dans \mathfrak{G} ;
- v) soient $S, T \in \mathfrak{B}$ et $\varphi: S \to T$ une bijection; s'il existe une partition finie $S = \coprod S_j$ avec $S_j \in \mathfrak{B}$, telle que chaque restriction $\varphi \mid S_j$ soit dans \mathfrak{G} , alors $\varphi \in \mathfrak{G}$.

La condition iv) exprime que \mathfrak{G} est stable par localisation et v) par recollement fini. La donnée de \mathfrak{G} contient celle de \mathfrak{B} vu les conditions i) et iv).

Deux parties $S, T \in \mathfrak{B}$ sont équivalentes modulo \mathfrak{G} , ce qu'on note $S \equiv T \pmod{\mathfrak{G}}$, s'il existe dans \mathfrak{G} une bijection de source S et de but T. Une partie $S \in \mathfrak{B}$ est grande s'il existe $T_1, ..., T_N \in \mathfrak{B}$, chaque T_j étant équivalent à une partie de S, avec $X = \cup T_j$; on obtiendrait la même définition (vu la propriété iv)) en exigeant de plus que les T_j soient disjoints deux à deux. (La partie S est grande si et seulement si X est S-borné au sens de [R1], [R2].) Nous disons que le pseudogroupe \mathfrak{G} est faiblement paradoxal s'il existe dans \mathfrak{G} deux bijections ayant X pour source qui sont de buts disjoints, ce que nous abrégeons par

$$2X \leqslant X \pmod{\mathfrak{G}}$$
.

Nous disons aussi, parfois et abusivement, que l'espace (X, \mathfrak{B}) est faiblement paradoxal.

Pour tout entier $p \geqslant 1$, on note I_p l'ensemble $\{1,...,p\}$ et \mathfrak{C}_p le pseudogroupe de toutes les bijections entre sous-ensembles de I_p . On note X_p le produit direct $X \times I_p$, qu'on munit de l'algèbre produit $\mathfrak{B}_p = \mathfrak{B} \times \mathfrak{P}(I_p)$. Si \mathfrak{G} est comme ci-dessus, le produit direct $\mathfrak{G}_p = \mathfrak{G} \times \mathfrak{C}_p$ est le pseudogroupe de transformations de (X_p, \mathfrak{B}_p) engendré par les bijections

$$\begin{cases} S \times \{q\} \to T \times \{r\} \\ (x, q) \mapsto (\gamma x, r) \end{cases}$$

où $\gamma\colon S\to T$ est dans $\mathfrak G$ et où q,r sont dans I_p . Nous disons que $\mathfrak G$ est virtuellement paradoxal s'il existe un entier $p\geqslant 1$ tel que $\mathfrak G_p$ soit faiblement paradoxal. Notons ceci: lorsque $r\geqslant p$, on a $I_r\supset I_p$, et $(X_p,\mathfrak B_p)$ est un sous-espace de $(X_r,\mathfrak B_r)$ sur lequel $\mathfrak G_r$ induit précisément $\mathfrak G_p$. On vérifie plus bas que, si $\mathfrak G_p$ est faiblement paradoxal, alors il en est de même de $\mathfrak G_r$ pour tout $r\geqslant p$ (voir la remarque qui suit la proposition 3).

Le pseudogroupe \mathfrak{G} est moyennable s'il existe une moyenne \mathfrak{G} -invariante sur (X, \mathfrak{B}) , c'est-à-dire une application $\mu \colon \mathfrak{B} \to [0, 1]$ telle que

$$\mu(X) = 1,$$

$$\mu(S \cup T) = \mu(S) + \mu(T) \quad \text{pour} \quad S, T \in \mathfrak{B} \text{ avec } S \cap T = \emptyset,$$

$$\mu(T) = \mu(S) \quad \text{s'il existe } \gamma \colon S \to T \text{ dans } \mathfrak{G}.$$

Nous désignons par $l^{\infty}(X)$ l'espace de Banach des fonctions bornées à valeurs réelles sur X avec la norme de la convergence uniforme, et par $l^{\infty}(X,\mathfrak{B})$ l'adhérence dans $l^{\infty}(X)$ du sous-espace vectoriel engendré par les fonctions caractéristiques des éléments de \mathfrak{B} . Alors \mathfrak{G} est moyennable si et seulement s'il existe une forme linéaire positive normalisée \mathfrak{G} -invariante sur $l^{\infty}(X,\mathfrak{B})$, forme que nous notons aussi μ . (Rappel de vocabulaire: μ est positive si $\mu(f) \geqslant 0$ pour tout $f \in l^{\infty}(X,\mathfrak{B})$ à valeurs positives ou nulles, μ est normalisée si μ prend la valeur 1 sur la fonction constante de valeur 1, et μ est \mathfrak{G} -invariante si $\mu(f\gamma) = \mu(f)$ pour tout $\gamma: S \to T$ dans \mathfrak{G} et pour tout $f \in l^{\infty}(X,\mathfrak{B})$ à support dans f.) Pour l'équivalence entre les deux définitions de moyennabilité, voir le théorème 20.30 de [HS].

Etant donné un entier $p \ge 1$, on laisse au lecteur le soin de vérifier que \mathfrak{G} est moyennable si et seulement si \mathfrak{G}_p l'est. Plus généralement, si \mathfrak{G} agit sur (X,\mathfrak{B}) et si $U \in \mathfrak{B}$ est une grande partie de X, alors \mathfrak{G} est moyennable si et seulement si \mathfrak{G}_v est moyennable. (Voir aussi la proposition 12.)

2. Paradoxes relatifs à une algèbre

On considère à nouveau un ensemble non vide X, une algèbre $\mathfrak B$ de parties de X, et un pseudogroupe $\mathfrak G$ de transformations de $(X,\mathfrak B)$.

Théorème 1. Les conditions suivantes sont équivalentes:

- i) 6 n'est pas moyennable;
- ii) & est virtuellement paradoxal.

Preuve. S'il existe un entier $p \ge 1$ avec \mathfrak{G}_p faiblement paradoxal, il est évident que \mathfrak{G}_p n'est pas moyennable, et par suite \mathfrak{G} n'est pas moyennable; donc ii) implique i).

Notons $d^{\infty}(X, \mathfrak{B})$ le sous-espace vectoriel de $l^{\infty}(X, \mathfrak{B})$ engendré par les différences $\chi - \chi \gamma$, avec $\gamma \colon S \to T$ dans \mathfrak{G} et χ la fonction caractéristique de T. Notons C le cône convexe ouvert de $l^{\infty}(X, \mathfrak{B})$ formé des fonctions f