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Plutdt que de nous restreindre d’entrée aux moyennes deﬁmes sur
B(X), nous préférons considérer d’abord X comme fourni avec une algébre B
@ de parties de X (une algebre est stable par réunions finies et par passage
-ﬁ—{ au complémentaire, et contient X). De plus, il est avantageux de considérer
s priori un pseudogroupe ® de transformations de (X, B), comme défini
dans la section 1. Le formalisme des pseudogroupes permet d’importantes
4 simplifications d’écriture. Son avantage se voit aussi dans I’étude des sous-
espaces (section 5): un pseudogroupe & de transformations de (X, B) définit
en effet canoniquement un pseudogroupe ®, de transformations de (U, By)
E } avec

Gy = {ye®|y:S—> T avec Sc Uet T c U}
§et B, = {SeB|S c U}.

Aprés une section consacrée aux définitions et aux notations, les trois
. sections suivantes étudient successivement les cas ou

2) B est une algebre,

:3) B est une c-algebre,

4 B = PX).
‘Pour le dernier cas, le théoréme 11 résume une partie des résultats obtenus.
"La section 5 décrit quelques exemples classiques.

Nous remercions E. Bédos qui nous a signalé¢ le livre de Tarski,
~P.L. Aubert la thése de Sherman sur la moyennabilité des groupes [Sh]
et J. Berney d’autres précisions bibliographiques. Nous renvoyons a [BH]
épour Iintérét du théoréme I relativement a la notion de moyennabilité
%mterzeure pour un groupe discret.

.

i

1. DEFINITIONS ET NOTATIONS

On se donne un ensemble non vide X et une algebre B de parties de X.
Un pseudogroupe ® de transformations de (X, B) est un ensemble de
bijections y: S — T, ou S, T € B, qui satisfait

| 1) lidentité X — X est dans G;
i) siy:S — T est dans ®, Pinverse y~: T — S lest aussi;

i) siy:S — Tetd: T — U sont dans ®, le composé &y: S — U est dans G ;
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iv) si y:S — T est dans ® et si S'e B est contenu dans S, la restriction
de y a §" est dans ®;

v) soient §,TeB et ¢:S - T une bijection; s’il existe une partition
finieS =[] S javec S; € B, telle que chaque restriction @ | S; soit dans ®,
alors @ € 6.

La condition iv) exprime que ® est stable par localisation et v) par recol-
lement fini. La donnée de ® contient celle de B vu les conditions i) et iv).

Deux parties S, T €B sont équivalentes modulo ®, ce quon note
S = T (mod ®), s’il existe dans ® une bijection de source S et de but T.
Une partie S € B est grande s’il existe Ty, .., Ty € B, chaque T étant équi-
valent & une partie de S, avec X = U T;; on obtiendrait la méme défi-
nition (vu la propriété iv)) en exigeant de plus que les T; soient disjoints
deux a deux. (La partie S est grande si et seulement si X est S-borné au
sens de [R1], [R2].) Nous disons que le pseudogroupe & est faiblement
paradoxal 'l existe dans ® deux bijections ayant X pour source qui sont

de buts disjoints, ce que nous abrégeons par

2X < X (mod 6).

Nous disons aussi, parfois et abusivement, que 'espace (X, B) est faiblement
paradoxal.

Pour tout entier p > 1, on note I, I'ensemble {1, .., p} et €, le pseudo-
groupe de toutes les bijections entre sous-ensembles de I,. On note X,
le produit direct X x I,, qu’on munit de I'algébre produit B, = B x P )
Si ® est comme ci-dessus, le produit direct ®, = & x €, est le pseudogroupe
de transformations de (X,, B,) engendré par les bijections

S x{q}->T x {r}
(%, g) — (yx, 7)

ou y:S — T est dans ® et ou g,r sont dans I,. Nous disons que ®
est virtuellement paradoxal §’il existe un entier p > 1 tel que G, soit fai-
blement paradoxal. Notons ceci: lorsque r > p, on a I, o I, et (X,, B,)
est un sous-espace de (X,,%B,) sur lequel ®, induit précisément ,. On
vérifie plus bas que, si ®, est faiblement paradoxal, alors il en est de méme
de ®, pour tout r > p (voir la remarque qui suit la proposition 3).

Le pseudogroupe ® est moyennable s’il existe une moyenne ®-invariante
sur (X, B), c’est-a-dire une application p: B — [0, 1] telle que
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ux) =1,
wSuT) = wS) + u(T) pour S, TeB avec SNnT =@,
wT) = w(S) silexiste y:S — T dans &.

Nous désignons par [°(X) l'espace de Banach des fonctions bornées a
valeurs réelles sur X avec la norme de la convergence uniforme, et par
1°(X, B) I'adhérence dans [°(X) du sous-espace vectoriel engendré par les
fonctions caractéristiques des éléments de B. Alors ® est moyennable si et
seulement s’il existe une forme linéaire positive normalisée ®-invariante sur
I*(X, B), forme que nous notons aussi p. (Rappel de vocabulaire: p est
positive si p(f) > 0 pour tout f el®(X,B) a valeurs positives ou nulles,
i est normalisée si p prend la valeur 1 sur la fonctien constante de valeur 1,
et p est ®-invariante si p(fy) = p(f) pour tout y: S — T dans ® et pour
tout f €1°(X, B) a support dans T.) Pour I'équivalence entre les deux défi-
nitions de moyennabilité, voir le théoréme 20.30 de [HS].

Ftant donné un entier p > 1, on laisse au lecteur le soin de vérifier
que ® est moyennable si et seulement si &, l'est. Plus généralement, si
® agit sur (X,B) et si UeB est une grande partie de X, alors ® est
moyennable si et seulement si &, est moyennable. (Voir aussi la propo-
sition 12.)

2. PARADOXES RELATIFS A UNE ALGEBRE

On considére a nouveau un ensemble non vide X, une algebre B de
parties de X, et un pseudogroupe ® de transformations de (X, B).

THEOREME 1. Les conditions suivantes sont équivalentes :
1) & nr’est pas moyennable;

1) ® est virtuellement paradoxal.

Preuve. S’il existe un entier p > 1 avec G, faiblement paradoxal, il est
_ évident que ®, n’est pas moyennable, et par suite ® n’est pas moyennable;
~ donc ii) implique 1).

Notons d®(X, B) le sous-espace vectoriel de [*(X, B) engendre par les
& | différences y — xy, avec y: S —» T dans ® et x la fonction caractéristique
Sl dc T. Notons C le cone convexe ouvert de [°(X, B) forme des fonctions f

-
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