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Plutôt que de nous restreindre d'entrée aux moyennes définies sur

<P(X), nous préférons considérer d'abord X comme fourni avec une algèbre ©

de parties de X (une algèbre est stable par réunions finies et par passage

au complémentaire, et contient X). De plus, il est avantageux de considérer

à priori un pseudogroupe © de transformations de (X, 33), comme défini

dans la section 1. Le formalisme des pseudogroupes permet d'importantes

simplifications d'écriture. Son avantage se voit aussi dans 1 étude des sous-

espaces (section 5) : un pseudogroupe © de transformations de (X, 33) définit

en effet canoniquement un pseudogroupe de transformations de (U, ©y)

avec

{y e (ù | y: S -> T avec S a U et T c U}

| et %u {S e 33 | S c U}

1 Après une section consacrée aux définitions et aux notations, les trois

sections suivantes étudient successivement les cas où

2) © est une algèbre,

; 3) © est une a-algèbre,

4) » ©(X).

Pour le dernier cas, le théorème 11 résume une partie des résultats obtenus.
1 La section 5 décrit quelques exemples classiques.

Nous remercions E. Bédos qui nous a signalé le livre de Tarski,
P. L. Aubert la thèse de Sherman sur la moyennabilité des groupes [Sh]
et J. Berney d'autres précisions bibliographiques. Nous renvoyons à [BH]

jpour l'intérêt du théorème I relativement à la notion de moyennabilité

I intérieure pour un groupe discret.

1. Définitions et notations

On se donne un ensemble non vide X et une algèbre © de parties de X.
Un pseudogroupe (5 de transformations de (X, ©) est un ensemble de

bijections y : S T, où S, T e ©, qui satisfait

i) l'identité X - X est dans (5 ;

ii) si y : S T est dans ©, l'inverse y-1 : T -* S l'est aussi;

iii) siy:S->Tet8:T U sont dans (5, le composé 8y : S -> U est dans (5 ;
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iv) si y : S -* T est dans © et si S' e 23 est contenu dans S, la restriction
de y à S' est dans © ;

v) soient S, T e 93 et cp : S ^ T une bijection ; s'il existe une partition
finie S =LI Sj avec Sj e 93, telle que chaque restriction cp | Sj soit dans ©,
alors cp e ©.

La condition iv) exprime que © est stable par localisation et v) par
recollement fini. La donnée de © contient celle de 93 vu les conditions i) et iv).

Deux parties S, T e 93 sont équivalentes modulo ©, ce qu'on note
S T (mod ©), s'il existe dans © une bijection de source S et de but T.
Une partie S e 93 est grande s'il existe 7\,TN e 93, chaque Tj étant
équivalent à une partie de S, avec X u 7"]; on obtiendrait la même
définition (vu la propriété iv)) en exigeant de plus que les Tj soient disjoints
deux à deux. (La partie S est grande si et seulement si X est S-borné au
sens de [RI], [R2].) Nous disons que le pseudogroupe © est faiblement
paradoxal s'il existe dans © deux bijections ayant X pour source qui sont
de buts disjoints, ce que nous abrégeons par

2X ^ X (mod ©).

Nous disons aussi, parfois et abusivement, que l'espace (X, 23) est faiblement
paradoxal.

Pour tout entier p ^ 1, on note Ip l'ensemble {1,..., p} et ©p le pseudogroupe

de toutes les bijections entre sous-ensembles de Ip. On note Xp
le produit direct X x Ip, qu'on munit de l'algèbre produit 93p 93 x ty(Ip).
Si © est comme ci-dessus, le produit direct ©p © x ©p est le pseudogroupe
de transformations de (Xp, 93p) engendré par les bijections

j S x {q} - T x {r}
I (x, q) i-> (yx, r)

où y : S - T est dans © et où q, r sont dans Ip. Nous disons que ©
est virtuellement paradoxal s'il existe un entier p ^ 1 tel que ©p soit
faiblement paradoxal. Notons ceci: lorsque r ^ p, on a Ir =d Ip, et (Xp, 93p)

est un sous-espace de (Xr,93r) sur lequel ©r induit précisément ©p. On
vérifie plus bas que, si ©^ est faiblement paradoxal, alors il en est de même
de ©r pour tout r ^ p (voir la remarque qui suit la proposition 3).

Le pseudogroupe © est moyennable s'il existe une moyenne ©-invariante
sur (X, 23), c'est-à-dire une application p : © -> [0, 1] telle que
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mW i,
H(SuT) n(S) + n(T) pour S, T e 95 avec n 0
|i(T) p(S) s'il existe y : S -> T dans ©

Nous désignons par /°°(X) l'espace de Banach des fonctions bornées à

valeurs réelles sur X avec la norme de la convergence uniforme, et par

r(X9 95) l'adhérence dans l°°(X) du sous-espace vectoriel engendré par les

fonctions caractéristiques des éléments de 93. Alors © est moyennable si et

seulement s'il existe une forme linéaire positive normalisée ©-invariante sur

r(X, 93), forme que nous notons aussi p. (Rappel de vocabulaire: p est

positive si p(/) ^ 0 pour tout / e lœ(X, 93) à valeurs positives ou nulles,

p est normalisée si p prend la valeur 1 sur la fonction constante de valeur 1,

et p est ©-invariante si p(/y) p(/) pour tout y : S -> T dans © et pour
tout / e l°°(X, 93) à support dans T.) Pour l'équivalence entre les deux

définitions de moyennabilité, voir le théorème 20.30 de [HS].
Etant donné un entier p ^ 1, on laisse au lecteur le soin de vérifier

que © est moyennable si et seulement si ©p l'est. Plus généralement, si

© agit sur (.X, 93) et si U e © est une grande partie de X, alors © est

moyennable si et seulement si ©c/ est moyennable. (Voir aussi la proposition

12.)

2. Paradoxes relatifs à une algèbre

On considère à nouveau un ensemble non vide X, une algèbre 93 de

parties de X, et un pseudogroupe © de transformations de (X, 93).

Théorème 1. Les conditions suivantes sont équivalentes :

i) © n'est pas moyennable ;

ii) © est virtuellement paradoxal

Preuve. S'il existe un entier p > 1 avec ©p faiblement paradoxal, il est

évident que ©p n'est pas moyennable, et par suite © n'est pas moyennable;
donc ii) implique i).

Notons dœ(X, 93) le sous-espace vectoriel de Ie0(X, 93) engendré par les

différences x — XY> avec J ' S ^ T dans © et % la fonction caractéristique
de T. Notons C le cône convexe ouvert de /°°(V, 93) formé des fonctions /
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